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Ancestral Characterization of 1018 Cancer Cell Lines Highlights 
Disparities and Reveals Gene Expression and Mutational 

Differences
Michael D. Kessler, BA 1,2,3,4; Nicholas W. Bateman, PhD 5,6; Thomas P. Conrads, PhD5,6,7;  

George L. Maxwell, MD5,6,7; Julie C. Dunning Hotopp, PhD1,4,8; and Timothy D. O’Connor, PhD1,2,3,4

BACKGROUND: Although cell lines are an essential resource for studying cancer biology, many are of unknown ancestral origin, and 

their use may not be optimal for evaluating the biology of all patient populations. METHODS: An admixture analysis was performed 

using genome-wide chip data from the Catalogue of Somatic Mutations in Cancer (COSMIC) Cell Lines Project to calculate genetic 

ancestry estimates for 1018 cancer cell lines. After stratifying the analyses by tissue and histology types, linear models were used to 

evaluate the influence of ancestry on gene expression and somatic mutation frequency. RESULTS: For the 701 cell lines with unre-

ported ancestry, 215 were of East Asian origin, 30 were of African or African American origin, and 453 were of European origin. 

Notable imbalances were observed in ancestral representation across tissue type, with the majority of analyzed tissue types having 

few cell lines of African American ancestral origin, and with Hispanic and South Asian ancestry being almost entirely absent across 

all cell lines. In evaluating gene expression across these cell lines, expression levels of the genes neurobeachin line 1 (NBEAL1 ), solute 

carrier family 6 member 19 (SLC6A19 ), HEAT repeat containing 6 (HEATR6 ), and epithelial cell transforming 2 like (ECT2L ) were 

 associated with ancestry. Significant differences were also observed in the proportions of somatic mutation types across cell lines 

with varying ancestral proportions. CONCLUSIONS: By estimating genetic ancestry for 1018 cancer cell lines, the authors have 

 produced a resource that cancer researchers can use to ensure that their cell lines are ancestrally representative of the populations 

they intend to affect. Furthermore, the novel ancestry-specific signal identified underscores the importance of ancestral awareness 

when studying cancer. Cancer 2019;125:2076-2088. © 2019 The Authors. Cancer  published by Wiley Periodicals, Inc. on behalf of 

American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 

License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used 

for commercial purposes. 
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INTRODUCTION
Cell lines function as an essential resource for studying cancer biology, and their use in the testing of initial hypotheses 
has resulted in seminal findings and important progress.1,2 Therefore, the National Institutes of Health (NIH) and other 
experts have placed an emphasis on improving cell line characterization, including genetically, so that phenotypic hetero-
geneity between cell types can be better controlled and research reproducibility and generalizability can be improved.3-6 
One aspect of cancer cell line characterization that is notably lacking is the identification and annotation of ancestral 
composition.7 The Catalogue of Somatic Mutations in Cancer (COSMIC)8 (Wellcome Sanger Institute, Hinxton, UK) 
reports ancestry or race information for only approximately 30% of the >1000 cell lines they annotate and for which 
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they provide genomic data. With the remaining approx-
imately 70% of COSMIC cell lines reporting unknown 
ancestral status, and with preclinical studies often fail-
ing to report the ancestral characterization of the cell 
lines they use, it is easy to imagine scenarios in which 
researchers use cell lines and/or cell line data that are not 
ancestrally representative of the patient populations for 
whom their findings are intended to apply.

This is likely of important consequence, as studies 
have demonstrated significant interancestral differences 
in cancer cell phenotypes and in the types and frequencies 
of molecular alterations that drive oncologic disease.9-14 
For example, Bateman et al recently used proteomics and 
transcriptomics to identify ancestry-specific molecular 
alterations in European and African ancestry individu-
als with endometrial cancer and then correlated a subset 
of these to ancestry-specific progression-free survival.15 
The prostate cancer-driving fusion gene TMPRSS2-ERG  
(transmembrane serine protease 2–v-ets erythroblasto-
sis virus E26 oncogene homolog) has been identified at 
significantly different rates in ancestrally distinct popu-
lations, with twice the frequency of this cancer causing 
alteration reported in European populations compared 
with African and Asian populations.16 Thus, a lack of 
awareness about the ancestral makeup of cancer cell lines 
may lead to unaccounted for biologic differences, and, in 
turn, can reduce the ability to control for heterogeneity 
between ancestrally distinct cell lines and/or limit the 
replication of previous study results.

Therefore, it is essential that researchers have the 
information necessary to ensure that their cell lines 
and preclinical research studies are maximally ref lec-
tive of the diseases and patient populations they are 
studying. Recent NIH and National Cancer Institute 
(NCI) initiatives emphasize this and have called for 
increased ancestry awareness and minority-focused 
 resource development.17 To this end, we use genetic  
estimates to ancestrally characterize the genomes of 
1018 cell lines from the COSMIC database for which 
genotypic data are available. By utilizing chip data for 
these samples in combination with genome sequence 
data from ancestrally diverse samples from the 1000 
genomes project and a separate Native American  
cohort, we employed admixture analysis to produce the 
first quantitative ancestral annotations of these cancer 
cell lines. We then stratify our ancestral annotations by 
primary tissue and histology type, and demonstrate dis-
tinct ancestral imbalances, including marked African 
and Hispanic under-representation, in the majority 
of cell lines  regardless of source. In providing further 

support of the biologic differences between cancer cell 
lines of differing ancestral origins, we observe signif-
icant differences in gene expression and single-base 
mutation types across ancestrally distinct cell lines. 
These annotations of genetic ancestry can serve as a 
resource for preclinical scientists interested in knowing 
the ancestral compositions of the cell lines with which 
they work. It is our hope that this characterization will 
help control for phenotypic heterogeneity between cell 
lines, improve research reproducibility, aid in experi-
mental design and clinical trial patient selection, and 
facilitate more appropriate and precise cancer research 
for patients of all ancestral backgrounds.

