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Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a
few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and
must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling
as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array
of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain.
Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of
subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive
signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut–brain communication.
The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and
120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An
implication for obesity treatment is that bariatric surgery may alter vagal function.
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INTRODUCTION
The prevalence of obesity and associated metabolic diseases is still
increasing globally [1, 2], despite increased awareness and
intensive research efforts. It is currently assumed that changes
in environment and lifestyle are key drivers in this global
pandemic [3]. By providing a background of increased availability
of energy-dense foods and physical inactivity there is increased
pressure on energy balance regulation that leads to increased
adiposity in genetically predisposed individuals [4]. Environmental
pressures to overeat are particularly strong and are intricately tied
to the modern food industry that promotes the consumption of
cheap energy-dense but often nutritionally poor foods beginning
in childhood by maximizing palatability and using heavy
advertisement [5, 6]. Understanding the physiological mechanisms
determining food choice are crucial for the development of
behavioral, pharmacological, and even surgical strategies to
combat obesity and T2D, and to promote overall healthy eating.
Why are we eating what we eat? How does the gut detect
ingested nutrients? How does the gut signal nutrient reward to
the brain? This review tries to answer at least some of these
questions. After a brief description of the many senses and the
neurophysiological integrative mechanisms leading to ingestive
behavior, we will pay particular attention to gut–brain commu-
nication and its role in ingestive behavior and the development of
obesity. We will discuss the physiological mechanisms underlying

learned nutrient preferences, with special emphasis on sugar and
fat preference, for which new mechanisms have recently been
proposed.

THE BIOLOGY OF FOOD CHOICE
Historical background
Given the vital importance of ingestive behavior, its neural control
mechanisms are robust, redundant, and evolutionarily conserved.
In addition to energy from the three macronutrients, an adequate
intake of essential nutrients, vitamins, and minerals is important
for survival. All these essential food components are typically
mixed in natural and processed foods, and adequate intake of
each component is an extremely difficult and complex task for the
putative control system. While early nutrition physiologists
strongly believed in the ability of animals including humans to
solve this complex task without much problem [7, 8], subsequent
studies and analyses often failed to support this optimistic
assumption (e.g. [9]). Twenty years ago, we edited a book entitled
“Neural and Metabolic Control of Macronutrient Intake”, with a
collection of over 30 essays by leading scientists laying out their
evidence (or lack thereof) for self-regulation of nutrient intake [10].
Lacking much information on the specifics of neural and
metabolic controls at that time, the collection of papers was at
least able to answer the basic question of whether there is
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evidence for self-regulation of different nutrients. The general
conclusion was that there is a hierarchy in nutrient self-regulation,
with good evidence that intake of salt and protein (essential
amino acids in particular) are actively defended (hard regulation),
but weak evidence for carbohydrates (soft regulation), and little to
no evidence for fat (no regulation) [11].
Amino acids cannot be synthesized by the body and are

physiologically important, but in contrast, most carbohydrates and
lipids can be synthesized internally. Specific putative deficit signals
for low-protein (Fibroblast Growth Factor-21, FGF21) and low-salt
(aldosterone/angiotensin II), but not for low-carbohydrate or low-
fat availability have been identified. A deficit in energy as signaled
by low leptin appears to drive intake of all three energy-providing
macronutrients equally [12]. However, the absence of specific
feedback mechanisms for the intake of carbohydrates and fat
does not necessarily mean that there are no mechanisms to detect
these nutrients in ingested food and inform other regulatory
functions.

