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Abstract: The functionalization of self-assembled peptide hydrogel is of great importance to broaden
its applications in the field of biomedicine. In this work, conductive hydrogel is fabricated by
introducing conductive polymer polyaniline into peptide self-assembled hydrogel. Compared with
pure peptide formed hydrogel, the conductive hydrogel exhibits enhanced conductivity, mechanical
property and stability. In addition, the hydrogel is tested to be of great injectability and 3D bio-
printability and could support the viability of encapsulated cells that are sensitive to electrical signals.
It should have great application prospects in the preparation of tissue engineering scaffolds.
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1. Introduction

With the increasing demand for biomaterials in biomedical fields, molecular self-
assembly has emerged as a promising strategy for fabricating multifunctional biomate-
rials [1–3]. The molecular self-assembly technique allows the use of relatively simple
molecules as building blocks to fabricate nanoscale materials with various morphologies
and properties [4–9]. Notably, biologically homologous peptides have gradually attracted
researchers’ interests as self-assembly building blocks due to their advantages of good bio-
compatibility, versatility and biological activity [10–12]. These peptides have been reported
to self-assemble into nanoparticles [13,14], nanotubes [15], nanobelts [16], nanofibers [17]
and so on. The inherent sensitivity of peptides to pH, temperature, ions and enzymes
provides these self-assembled architectures with good controllability and biological in-
telligence responsiveness [18–21]. Furthermore, functional groups could be dopped into
peptide assembled architectures to endow them with new functions. In our previous work,
we reported the doping of porphyrin into peptide self-assembled nanoparticles to obtain
photosensitive nanoparticles. These particles were found to be of great prospect in one and
two-photon photodynamic cancer therapy [22,23]. Yan reported the work of photosensi-
tizer modified peptides as building blocks to fabricate nanoparticles with photothermal
cancer therapy ability [24]. Among the various architectures, peptide self-assembled fi-
brous hydrogels are perhaps the most attractive biomaterials for cell culture and tissue
engineering due to their tunable mechanical property and fibrous-network structure that
can mimic the properties of the natural extracellular matrix. Our group has successfully
employed self-assembled peptide hydrogel as a 3D cell culture scaffold for hepatoma
culture [25]. Hepatoma could rapidly proliferate within the scaffold into millimeter-sized
spheroids, which could serve as a liver cancer model for drug screening and so on. Owing
to the tunable mechanical properties and excellent self-healing properties, we have also
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successfully utilized self-assembled peptide hydrogel as surgical dressings to promote
postoperative wound repair [26]. Despite the great progress of peptide self-assembled
hydrogel in biomedical applications, it mainly focuses on pure peptide hydrogel, more
efforts to fabricate hybrid functionalized peptide hydrogels are urgently required. It is
widely known that many biological tissues have their own unique microenvironment
to perform their biological functions [27–29]. For example, muscle tissue is reported to
be in a bioelectric microenvironment, and the function of muscle tissue is controlled by
bioelectrical signals [30–32]. To mimic the specific microenvironment is of great importance
for hydrogels to be used in biomedical fields such as tissue engineering.

In this work, As shown in the Scheme 1, conductive polymer polyaniline is introduced
into peptide self-assembled hydrogel to fabricate conductive hydrogel. Aromatic peptide
Fmoc-W is chosen as the assembly building block. The heated Fmoc-W solution in PBS
is found to self-assemble into fibrous hydrogel once cooled to room temperature. For the
homogeneous dispersion of polyaniline in the hydrogel, aniline monomers are doped into
the hydrogel for in situ polymerization. A certain amount of aniline monomers and APS
that served as initiators are added to the heated Fmoc-W solution and mixed thoroughly
under shaking before Fmoc-W molecules start gelling. A noticeable color change of the
hydrogel from white to brown suggests the successful polymerization of aniline monomers
to polyaniline. The π-π stacking between aromatic groups in Fmoc-W and polyaniline
molecules could stabilize the hydrophobic polyaniline in the highly hydrated hydrogel,
preventing precipitation. The morphology, mechanical property, electrical property, in-
jectability and 3D bio-printability of the polyaniline functionalized peptide hydrogel are
characterized. It is suggested that the doping of polyaniline may slightly change the
molecular arrangement of peptides, which results in nanofibers of different diameters.
The doping of polyaniline not only improves the stability and mechanical strength of the
hydrogel but also endows the hydrogel with excellent electrical conductivity, which can be
used to conduct electrical signals. Furthermore, the hydrogel also exhibits great injectability
and 3D bioprinting performance. The above properties imply that the conductive polymer
functionalized hydrogel should be suitable for cell proliferation that is sensitive to the
electrical signal. Taking the three-dimensional culture of myoblasts C2C12 as an example,
the myoblasts plant in the hydrogel scaffold could quickly proliferate to cell spheroid with
a dimension of about 200 µm, and most of the cells in the spheroid survive well, suggesting
that the hydrogel could support the three-dimensional cell growth and should have great
application prospects in the preparation of tissue engineering scaffolds.
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2. Results and Discussion
2.1. Results
2.1.1. Morphology Characterization of the Hydrogel