MATERIALS AND METHODS

Data Source and Quality Control
We accessed the publicly available cell line panel 
Affymetrix 6.0 chip data (Affymetrix Inc, Santa Clara, 
CA) from COSMIC version 83 for 1018 cell lines. This 
contained certain annotation data, including tissue 
source and histology of the sample. The COSMIC group 
made both simple and complex calls of genotype, and 
we combined all cell lines according to the simple calls. 
Missing data were evaluated for each site and sample.

We then combined this call set with 2504 indi-
viduals from the 1000 genomes project phase 3 data18 
and 88 Native American individuals from the study 
by Bigham et al,19 who also were genotyped using the 
Affymetrix 6.0 chip. We removed any variant that 
was not found at the intersection of the 3 data sources 
or that was missing in at least 1% of individuals. In 
 addition, we removed all G-C or A-T variants for which 
the strand was ambiguous.

We then pruned single nucleotide polymorphisms 
(SNPs) for linkage and minor allele frequency (MAF), 
as all subsequent analyses assume independence among 
SNPs. To prune all SNPs, we used the plink20 link-
age-pruning algorithm command “–indep-pairwise 50 
5 0.1,” which uses a window of 50 with an r2 > 0.1 and 
a SNP step of 5. All SNPs with an MAF <1% were 
removed.

By using intermediate admixture analyses  
(described below), we filtered SNPs that were strongly  
associated with the unidentified cluster within the Cell 
Line Panel samples. We removed 7409 variants in the 
first iteration and 2847 variants in the second iteration. 
Although these were the variants that were most strongly 
associated with the unidentified cluster, we were unable 
to completely  remove the signal, as it is genome-wide. 
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However, removal to this level did allow us to examine 
the ancestry signal, which is most pertinent to the scope 
of this article. With the removal of these variants, we 
were left with a data set of 94,593 SNPs.

Cryptic Kinship
With these data, we identified low levels of kinship 
within our combined data set. We estimated kinship 
 coefficients using the program KING,21 which suggests 
a threshold of 0.0442 as the lower end of third-degree  
(ie first cousin) relations. By using this threshold, we 
identified 73 pairs, 11 of which came from the Cell Line 
Panel. We then used a heuristic to retain the largest sam-
ple set by removing a sample identified in the most pairs, 
then updating the number of the remaining samples’ 
connections. After this procedure, we removed 55 indi-
viduals, including 5 from the Cell Line Panel and 7 from 
the Native American data. The remaining related indi-
viduals from the 1000 Genomes Project represent known 
relationships.18 This left us with a total of 3555 individu-
als for the analysis of ancestry.

Ancestry Analyses
We calculated the principal components from this 
unrelated data set with the program KING21 and 
then observed the output using R (R Foundation for 
Statistical Computing, Vienna, Austria).22 We also 
estimated ancestral components using the program 
ADMIXTURE,23 which uses an unsupervised learn-
ing algorithm to estimate the proportion of the genome 
in each sample that corresponds to a given number of 
clusters (K) and does this in a manner similar to that of 
a K-means clustering algorithm. When used in combi-
nation with individuals of known ancestry, the output 
from this approach can be interpreted as genome-wide 
ancestry proportions. To correctly optimize the esti-
mates, we ran 20 replicates with random start seeds 
for each K tested, and we selected the replicate with 
the best log-likelihood (ie, model fit) for that K. We 
ran K from 2 to 8 to estimate the proportions of con-
tinental admixture. The results of K = 6 are presented 
throughout, because this is most representative of con-
tinental divisions, and subsequent clustering  divides 
the continents in ways that cannot be validated as 
thoroughly. After sorting based on population label 
and major admixture cluster (eg, African proportion 
in African populations and European proportion in 
European populations), as determined by individuals 
from known source populations (ie, 1000 Genomes 
Project and Bigham et al), we used R for visualization.

Accounting for Copy Number Changes Within 
Admixture Analysis
To evaluate any potential effects of large-scale copy num-
ber changes on our admixture estimates, we repeated 
our admixture analysis after removing all genotypes 
that existed in regions with copy number changes that 
 effected allelic balance. In other words, using COSMIC’s 
complex genotype calls, which take copy number into 
account by using calls generated by the predicting in-
tegral copy numbers in cancer (PICNIC) algorithm,24 
we only retained genotypes for which no copy number 
changes existed (ie, complex genotype is identical to sim-
ple genotype) or for which the allelic ratio of the complex 
genotype was identical to that of the simple genotype 
(eg, AATT vs AT, AAA vs AA, etc). Because all simple 
genotypes are made up of only 2 alleles, this ensures that 
there are no SNPs remaining in the analysis that have 
allelic balances other than 0%, 50%, or 100%. We refer 
to the genotypes that remain in this analysis as being 
harmonized between complex and simple calls, and this 
approach should mitigate any effects from copy number 
changes.