Evidence for self-regulation of protein, carbohydrates, and fat
intake
When conducting studies assessing selection between the three
macronutrients (protein, carbohydrate, and fat), a common but
problematic approach is to provide animals with a single, purified
representative of each macronutrient, such as providing casein,
sugar, and lard in independent jars within the cage. The weakness
of this approach is the potential for the specific sensory properties
of the food, such as the powdery dry taste of casein and the

greasy taste of lard, to drive selection instead of the nutrient
composition itself. To address this approach, multiple representa-
tions of the macronutrient should be tested, or more ideally the
experiment should include a variety of mixed diets varying in their
macronutrient percentage but otherwise nutritionally complete
(vitamins and minerals), as in the geometric model of macro-
nutrient selection [13].
Using the geometric model, nutritional state-dependent self-

regulation of protein intake has been demonstrated in rats, cats,
and insects (for a recent review see: [13]). However, besides liver-
derived FGF21 being a driver of protein intake (see Hill et al. for a
recent review [14]), details of the neurohormonal signaling
mechanisms and pathways underlying the self-regulation of
protein intake remain ill-defined despite intensive research efforts
(for reviews see: [15–17]).
Carbohydrate and fat intake have recently received much

attention from obesity, diabetes, and metabolic disease stand-
points. In particular, dietary sugar intake is thought to be a
prominent risk factor for these chronic diseases [18, 19].
Behavioral evidence for self-regulation of carbohydrate intake is
weak at best [20], and almost absent for fat intake.

Potential mechanisms for macronutrient choice
The basic task of finding a particular nutrient in complex food can
be nothing less than the proverbial task of finding a needle in a
haystack. Although sight, smell, and taste can contribute
important information for finding the needle, they are not
necessary. Tasteless mice, knockout mice missing critical taste
signaling elements, on normal chow or palatable diets still eat and
gain weight, although in some but not all cases significantly less
than their wildtype littermates [21–23]. Similarly, it might be an
interesting experience having dinner in one of these new
restaurants with complete darkness, but the feeling of fullness
and satisfaction might be the same even if we eat a little less [24].
In contrast, postoral (post ingestive) detection mechanisms,
particularly detection at the level of the intestinal epithelium,
where absorption takes place, are crucially important for providing
the unconditioned stimulus signaling the arrival of ingested
nutrients and leading to fullness, reward, and satisfaction (Fig. 1).
As demonstrated in the sham-feeding model with a gastric
drainage fistula, a hungry rat will not become satiated in spite of
continued ingestion of food for hours. Only placing small amounts
of food into the small intestine or systemic administration of
cholecystokinin in sham-feeding rats stops food intake and elicits
behavioral signs of satiation and satisfaction [25].
Importantly, oral sensory signals such as taste and smell can act

as conditioned stimuli determining intake of particular foods
through learning. If these signals have reliably predicted the
arrival of absorbable and beneficial nutrients (the unconditioned
stimulus, US), the food is readily ingested [26, 27]. If the food does
not reliably predict the US, then its acceptability will not increase
and it may be rejected and the search for a more beneficial food
continues (Fig. 1). The reinforcing properties of the US are
influenced by the nutritional state, although learning can occur
even in food-satiated animals [27]. As shown in Fig. 1, this process
is thought to involve a number of pathways and brain areas.
Besides the interoceptive and exteroceptive sensory modalities
and pathways, areas in the cortex, amygdala, and hippocampus
can generate and store representations of experience with specific
foods. Together with signals from the hypothalamus and
hindbrain reflecting overall nutritional state and from components
of the limbic system representing the reward value of specific
foods, these “food memories” are then used to make ingestive
decisions. However, these central integrative steps subserving
food choice are not well understood and are not further
considered in this review.
Before looking at experimental paradigms of nutrient-

conditioned preferences and recent advances in understanding
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Fig. 1 Schematic diagram showing the main flow of information
during the task of choosing food. (1) Before ingestion, available
foods with their environmental context are perceived through
visual, olfactory, and taste cues that may recall memories from
previous encounters. (2) Food items found safe and providing
positive nutritional signals are selected/preferred over other
available foods and ingested. (3) Selection is thereby modulated
by the overall nutritional state monitored by the master metabolic
sensor in the basomedial hypothalamus. (4) Once accepted and
ingested, the chosen food elicits a large number of temporally
contingent signals from interaction with components of the
alimentary canal, including enteroendocrine cells and neuropod
cells. (5) Select signals in the circulation or via primary afferents are
used by the brain to initially sustain ingestion (appetition), and later
stop ingestion (satiation). They are also used to update existing
memories of the selected food, or form new memories. The three
general functional brain areas indicated and the specific brain
structures included do not necessarily represent the exact neural
pathways and systems and rather serve heuristic models. Abbrevia-
tions: Acb nucleus accumbens, BA bile acids, IC insular cortex, OFC
orbitofrontal cortex, PFC prefrontal cortex, VTA ventral tegmental
area (mesolimbic dopamine system).
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the mechanisms underlying preference learning for sugar and
other macronutrients, we will have a closer look at the
organization of gut–brain communication as it pertains to
nutritional homeostasis.