Photo images of obtained hydrogels in Figure 1 showed that pure peptide could
assemble into a transparent and colorless hydrogel (Figure 1A), while when doped with
polyaniline, yellow–brown transparent hydrogel was obtained (Figure 1D). The morphol-
ogy of the hydrogels was first characterized by SEM. No apparent morphological difference
could be observed where both of the hydrogels were composed of porous structures by
interlaced nanofibers (Figure 1B,C,E,F).

Gels 2022, 8, x FOR PEER REVIEW 3 of 10 
 

 

2. Results and Discussion 
2.1. Results 
2.1.1. Morphology Characterization of the Hydrogel 

Photo images of obtained hydrogels in Figure 1 showed that pure peptide could as-
semble into a transparent and colorless hydrogel (Figure 1A), while when doped with 
polyaniline, yellow–brown transparent hydrogel was obtained (Figure 1D). The morphol-
ogy of the hydrogels was first characterized by SEM. No apparent morphological differ-
ence could be observed where both of the hydrogels were composed of porous structures 
by interlaced nanofibers (Figure 1B,C,E,F). 

The detailed morphology of the hydrogels was further observed by AFM. Nano-
fibrous structures could also be observed for both hydrogels (Figure 2A,D). Magnified 
images demonstrated helical structures within these nanofibers (Figure 2B,E). The diam-
eter of the nanofibers for pure Fmoc-W hydrogel was measured to be 6 nm and helical 
pitch to be 130 nm (Figure 2C), and for polyaniline doped hydrogel, the nanofiber diam-
eter was also about 6 nm, while the helical pitch was shortened to be ca. 100 nm (Figure 
2F). The results indicated that the addition of polyaniline might slightly change the mo-
lecular arrangement during the peptide assembly process. 

 
Figure 1. Photo images (A) and SEM (B,C) characterization of pure Fmoc-W hydrogel; Photo im-
ages (D) and SEM (E,F) characterization of polyaniline doped conductive hydrogel. 
Figure 1. Photo images (A) and SEM (B,C) characterization of pure Fmoc-W hydrogel; Photo images
(D) and SEM (E,F) characterization of polyaniline doped conductive hydrogel.

The detailed morphology of the hydrogels was further observed by AFM. Nanofibrous
structures could also be observed for both hydrogels (Figure 2A,D). Magnified images
demonstrated helical structures within these nanofibers (Figure 2B,E). The diameter of the
nanofibers for pure Fmoc-W hydrogel was measured to be 6 nm and helical pitch to be
130 nm (Figure 2C), and for polyaniline doped hydrogel, the nanofiber diameter was also
about 6 nm, while the helical pitch was shortened to be ca. 100 nm (Figure 2F). The results
indicated that the addition of polyaniline might slightly change the molecular arrangement
during the peptide assembly process.

2.1.2. Mechanical Property and Conductivity Characterization of the Hydrogel

Mechanical property is an important property of hydrogels as it could affect cell be-
haviors such as adhesion, proliferation, migration and so on. The rheological properties
of hydrogels were consequently measured. As shown in Figure 3A and Figure S1, both
hydrogels exhibited higher storage modulus (G′) than their loss modulus (G”), demon-
strating the typical characterization of elastomer. Notably, the storage modulus (G′) of
polyaniline doped hydrogel was much higher than that of pure Fmoc-W formed hydrogel,
suggesting that adding polyaniline could significantly improve the mechanical strength of
the hydrogel. Furthermore, two hydrogels possessed great shear-thinning (Figure S2) and
self-healing properties, as implied in Figure 3B, which means that the storage modulus (G′)
of the hydrogels could quickly recover to almost their original G′ after being destroyed.
These properties suggested the potential application of the hydrogel as an injectable drug
carrier or as 3D bioprinting ink. As polyaniline is a commonly used conductive polymer,
we hence proposed that adding polyaniline within the hydrogel could endow the hydrogel
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with electrical conductivity. We next tested the conductivity of the two hydrogels by elec-
trochemical impedance spectroscopy (EIS). The semicircle diameter in Figure 3C reflected
the charge transfer resistance (Rct), where the bigger diameter indicated the greater charge
transfer resistance. Obviously, with no polyaniline doping, pure Fmoc-W-formed hydrogel
was tested with a quite large semicircle diameter, suggesting the considerable charge trans-
fer resistance of the hydrogel. Comparatively, a hydrogel with polyaniline doping exhibited
a relative smaller semicircle diameter, demonstrating a smaller Rct and great electrically
conductive ability. To further prove the conductivity of polyaniline doped hydrogel, we
next employed the hydrogel as conductive wire for LED illumination. As shown in Fig-
ure 3D, when the hydrogel was connected in a closed circuit, the LED could be illuminated,
further verifying the outstanding electrical conductivity of polyaniline-doped hydrogel.
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the green circle is in the lower right corner of (C); (D) LED illumination test with polyaniline doped
hydrogel as conductive wire.
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2.1.3. Stability and Injectability Characterization of the Hydrogel