NCI60 Cell Lines Analysis
The list of cell lines used in anticancer drug screens 
by the NCI’s Developmental Therapeutics Program 
was obtained from the NCI website.25 Considerations 
for which cell lines make up the original NCI60 
cell lines and which have been added more recently 
also were determined from information available on 
these NCI web pages. Numerous NCI60 cell lines are  
duplicates, including the MDA-MB-435, MDA-N, 
and M14 cell lines, which are all derived from the 
same individual; NCI/ADR-RES, which derives from 
the same individual as OVCAR-8; and SNB-19, which 
is from the same individual as U251.26 Ultimately, we 
determined genetic estimates for 59 of the 70 nonre-
dundant NCI60 cell lines that are used in anticancer 
drug screens.

Stratification by Tissue and Histology Type
We used cell line annotations from COSMIC to 
 stratify cell lines according to the primary tissue site 
and histology type listed for each cell line. Tissue 
sites and histology types that were represented by 
fewer than 5 cell lines in our data set were excluded 
from our stratification analyses and visualizations.  
Of the 1013 unrelated cell lines for which we  estimated 
 genetic ancestry, all 1013 had tissue site and histology 
data.
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Correlation of Gene Expression and Ancestry
Gene expression data were downloaded from COSMIC 
within the file named “CosmicCompleteGeneExpression.
tsv.gz.” After parsing the data and combining them with 
our ancestral estimates, we had 959 cell lines remaining 
that had both ancestry and gene expression data. With 
these normalized expression data, we ran linear models 
on each of 16,681 genes to assess the relationship between  
expression level and ancestry after accounting for tissue site 
and histology type. These models can be represented as:

with βa (correlation coefficient) estimated separately 
for European, African, and East Asian ancestry, and all 
histology and tissue types included as covariates, with 
residual ε . When correcting for multiple testing in the 
maximally conservative fashion with a total number of 
50,043 (16,681 × 3), our threshold for family-wide sig-
nificance at the .05 level is 9.99 × 10−7. At this level, the 
neurobeachin line 1 (NBEAL1 ) gene is associated sig-
nificantly with ancestry. We also corrected for multiple 
testing in a slightly less conservative fashion by using the 
number of annotated Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, which was 523, instead of 
the number of genes tested. This was based on the logic 
that gene expression between genes is not independent 
and is likely to associate for genes in similar biologic 
pathways. Applying this less conservative multiple testing 
correction required a P  value of 9.56 × 10−5 to achieve 
significance at the .05 family-wide level. At this level, 
we identified additional genes with expression levels that 
were associated significantly with ancestry.

Relation Between Mutation Types and Ancestry
Mutation data were downloaded from COSMIC 
and represented coding and noncoding point muta-
tions from targeted and genome-wide screens (down-
loaded files named “CosmicMutantExport.tsv.gz” and 
“CosmicCLP_NCVExport.tsv.gz”). Only single nucle-
otide mutations were included, and 1009 cell lines had 
both mutation and ancestry data. After counting the 
number of mutations of each of the 12 possible types 
for each cell line, we ran linear models for each muta-
tion type to evaluate the contribution of ancestry to 
mutation counts and proportions. First, we ran sepa-
rate analyses in which only cell lines of the same tissue 
type were tested for linear relations between mutation 
type and ancestry. Next, the relation between each 

mutation type and ancestry was tested across all cell 
lines within a linear framework that accounted statisti-
cally for tissue site and histology type (Eq. 2). Thus, 
these models can be understood as:

and we independently tested the influence of European, 
African, and East Asian ancestry on each of the 12 muta-
tion types. Tissue and histology were controlled for as 
covariates with residual ε . To correct for multiple test-
ing, we used a Bonferroni correction with a conservative 
number of 36 (3 ancestries × 12 mutation types). This is 
notably conservative, because each ancestry is not com-
pletely independent of another, and one-half of the 12 
mutations are related to 1 another by base pairing rela-
tions. Nonetheless, we produced significant results after 
conservatively correcting.

RESULTS
By using the genetic resources developed by the 
COSMIC Cell Lines Project, we were able to characterize 
the  genetic ancestry of 1018 commonly used cancer cell 
lines. After identifying and removing cryptic relatedness 
between different cell lines, we used admixture analysis 
to estimate the ancestral proportions of each cell line.23 
We then demonstrated imbalances in the ancestral com-
position of cell lines across a variety of primary tissue and 
primary histology types. Finally, we used these genetic 
estimates to test genome-wide for differences in gene 
 expression and somatic mutation type across cell lines of 
differing ancestral proportions, and we report significant 
differences.

Cryptic Relatedness Among the COSMIC Cell 
Line Panel
We identified 11 pairs of cell lines that exhibited 
 relatedness at the same level as first cousins (Supporting 
Table 1). According to the COSMIC website, all samples 
sent for genotyping were prescreened using a barcode of 
94 SNPs and 16 short tandem repeats, and all identical 
samples were removed.27,28 Consistent with this, we iden-
tified no sample pairs with relatedness levels of siblings 
to monozygotic twins, and the relations we did identify 
likely were the result of both real first-cousin relation-
ships as well as relationships that appear close because 
of similar types and levels of contamination. It is note-
worthy that 9 of 11 related cell line pairs derive from dif-
ferent primary tumor sources, but may share substantial 
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genetic background. Furthermore, we observed multiple 
cell lines that belong to 2 or more closely related pairs 
and likely represent contamination sources or biases 
in sample acquisition. By using a heuristic approach to 
identify the maximum number of unrelated cell lines (see 
Materials and Methods, above), we removed 5 related cell 
lines before proceeding to downstream analyses.