ORGANIZATION OF GUT–BRAIN COMMUNICATION
SUBSERVING NUTRITIONAL HOMEOSTASIS
Mechanosensors
The postoral consequences of foods include interactions with
mechanical, chemical, and osmotic sensors (Fig. 2). Vagal stretch
receptors (intramuscular arrays, IMAs) are mainly found in the
stomach, while vagal tension sensors (intraganglionic laminar
endings, IGLEs) are distributed throughout the gastrointestinal
tract [28, 29]. Importantly, selective opto- or chemogenetic
stimulation of vagal afferent neurons with IGLEs innervating both
the stomach and small intestine inhibits 1-h food intake in food-
deprived mice by 50% or more [29], suggesting that gastric and
intestinal distension significantly contribute to the satiation
process. However, because the mechano-sensory signal is blind
to the nutritive value of the load, it cannot serve as the US for
flavor learning.

Chemosensors for macronutrients
After emptying from the stomach, nutrients interact with
pancreatic juices, bile acids, and microbiota in the small intestinal
lumen before traversing the gut epithelial barrier. The epithelial
layer consists of several types of cells, including enterocytes,
enteroendocrine cells (ECs), and mucin-secreting goblet cells that
differentiate from stem cells located in the crypts and are
constantly renewed every 3–5 days [30]. ECs are specialized
epithelial cells making up less than 1% of the epithelium that
function as sensory sentinels, by responding to luminal stimuli and
secreting peptide hormones and neurotransmitters [31].
Dietary carbohydrates, proteins, and fats are progressively

digested by mastication and salivary enzymes in the mouth,
trituration, and acidification in the stomach, and finally by
pancreatic juices, bile acids, and microbiota in the lumen of the
small intestine, before they are ready for absorption. Glucose and
galactose then enter the brush border membrane of enterocytes
using almost exclusively the sodium-glucose transporter-1 (SGLT1),
while fructose uses the glucose transporter-5 (GLUT5) (for a recent
review see [32]). SGLT1 is pivotal for intestinal glucose absorption,
as SGLT knockout mice die within two days after weaning when
they receive standard starch-based diets [33]. The glucose
transporter-2 (GLUT2) is located exclusively at the basolateral
membrane at low luminal glucose concentrations, and at both the
brush border and basolateral membranes at high luminal glucose
concentrations [32]. In addition, nutritive sugars and nonnutritive
sweeteners activate the G-protein-coupled sweet taste receptor
T1R2/3 expressed in the apical membrane of some ECs [34].
Dietary protein, after hydrolysis by gastric and pancreatic

peptidases, is internalized into enterocytes via peptide
transporter-1 (PEPT1) linked to the Na+/H+ exchanger, the
calcium-sensing receptor (CaSR), and the recently deorphanized
G protein-coupled receptor GPRC6A [34, 35]. Small peptides and
individual amino acids are then transported by peptide and amino
acid transporters across the basolateral membrane into the lamina
propria. In addition, certain amino acids such as glutamate
activate the G-protein-coupled umami taste receptor T1R1/3 [34].
Dietary fats, after being emulsified and processed into mixed