As for a cell culture scaffold, it was crucial for the hydrogel to be of sufficient stability.
Unfortunately, pure peptide-assembled hydrogel often suffered from the disadvantage of
instability and was prone to degradation. Here, we wondered whether the addition of
polyaniline could improve the stability of the hydrogel. The same amount of two hydrogels
was immersed in PBS buffer and incubated at 37 ◦C for several days. Compared with
the original hydrogels in Figure 4A, no apparent hydrogel loss could be observed for
polyaniline doped hydrogel (Figure 4B Right), while for pure Fmoc-W assembled hydro-
gel, significant hydrogel loss was observed, and it showed a clear tendency to degrade
(Figure 4B Left). The swelling experiment also showed that the water absorption of polyani-
line hydrogel was very low (Figure S3). The different degradation rates suggested that the
addition of polyaniline could improve the stability of hydrogels. The mechanical property
test proved the great shear-thinning property of the hydrogel, suggesting its injectability
and 3D printability. We next verified the injectability by extruding the hydrogel through
an injection syringe with a needle of 26-gauge (ϕ = 260 µm). As shown in Figure 4C, the
hydrogel could be continuously extruded from the syringe without any water leaching.
Additionally, when injecting PBS buffer with a syringe, the hydrogel could recover immedi-
ately to its gel state and be stable enough in buffer solution (Figure 4D), all demonstrating
the great injectability of the hydrogel. Furthermore, with the hydrogel as 3D printing
ink, we successfully printed parallel hydrogel arrays with a hydrogel wall width of ca
1000 µm and wall space width of 300 µm (Figure 4E,F). The CCK-8 experiment showed that
hydrogel had low cytotoxicity (Figure S4). The result suggested the potential application of
the hydrogel as a printed scaffold for 3D cell culture.
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2.1.4. Three-Dimensional Culture of C2C12 Cells in the Hydrogel

Finally, we tested the ability of the hydrogel to support 3D cell culture. As the doping
of polyaniline made the hydrogel electrically conductive, we here employed C2C12 as
an example cell due to its sensibility to the electrical signal. The conductivity of the
hydrogel was supposed to facilitate the signal transition between C2C12 cells and promote
cell proliferation. After incubating the hydrogel in DMEM cell culture for three days,
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C2C12 cells were printed into the hydrogel scaffold by a droplet-based 3D printer and
then incubated in DMEM cell culture at 37 ◦C for three days. Cell proliferation within
the hydrogel was firstly observed by an optical microscope (Figure 5A) which showed
that C2C12 cells could proliferate into a cell spheroid of about 230 µm in diameter. Next,
the obtained cell spheroid was observed by CLSM. Before observation, the cell spheroid
was stained with Calcein-AM and PI, which could specifically stain live and dead cells to
emit green and red fluorescence, respectively. As shown in Figure 5B–D, cells spheroid
with a size of more than 200 µm was observed, and most of the cells in the spheroid were
stained green while only a few of the cells were stained red, suggesting that most of the
cells were kept alive. The result confirmed the biocompatibility of the hydrogel and implied
its potential application in 3D cell culture.
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3. Conclusions

In this work, conductive polymer polyaniline was introduced into peptide self-
assembled hydrogel to prepare conductive hydrogel. The doping of polyaniline not only
endowed the hydrogel with excellent electrical conductivity but also improved the stability
and mechanical strength without affecting its injectability and 3D bioprinting performance.
The hydrogel can act as an active electrical scaffold for the proliferation of cells that
are sensitive to the electrical signal. Taking the three-dimensional culture of myoblasts
C2C12 as an example cell, the myoblasts planted in the hydrogel scaffold showed a good
three-dimensional growth state, indicating that the conductive hydrogel has good biocom-
patibility and can support three-dimensional cell growth. It may have great application
prospects in the preparation of tissue engineering scaffolds.