Quantitative Estimates of Ancestry for Cancer 
Cell Lines
Across the remaining unrelated 1013 cell lines for which 
we estimate genetic ancestry (Supporting Table 2), we ob-
serve significant ancestral heterogeneity, with European, 
East Asian, and African ancestries most dominantly rep-
resented. Among the 312 cell lines for which ancestry is 
reported by the COSMIC database, we observed that the 
genetic ancestral estimates failed to match the reported 
ancestry in 7 cases (Fig. 1, Supporting Fig. 1, Supporting 
Table 3). Part of this is because of the mislabeling of in-
dividual cell lines between different data repositories. For 
example, the popular cell line FaDu, which represents 
1 of only 3 cell lines in our data set with >40% South 
Asian ancestry, is listed as Caucasian or white within 

COSMIC and by at least 1 vendor.29 However, at least 
1 other vendor lists FaDu cells as Indian in origin,30 and 
the original publication concurs with our assessment of a 
South Asian (Indian) origin.31

Within the 701 cell lines for which ancestry was 
reported as unknown or not listed in the COSMIC da-
tabase, we identify additional ancestral heterogeneity, 
including 453 cell lines with predominantly (ie, >50%) 
European ancestry, 215 with predominantly East Asian 
ancestry, 30 with predominantly African ancestry, and 
1 with exclusively South Asian ancestry  (CAL-85-1) 
(Fig. 1, Supporting Figs. 1 and 2,18 Supporting Table 2). 
The predominantly African ancestry cell lines exhibit 
significantly higher levels of admixture than the pre-
dominantly European or predominantly East Asian 
cell lines, and the various degrees of European and 
African admixture observed in these cell lines fits with 
the demographic histories of the African Americans 
from whom these cell lines likely originate.32,33 The 
predominantly European ancestry cell lines exhibit 
some Native American ancestry (Fig. 1, Supporting 
Fig. 1, purple), as well as notable levels of South Asian 
ancestry (Fig. 1, Supporting Fig. 1, gold). The latter is 

Figure 1. Genomic Ancestry estimates for 1009 cell lines from the Catalogue of Somatic Mutations in Cancer (COSMIC) database 
are illustrated. Each vertical bar represents a different cell line, and the height of the bar (y-axis) represents the total genomic 
ancestry proportion. The height of each color represents the proportion of the ancestry represented by that color. The group 
labeled “European” on the x-axis represents cells lines for which the ancestry was reported by COSMIC as European (n = 244). The 
vast majority of these cell lines are comprised of European ancestry (red), with some cell lines exhibiting predominantly African 
ancestry (blue) and some exhibiting small amounts of South Asian ancestry (gold). Cell lines reported as African (n = 26) exhibit 
predominantly African ancestry (blue) as well as a gradation of European ancestry proportion (red). Cell lines reported as East 
Asian (n = 38) are almost exclusively of East Asian ancestry, except for 1 inaccurately reported cell line that exhibits exclusively 
European ancestry (red). Among the 701 cell lines for which ancestry was reported as “unknown,” 453 were of predominantly 
European ancestry (red), 30 were of predominantly African ancestry (blue), and 215 were of predominantly East Asian ancestry. 
Within this group of cell lines with previously unknown ancestry, the predominantly African cell lines were admixed the most, 
followed by the predominantly European cell lines, and then the mostly nonadmixed cell lines of East Asian origin.

Global Ancestry of COSMIC Cell Lines
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likely ref lective of noise that results from the  long-term 
relatedness of Europeans and South Asians deriv-
ing from out-of-Africa migrations, rather than from 
 recent admixture between modern-day European and 
South Asian individuals.34 The cell lines identified 
as predominantly East Asian exhibit the lowest levels 
of admixture, as most feature exclusively East Asian 
 ancestry or trace amounts of Native American ancestry 
(with whom Asians are more closely related than are 
Europeans or Africans35).

Native American ancestry, which is generally pres-
ent at significant levels in Latino individuals,18 is notably 
underrepresented across the entire cancer cell line data 
set. Only 1 cell line had predominantly Native American 
ancestry (UACC-812 cells; 49.1%); and only 14 indi-
viduals, or 1.38% of our data set, had Native American 
ancestry proportions ≥8% (Supporting Table 2). This 
underrepresentation of Native American ancestry is sim-
ilar to that observed across The Cancer Genome Atlas36 
and indicates the need to increase ancestral representa-
tion across cancer genome resources.6,37

To evaluate any potential effects of large-scale copy 
number changes on our admixture estimates, we  repeated 
our admixture analysis after removing genotypes that 
exist in regions with copy number changes that effect 
allelic balance. In other words, we only retained gen-
otypes for which no copy number changes exist or for 
which the allelic ratio of the genotype is not affected by 
copy number changes. This should enable an admixture 
analysis that is unaffected by copy number changes. The 
resultant admixture analysis produces ancestry estimates 
that are correlated nearly perfectly with the original esti-
mates (Supporting Fig. 3), which support the robustness 
of the admixture algorithm and our use of it to the copy 
number changes that exist across the cancer cell lines we 
analyzed.