micelles through the action of lipases and bile acids, are
transported into enterocytes by (1) the fatty acid transporter-4
(FATP4), (2) fatty acid translocase (CD36) with the help of
membrane-bound (FABPm) and cytoplasmic (FABPc) fatty acid-
binding proteins, and (3) the Nieman-Pick C1 like 1 protein
(NPC1L1) [36]. Long- and medium-chain containing triglycerides
and cholesterol are then assembled into chylomicrons and

exported through the basolateral membrane where they are
transported by the lymphatic system to the general circulation,
while short-chain fatty acids (SCFAs) are freely diffusing through
enterocytes to reach the bloodstream through the hepatic-portal
vein [36].
Individual enteroendocrine cells can produce different combi-

nations and quantities of peptide hormones and are sprinkled in
different proportions over the length of the gastrointestinal tract.
CCK and GIP cells are enriched in the upper small intestine, GLP-1
and PYY in the lower small intestine and colon, and ghrelin in the
stomach [37]. Importantly, specific intracellular signaling mechan-
isms involving ion channels, membrane depolarization, and
intracellular calcium, link nutrient absorption to hormone release,
whereby each macronutrient elicits its specific fingerprint of gut
hormones released [37] (Fig. 2). Given the scarcity of enteroendo-
crine cells among the many absorptive enterocytes, paracrine
crosstalk between common enterocytes and enteroendocrine cells
as well as between enteroendocrine cells is important [38]. Thus,
enteroendocrine cells are sentinels transducing bulk macronu-
trient absorption into the information available for the gut itself
and for all other organs (Fig. 2).

Neural signaling pathways to the brain
The gastrointestinal tract is heavily innervated by both vagal and
dorsal root afferents. Dorsal root afferents are generally thought to
mediate pain rather than normal physiological signals [39], but a
role in nutrient homeostasis is not excluded. Spinal primary
afferent neurons with cell bodies in dorsal root ganglia innervate
the entire gastrointestinal tract and associated glands, and their
total number compares well with the number of vagal sub-
diaphragmatic afferents [40]. Single spinal visceral afferents
distribute over many segments [41], thus contributing to
homeostatic regulation of a wide range of organs. Furthermore,
they gain easy access to most brain areas through the spino-
solitary, spino-parabrachial, spino-hypothalamic, and other tracts
and therefore have the potential to affect the same brain areas
that are affected by vagal afferents.
Here we focus on vagal afferents, for which there is rich

literature describing their role in nutrient homeostasis and
ingestive behavior. We have already introduced vagal afferent
innervation of the external muscle layers of stomach and
intestines by IMA and IGLE mechanosensors and their ability to
modulate food intake. However, vagal afferents innervating the
mucosa throughout the gastrointestinal tract are in a much better
position to sense the chemical milieu in the lamina propria, as
their terminals are in close contact with freshly absorbed nutrients
[42, 43] and ECs with their secretory products [44, 45]. There is
plenty of older literature, from before the discovery of most gut
hormones, suggesting that vagal afferents are sensitive to a
variety of nutrients, including glucose, amino acids, and fatty acids
[46–50]. Later, expression of many gut hormone receptors by
vagal afferents innervating the gut, and at least some evidence for
their role in ingestive behavior was reported. After the early
discovery of CCK, the potential role of CCK and its CCKA-receptor
on vagal afferents in the process of satiation was of most interest
[42, 43, 51–53]. More recently, interest shifted to the role of GLP-1
released from intestinal L-cells and the GLP-1 receptor expressed
by vagal afferents in satiation [54–56].
However, sub-optimal methodology in many of these earlier

studies often prevented clear conclusions to be drawn. Perhaps
the major problem was an inability to manipulate and visualize
functionally specific populations of vagal afferents. Vagotomies
were typically non-specific, not only regarding afferent subtype
and specific tissue/organ innervated, but also regarding afferent
vs. efferent. Visualization of receptors was typically limited to
immunohistochemistry of vagal afferent neuronal cell bodies in
the nodose ganglia, without knowing their specific innervation
targets. This is exemplified by experiments in rodents surgically
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interrupting the common hepatic branch dividing from the left
subdiaphragmatic vagal trunk. The rat common hepatic vagal
branch contains both afferents and efferents (and even some non-
vagal nerve fibers [57], and projects primarily to the proximal
duodenum, pylorus, and pancreas via the gastroduodenal artery. It
also innervates the portal hepatic vein, and only a small fraction
actually innervates the liver itself along the hepatic artery [58].
Therefore, this complicates the interpretation of the functional
effects of common hepatic branch vagotomy, particularly when
looking at longer-term effects.