4. Materials and Methods
4.1. Materials

Peptide powder, Aniline monomer and ammonium persulfate (APS) were bought
from J&K Scientific (San Jose, CA, USA). Dulbecco’s phosphate-buffered saline (PBS)
and Dulbecco’s modified eagle’s medium (DMEM) were provided by Gibco (Waltham,
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MA, USA). Propidium Iodide (PI) and Calcein-AM were purchased from Invitrogen Corp
(Waltham, MA, USA).

MCF-7 cell line was obtained from the Cell Culture Center of the Institute of Basic
Medical Sciences, Chinese Academy of Medical Sciences (Beijing, China).

The water used in this work was from a Milli-Q Plus water purification system with a
resistivity > 18.2 MΩ·cm.

4.2. Methods
4.2.1. Hydrogel Preparation

For the preparation of the hydrogel, Fmoc-W powder was first added into PBS buffer
(pH 8.0) to form a Fmoc-W suspension. Then, the suspension was heated to 75 ◦C to
promote the dissolution of Fmoc-W powder in PBS buffer. After the powder was com-
pletely dissolved in PBS, the obtained clear and transparent solution was cooled to room
temperature for the hydrogel formation. To prepare conductive hydrogel, suitable aniline
monomer and initiator APS were added to Fmoc-W dissolved PBS buffer before gelling.

4.2.2. Morphology Characterization of the Hydrogel

For scanning electron microscopy (SEM) measurement, an aliquot of the hydrogel was
dropped on a silicon wafer and dried in a vacuum at room temperature. Before image
acquisition with an S-4800 (HITACHI, Japan, 10 kV voltage) instrument, the sample on a
silicon wafer was sputtered with platinum to increase conductivity.

For AFM characterization, hydrogels were deposited on freshly cleaned mica sheets
and dried in a vacuum at room temperature. The images were obtained by scanning the
mica surface in air under ambient conditions (FASTSCANBIO, Bruker) and analyzed using
the Nano-Scope Analysis software (version 1.5, Bruker).

4.2.3. Mechanical Property

The dynamic rheological properties of the hydrogels were determined by a rheometer
(Anton Paar MCR302) with a 12 mm diameter parallel plate (PP12). Strain amplitude
sweeps were conducted at a shear-strain (γ) range of 0.01 to 100% and a frequency (f) of
1 Hz. The self-healing properties of the hydrogel were tested by an oscillatory time sweep
via alternate strains of 0.1 and 100% (f = 1 Hz). The measurements for each sample were
reproduced three times.

4.2.4. Electrical Properties

The electrochemical impedance of the hydrogel was tested with an electrochemical
workstation (CHI 660E, Beijing Chinese Science Days Technology Co., Ltd., Beijing, China)
using a three-electrode method where the hydrogel, Ag/AgCl electrode and Pt electrode
were used as the working electrode, reference electrodes and the counter electrode, re-
spectively. Nyquist curves were measured over the range of 0.01 Hz to 10 kHz at open
circuit potential.

4.2.5. Stability of the Hydrogel

The same amount of pure Fmoc-W formed hydrogel and polyaniline doped hydrogel
were prepared and incubated in PBS buffer at 37 ◦C for several days. Then, after removing
the PBS buffer, the photo image of the remaining hydrogel was recorded.

4.2.6. Injectability and Printability of the Hydrogel

To test the injectability of polyaniline dopped hydrogel, an extrusion experiment
was conducted by extruding the hydrogel through an injection syringe with a needle of
26-gauge (ϕ = 260 µm).

For 3D printing, the hydrogel was first heated to 50 ◦C to destroy the hydrogel into
liquid. Then, the liquid was printed by a droplet-based 3D printer (CellJet, Thermo Fisher
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Scientific, Waltham, MA, USA). The printing parameters were optimized as 190 µm for
nozzle diameter, 200 nL for droplet volume and 0.9 mm for droplet interval.

4.2.7. Cell Proliferation in the Hydrogel Scaffold

Before cell implanting, the hydrogel was incubated in PBS buffer for three days and
then sterilized under UV light for 30 min. After that, 20 µL C2C12 suspension with a density
of 105 cell/mL were printed into the hydrogel by a droplet-based 3D printer and incubated
at 37 ◦C for 3 days. To determine the bioactivity of the cells, a Live/Dead staining assay was
carried out where Calcein AM (green fluorescence; Invitrogen) and propidium iodide (PI;
red fluorescence; Invitrogen) were used for viable and dead cell staining, respectively. The
stained samples were observed by a confocal laser scanning microscope (FV1000; Olympus,
Tokyo, Japan).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8060372/s1, Figure S1: Rheological behavior of the hydrogels;
Figure S2: Shear thinning test of polyaniline doped conductive hydrogel; Figure S3: Swelling
behavior of polyaniline doped conductive hydrogel; Figure S4: CCK-8 experiment with different
Fmoc-w concentrations.
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