Unidentified Cluster Among Cell Lines
We also identified an additional genetic cluster within the 
data that is present at consistent proportions throughout 
all cell lines (Fig. 1, Supporting Fig. 1, gray). Although 
this signal may represent a type of batch effect or con-
tamination, which is known to exist in cell lines,38 its 
persistence after multiple rounds of filtering on variants 
that drive the signal, and its nonclustered and genome-
wide nature, suggest that contamination is an unlikely 
source. Although HeLa cells have been reported as con-
taminants of cell banks,39 the proportion of the HeLa 
cell line’s genome that is comprised by this signal is low 
 (estimated at 6% after variant removal) and does not seem 

to be a major driver of this cluster signal. The absence of 
this cluster in the reference samples we analyzed, some 
of which were genotyped using the same technology, 
suggests it is not an artifact of our workflow. Somatic 
mutations almost certainly are not responsible for this 
cluster, because we restrict our analyses to SNPs identi-
fied in all reference samples, which should leave virtually 
no somatic mutations across our analysis. In addition, 
our analysis controlling for copy number changes dem-
onstrates that these also do not significantly influence 
this cluster (Supporting Fig. 3). We also performed an 
admixture analysis that used supervised learning to clus-
ter the genome according to reference samples reflecting 
5 continental ancestries (European, African, East Asian, 
South Asian, and Native American). Although such an 
approach is highly dependent on the genomic variation 
represented by the used reference samples, and it is not as 
effective as our original unsupervised approach at iden-
tifying inherent genomic clustering, it helps to demon-
strate the stability of our ancestral estimates despite the 
existence of the unidentified sixth cluster. Our original 
estimates are highly concordant with these supervised 
admixture estimates, despite the supervised approach 
increasing the proportion of European, African, and 
East Asian admixture to accommodate the portions of 
the genome no longer being attributed to the 6th cluster 
(Supporting Fig. 4). Therefore, because this signal seems 
to represent some kind of database or laboratory artifact, 
and because we were able to selectively filter the variants 
that drive this signal to unambiguously estimate genetic 
ancestry, we report this signal but do not address it fur-
ther (for additional filtering descriptions, see Materials 
and Methods, above).

Ancestry of the NCI60 Cell Lines
Next, we examined ancestry estimates for the subset of 
cell lines that belong to the NCI60 cell lines, which are 
curated by the NIH and used regularly for anticancer 
drug assessments and screens.2,40 Of the 1013 COSMIC 
cell lines for which we estimated genetic ancestry, 59 
belonged to the expanded NCI60 list, which now con-
sists of 70 nonredundant cell lines (Supporting Table 4). 
We observed a strong dominance of European ancestry 
within this group of cell lines, with all but 3 (94.9%) 
exhibiting almost exclusively European  ancestry (Fig. 2). 
While these other 3 cell lines were of predominantly 
African ancestry, our analysis suggests that anticancer 
drug screens that use the NCI60 cell line resource are 
being done almost  exclusively on European genetic back-
grounds. This poses serious questions about whether the 
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results of these screens are applicable to populations of 
predominantly non-European ancestry. Regarding the 
unidentified cluster described above, the significantly 
lower level (P  = 1.964 × 10−5; Welch 2-sample t  test) of 
this signal estimated within NCI60 cell lines (Supporting 
Fig. 5) supports the possibility that this signal reflects 
contamination, as the NCI60 cell lines are known to 
have reduced contamination levels.26

Tissue-Specific Imbalances in Ancestral 
Sampling
To determine how well represented each ancestry is across 
the cell lines of different cancers, we grouped cell lines 
by their derived tissue and histology types and evaluated 
the resultant distributions (Fig. 3, Supporting Fig. 6). We 
observed that the ancestral representation between tis-
sue types was unbalanced, which is particularly informa-
tive when considered in the context of the incidence and 
mortality rates between races.41 Cell lines from stomach, 
liver, prostate, pancreas, and kidney cancers, which have 
significantly increased incidence rates in individuals of 
African ancestry,41 have relatively little representation 
of African ancestry. Other than 1 stomach cell line and 
1 kidney cell line with significant African ancestry, the 
remaining cell lines across these cancers are dominated 
by either East Asian cell lines (stomach and liver can-
cer cell lines), European cell lines (prostate and kidney 
cancer cell lines), or both (pancreatic cancer cell lines). 
Prostate cancer cell lines are notable for having entirely 
European ancestry in our data set, despite prostate cancer 

being the most common cancer among all men42 and 
having an estimated incidence rate that is 70% higher 
among men of African ancestry than it is among men 
of European ancestry.41 This is concordant with recent 
results from Woods-Burnham and colleagues, who iden-
tified substantial African ancestry in a commercially 
available prostate cancer cell line with previously un-
known ancestry, and noted the lack of racial diversity 
in commercially available prostate cancer cell lines.7 In 
esophageal cancer, which is less common among males 
of African ancestry than among those of European an-
cestry but significantly more common among females of 
African ancestry than among those of European ances-
try,41 cell lines demonstrate a similar dearth of African 
genomic ancestry. Although endometrial cancer is more 
common and more severe among individuals of African 
ancestry, and has distinct molecular alterations in these 
individuals,9-11,13-15 no endometrial cancer cell lines from 
our data set have any African ancestry. In contrast to 
these patterns, while breast and lung cancers have dispa-
rate incidence rates between individuals of African and 
European ancestry that invert across sex (higher in males 
of African ancestry and lower in females of African an-
cestry),41 both organ site malignancies have significant 
numbers of cell lines with predominantly African an-
cestry. However, although there are significant numbers 
of lung cancer cell lines with predominantly European, 
African, and East Asian ancestry, <5% of breast cancer 
cell lines in our data set represent East Asian genomes. 
Finally, hematopoietic and lymphoid cancers, which 