Specific labeling and manipulation of sub-populations of vagal
afferents by genetics-based tools is the most significant advance
for understanding their role in nutritional homeostasis [29, 59–65].
Two studies, in particular, reported molecular maps of target-
specific vagal sensory neurons using single-cell RNA sequencing
[29, 64]. This allowed the generation of separate Cre-mouse lines
and identification of their unique morphologies and innervation
patterns in the gastrointestinal tract [29], confirming the presence
of the three distinct sensory terminal architectures, namely IMAs,
IGLEs, and mucosal endings, previously described after
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dipeptidyl peptidase-4, FGF19 fibroblast growth factor 19/15, Apo A-IV apolipoprotein-4. Receptors on vagal afferents: GLP1R GLP-1 receptor,
Y2R PYY-2 receptor, GIPR gastric inhibitory peptide receptor, CCK1R cholecystokinin-1 receptor, 5-HT3R serotonin-3 receptor, GHSR growth
hormone secretagogue receptor, GLUR glutamate receptor, P2R purinoreceptor. Brain: PBN parabrachial nucleus, AP area postrema, NTS
nucleus tractus solitarius, SC spinal cord.
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nonselective anterograde tracing with DiI in the rat (as
summarized in [28]). In addition, however, the genetic approach
allows selective manipulation (acute and chronic stimulation and
inhibition) of such specific populations of vagal sensory neurons
[29, 61].
Besides releasing gut hormones, some specialized enteroendo-

crine cells (neuropod cells) penetrate the basolateral membrane
and can release neurotransmitters directly on vagal afferent nerve
terminals that are synaptically opposed [66]. More recently, these
neuropod cells have been demonstrated to mediate the SGLT1-
dependent glucose-signal rapidly to vagal afferents through
glutamatergic signaling [67–69]. Such direct synaptic connections
allow for very rapid signaling to the brain and together with the
viscerotopic organization of vagal afferents have the potential to
inform the brain what is absorbed at a given location on a second-
by-second basis.

Humoral signaling
Given that the focus of this review is on nutrient-conditioned
preferences and that much recent work implicates neural path-
ways, our discussion of humoral mediation is limited to a few
essential points. For more comprehensive reviews on humoral
gut–brain signaling relevant to obesity and metabolic disease see
e.g., [70]. Besides signaling through primary afferents, nutrients
and hormones can also signal to the brain via blood circulation.
Once released into the lamina propria they are taken up by
mucosal capillaries to reach the hepatic-portal vein and eventually
all other organs including the brain. Some gut hormones such as
GLP-1, PYY, and ghrelin, are subject to modifications by peptidases
and other enzymes, which can greatly reduce or enhance their
binding to specific receptors. Concentrations of specific nutrients
and hormones are significantly higher in hepatic-portal blood
compared to general arterial blood concentrations. Chylomicrons
and hormones such as ApoAIV and GLP-1 are also transported by
the lymph system, which bypasses the hepatic-portal vein and
liver, to enter the general circulation via the subclavian vein [36].
In the brain, nutrients and hormones can more or less affect

neurons and glia depending on the permeability of the
blood–brain barrier. Areas without or with a weak blood–brain
barrier such as the area postrema in the hindbrain, and the
median eminence in the basomedial hypothalamus are most
strongly affected, but hormones and nutrients can affect most
other brain areas if adequate transport systems exist. Hormones
and other humoral factors such as leptin, insulin, and
FGF21 secreted by these other organs are clearly important for
overall nutritional homeostasis, by interacting with humoral and
neural signals from the gut at many levels.
In contrast to the fast, high fidelity neural connections, humoral

signaling is slower and generally conveys little viscerotopic
information. On the other hand, humoral signals have the
potential to act in a more sustained and integrative fashion.