Figure 2. Ancestry estimates for NCI60 cell lines are illustrated. Boxplots represent the distribution of ancestry proportion 
estimates across 59 of the 70 nonredundant cell lines belonging to the expanded NCI60 anticancer drug screening resource. 
Nearly all of the cell lines are of almost entirely European ancestry: only 3 cell lines exhibit predominantly African ancestry, and 
none of the cell lines exhibit notable proportions of East Asian, South Asian, or Native American ancestry.
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have varying degrees of ancestral disparity in incidence 
depending on the specific cancer subtype, appear to be 
the best balanced with regard to ancestral composition, 
and have significant numbers of cell lines with predomi-
nantly European, African, and East Asian ancestry. In 
fact, one of only 2 cancer genomes in our data set with 
>40% Native American ancestry is of hematopoietic and 
lymphoid origin.

Similarly, we observe unbalanced ancestral repre-
sentation across 13 histologic types, with a predomi-
nance of European and East Asian ancestry cell lines, 
and an absence of African and Native American an-
cestry cell lines (Supporting Fig. 7). One exception to 
these patterns is within cell lines from rhabdomyosar-
comas, which have significant African ancestry and 
lack East Asian ancestry. Although carcinoma cell lines 
are the most ancestrally diverse of all of our groupings 
(including tissue type) and have significant ancestral 

representation from Europeans, Africans, East Asians, 
and even South Asians and Native Americans, this 
seems to be a feature of large sample size, which is able 
to overcome the study selection bias that shapes which 
human populations are represented in cancer cell line 
research.

Gene Expression Differences by Ancestry: 
NBEAL1 and Other Candidates
For each of the 16,681 genes for which expression data 
were available from COSMIC, we tested the association 
between European, African, and East Asian ancestry pro-
portions and normalized gene expression across 959 cell 
lines for which all data were available. After accounting 
for tissue and histology type and correcting for multiple 
testing, we observed evidence of a significant correlation 
between African ancestry proportion and the expression 
level of the NBEAL1  gene. NBEAL1  has been associated 

Figure 3. Distributions of genetic ancestry estimates across 10 racially disparate cancers are illustrated. Boxplots represent 
the distributions of ancestry proportion estimates for cell lines belonging to each of 10 cancer types. These 10 representative 
cancers, which are indicated above each chart (with the numbers of cell lines shown below the name of each tumor type), exhibit 
different incidence and/or mortality rates across ancestrally distinct populations (for all analyzed cancer types, see Supporting 
Fig. 2). Most cancer cell lines are of predominantly European (red), East Asian (green), or European and East Asian ancestry. 
Exceptions to this are lung, hematopoietic and lymphoid, and breast tumors, which have significant numbers of cells lines with 
predominantly African ancestry (blue). Cell lines from prostate cancer, which is 1 of the most common cancers in all men, have 
only European ancestry. Few or no cell lines from cancers that have significantly high incidence rates among individuals of 
African ancestry, like cancers of the stomach, liver, pancreas, and kidney, have African ancestry (blue).
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with brain function and cancers,43-46 and we observe that 
cancer cells with higher proportions of African ancestry 
have lower NBEAL1  expression levels (Fig. 4, Supporting 
Table 5). If we relax the stringency of the multiple testing 
correction and correct for the number of genome-wide 
pathways (as denoted by KEGG47) rather than the num-
ber of genes (with the logic that gene expression between 
genes is not independent), expression levels of the solute 
carrier family 6 member 19 (SLC6A19 ), HEAT repeat 
containing 6 (HEATR6 ), and epithelial cell transforming 
2 like (ECT2L ) genes also become significantly associated 
with ancestry proportion (Fig. 4, Supporting Table 5). 
Overall, numerous other genes demonstrate suggestive 
associations with ancestry proportion, and although they 
are not significant after correcting for multiple testing, 
these genes are likely to represent good follow-up candi-
dates for research into the effects of ancestry on cancer 
biology.

Differences in Mutation Type by Ancestry
To directly assess how differences in ancestry relate 
to differences in cancer genome architecture, we used 
our ancestral estimates to determine the correlation 

between single-base somatic mutation proportions  
(eg, A>T, G>A) and ancestral proportions. Across 
the 1009 COSMIC cell lines that had mutation data, 
tissue-of-origin metadata, and ancestry estimates, 
we tested whether European ancestry, African ances-
try, or East Asian ancestry proportions were corre-
lated with mutation type for each of the 12 possible 
single-base mutations. First, we performed individual 
analyses among cell lines that had the same tissue type  
(ie, intratissue-type analyses), which demonstrated sig-
nificant relations between mutation type and  ancestry 
in some tissues (eg, lung, central nervous system, 
 autonomic ganglia, skin, pancreas) and almost no 
 relations in other tissues (eg, stomach, ovary, kidney) 
(Supporting Table 6). Interestingly, hematopoietic and 
lymphoid tissues exhibited a significant increase in 
overall mutation burden in cell lines that had increased 
proportions of African ancestry.

To get a better sense of the association between 
ancestry and somatic mutation in cancer overall, we 
performed additional analysis of the relationship 
 between ancestry and mutation after accounting for 
tissue and histology type. This was done using lin-
ear models that account for variation in mutation due 
to cancer type by featuring tissue and histology type 
as covariates. After correcting for multiple testing, 
we observed significant associations across all can-
cer cell lines between both European and East Asian 
 ancestry and the proportion of A>G, C>A, G>T, and 
T>C  mutations (P  < 4 × 10−4) (Table 1, Supporting 
Table 7, Supporting Figs. 8 and 9). These relationships 
persist in both coding and noncoding regions across 
the genome, and represent the most robust associations 
observed in our previous intratumor-type analyses. Of 
these 4 mutations, there were 2 complimentary pairs 
(eg, A>G is the same as T>C on the opposite strand) 
that had similar correlation coefficients (βa) and  
P  values, and that acted as an internal corroboration 
of this result.

DISCUSSION
The objective of the current study was to investigate the 
ancestral origins of >1000 cancer cell lines commonly 
used in preclinical cancer research. By using admixture 
analysis to generate the first quantitative estimates of 
ancestry proportion across these cell lines, we provide a 
resource that can be used by scientists and clinicians to 
select cancer cell lines in an ancestry-aware fashion for 
various experimental purposes. Given the recent focus by 
the cancer research community on the limited quality, 

Figure 4. Associations between ancestry proportion and 
gene expression levels are illustrated. Results shown are 
from analyses estimating the relation between ancestry 
proportions and gene expression levels for 16,681 genes 
across 959 cancer cell lines. After the most conservative 
multiple testing correction, the NBEAL1  gene (arrow) is 
associated significantly with gene expression and African 
ancestry (Supporting Table 5). Three additional genes, 
SLC6A19 , HEATR6 , and ECT2L  (arrow) are associated 
significantly with European ancestry at a threshold set by a 
more moderate multiple testing correction.
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reproducibility, and translatability of cancer cell line 
research1,3,4,48 and on the nonrepresentation by cancer 
resources of minority populations,6,17 having this knowl-
edge is timely and important. Our findings of ancestral 
imbalances across cancer cell lines, and of novel ances-
try-specific biologic differences, underscore the need to 
 increase the diversity of available cell lines and improve 
the equitability of cancer research.

The ancestral heterogeneity we identified across 
COSMIC cell lines is important and likely results pri-
marily from the ways that cancer data are accumulated 
globally. Factors such as which countries are most heav-
ily involved in preclinical cancer research, which cancers 
are predominantly studied in which countries, and how 
heavily integrated a country’s research initiatives are into 
the global science community are likely to shape the an-
cestral makeup of available cancer cell lines. For example, 
the hundreds of East Asian genomes we identified are al-
most certainly from Japan and China, where medical re-
search, and cancer research in particular, is very robust,49 
and where study populations are comprised almost exclu-
sively of East Asian individuals. Nonetheless, regardless 
of the multitude of factors that shape the ancestral imbal-
ances we report across cancer cell lines, the underrepre-
sentation of African, Native American, and South Asian 
ancestry cell lines, as well as cell lines from other non-Eu-
ropean and non-East Asian individuals, represents a 
problem in the preclinical cancer setting governed by tra-
ditional cancer cell lines. Currently, many cancers can be 

studied only as specific genetic backgrounds. Therefore, 
it is imperative that we establish new and ancestrally 
diverse cell lines that more accurately represent diverse 
populations.

By using our genetic ancestral estimates to identify 
multiple genes with expression differences across ances-
try, we produced novel evidence of biologic differences 
between ancestrally distinct cancer cell lines. These 
differences persist after accounting for tissue type and 
histology, and further support the need to be aware of 
 ancestry, and potentially to account for it, when work-
ing preclinically with cancer cells. The NBEAL1 gene has 
significantly lower gene expression levels in more African 
cancer genomes (Fig. 4, Supporting Table 5). Although 
the precise role of NBEAL1 has not been clearly defined, 
it is linked to vesicle trafficking, signal transduction, and 
neuronal proliferation and development.43,44,46 It is note-
worthy that NBEAL1 overexpression has been implicated 
in brain cancer,44,45 so this reduced NBEAL1 expression 
could play a role in the significantly lower incidence of 
brain cancer in individuals of African ancestry.41 The 
SLC6A19 gene exhibits lower expression in increasingly 
European cells lines (Fig. 4, Supporting Table 5), and 
represents a transporter family that reportedly is up-reg-
ulated in and associated with cancers.50,51 The HEATR6 
gene, which is part of a highly expressed breast cancer 
amplicon52 and has also been associated with disease 
through interactome studies,53 has higher expression in 
more European cell lines and lower expression in more 

TABLE 1. Associations Between Ancestry Proportion and Single Nucleotide Mutation Proportions

Mutation

Ancestry

European African East Asian Unidentified

βa P βa P βa P βa P

A>C 0.001 .287 0.001 .703 −0.002 .088 .009 .330
A>Gb −0.013 1.675 × 10−8c 0.010 .041 0.012 1.267 × 10−6c −0.009 .573
A>T 0.002 .123 −0.002 .509 −0.002 .182 0.008 .417
C>Ab 0.009 1.688 × 10−3c 0.008 .156 −0.012 6.9 × 10−5c −0.015 .426
C>G 0.002 .188 −0.005 .232 −0.002 .448 0.038 .004
C>T −0.000 .935 −0.020 .027 0.006 .173 −0.008 .796
G>A −0.006 .168 −0.009 .286 0.008 .057 −0.020 .502
G>C 0.003 .103 −0.005 .169 −0.001 .505 0.022 .103
G>Tb 0.012 1.814 × 10−4c 0.007 .221 −0.015 6.984 × 10−7c −0.022 .276
T>A 0.002 .181 0.002 .389 −0.003 .048 0.010 .304
T>Cb −0.013 2.78 × 10−8c 0.011 .024 0.011 7.625 ×10−6c −0.016 .352
T>G 0.000 .805 0.001 .734 −0.001 .458 0.004 .651

Abbreviations: A, adenosine; βa, correlation coefficient; C, cytosine; G, guanine; T, thymidine.
Results are from association analyses estimating the effect of ancestry on the proportion of single nucleotide mutations made up by each of 12 possible muta-
tion types. The proportions of 4 mutation types differ significantly by ancestry across the 1009 cancer cell lines for which mutation and other data were 
available.
bThese 4 mutation types represent 2 independent mutation classes after accounting for reverse complementation (ie, A>G implies T>C), with significance 
levels and βa values representing concordant associations between complimentary mutation types.
cThese P values were significant after corrections for multiple testing.
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East Asian cell lines. Furthermore, recent efforts have 
identified elevated expression of HEATR6 in endometrial 
tumors from individuals of African ancestry, compared 
with those of European ancestry, and have associated 
HEATR6 protein levels with disease outcome only in 
 individuals of African ancestry.15 Although these findings 
represent different analyses and separate results, they are 
all complementary in their support of an ancestry-specific 
role for HEATR6 in cancer biology. The ECT2L gene has 
lower expression levels in more European cell lines and 
reportedly has recurrent mutations in leukemia.54 These 
genes represent promising targets for follow-up research 
into the relation between cancer biology, gene expres-
sion, and ancestry. Genes that do not reach significance 
after multiple testing correction but still have a suggestive 
correlation with ancestry may represent reasonable candi-
dates for follow-up research that has increased power (see 
Supporting Table 5). Although we did not observe a signal 
of ancestry-specific expression among consensus cancer 
genes (as annotated by COSMIC), these genes have large 
oncogenic effect sizes and may exert similar influences 
across various ancestral backgrounds. Furthermore, many 
of these genes may shape oncologic processes through 
nontranscriptional mechanisms. Nonetheless, despite 
our conservative assessment of the correlation between 
expression and ancestry (with limited statistical power), 
we still observed novel ancestry-specific gene expression 
differences that underscore the importance of ancestry 
awareness in cancer research.

In testing how single-base mutation types correlate 
with ancestry proportions, we identified mutational dif-
ferences that correlated with ancestry within the cell 
lines of numerous cancer types. The proportions of  
4 single-base mutation types that represent 2 distinct mu-
tational classes (ie, A>G/T>C and C>A/G>T) (Table 1) 
are associated most robustly with ancestry after account-
ing for tissue and histology type across all cancer cell 
lines. Although the differences we observed in mutation 
type proportions are on the order of 1% or 2% and may 
seem small, they are actually quite relevant when com-
pared with the mutation differences and heterogeneity 
often observed within and between tumor types.55 When 
not accounting for ancestry, the mutational differences 
identified across cancers might be ascribed exclusively 
to differences in tumor type (for example, kidney can-
cer vs ovarian cancer), whereas our results demonstrate 
that these differences may be significantly influenced by  
ancestry (ie, European vs East Asian). Furthermore, 
these differences agree with recent findings of muta-
tional differences across ancestry,56,57 and extend such 

mutational work into a cancer genome context. However, 
it is  important to note that calling somatic mutations is 
notoriously difficult, and that even though COSMIC  
somatic calls represent one of the best curated sets to date, 
 somatic mutation call sets are often plagued by high false- 
positive rates.58-60 Therefore, it is best to interpret these 
mutational results conservatively, and to focus on what 
these patterns suggest about considering ancestry when 
studying the genomic variation of cancers. Ultimately, 
these mutational patterns represent  ancestrally correlated 
genomic differences, and accounting for them can help 
preclinical and translational studies become more repre-
sentative of one another.

Our findings of differential gene expression and 
distinct mutational profiles across ancestry require addi-
tional research and add to the increasingly robust evi-
dence of biologic differences across ancestrally distinct 
cancers.9-11,13-15 If the cancer community wants to be able 
to effectively study various forms of oncologic disease and 
to capture and adequately model the biologic distinctness 
that different ancestral backgrounds represent, then it is 
imperative that we rectify the ancestral imbalances iden-
tified here and widen the scope of our preclinical studies. 
Such an effort will likely increase our knowledge of can-
cer biology while also increasing the number of patients 
who can benefit from advances in cancer research.
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