EXPERIMENTAL PARADIGMS FOR FOOD PREFERENCE
LEARNING
A broad question, which has been answered in increasing detail in
recent years, concerns which of the gut sensing and signaling
mechanisms described in the previous sections are crucial for the
development of food preferences. This section introduces the
techniques used to train and measure preferences in laboratory
rodents.
Animals learn to associate the flavor of food, that is, its taste,

smell, texture, and other oral chemesthetic cues with the food’s
postoral (post ingestive) consequences [26, 27, 85]. This learning
can occur with short- or long-term sessions (30 min–24 h) and
under food sated or restricted states. In the laboratory, the “food”
is often a flavored nonnutritive solution (or gel) with postoral
consequences manipulated by the experimenter. The outcome of

this learning is typically expressed in subsequent encounters with
the food in choice (e.g., two-bottle test) or no-choice (one-bottle
test) situations. If the food contains toxins or poorly digested
nutrients (e.g., lactose) that produced gastrointestinal distress,
animals rapidly learn to avoid its flavor. Conditioned flavor
aversions are well documented as reviewed elsewhere
[27, 72, 73]. Of interest here are flavors that are associated with
positive reinforcing consequences [27]. In this case, animals may
learn to prefer the flavored solution (conditioned flavor pre-
ference) as evidenced by their preferential intake in choice tests
and may also increase their absolute intake of the flavored
solution (conditioned flavor acceptance) (Fig. 3). Total intakes may
not increase with concentrated nutrient sources which limit intake
although initial rates of ingestion and/or meal sizes may be
enhanced [74]. This process, in which the ingestion/absorption of
nutrients promotes positive associations that increase preference
is termed appetition, and thus postoral cues that increase
preference and/or acceptance are referred to as ‘appetition’ cues
to distinguish them from ‘satiation’ cues that decrease intake [75].
A simple procedure to study flavor-nutrient learning is to train

animals on alternate days to consume a novel flavor (the
conditioned stimulus, CS+, e.g., grape) mixed in a nutrient
solution (the unconditioned stimulus, US, e.g., sucrose) and a
different flavor (the CS−, e.g., cherry) mixed in water and then
assess the conditioned preference/acceptance in subsequent
choice tests with the CS+ and CS− flavors presented in water.
A potential problem with this paradigm, however, is that the
animal may acquire a CS+ flavor preference based on its
association with the palatable flavor of the nutrient (e.g., sweet
taste) rather than (or in addition to) the nutrient’s postoral actions.
Flavor-flavor learning is demonstrated by the learned preference
for a CS+ flavor mixed into a nonnutritive sweet solution (e.g.,
saccharin, sucralose) [27]. To eliminate this flavor-flavor associa-
tion, animals can be trained with the CS+ flavor added to a sugar
solution and the CS− flavor added to a nonnutritive solution
matched in palatability to the sugar [76, 77]. Any resulting CS+
preference can thereby be attributed to the postoral actions of the
sugar rather than its sweet taste. In one variation of this
procedure, animals are trained to consume sugar and nonnutritive
sweetener solutions (without added flavors) with the nonnutritive
solution being matched or even more palatable than the sugar
solution [65, 78] (Fig. 3A). If animals develop preferences for the
sugar (which is both the CS+ and US) over the nonnutritive
sweetener (CS−) after training, this preference is indicative of
postoral sugar conditioning. This type of learning is possible
because even if the sugars and nonnutritive sweeteners are
“isosweet”, they differ in other flavor characteristics that allow
animals to discriminate their flavors. Thus, postoral sugar
conditioning can enhance the innately attractive sweet taste of
sugar itself as well as for any associated flavors (e.g., the flavor of a
sugar-rich mango).
An alternative procedure to investigate flavor-nutrient learning

is to train animals to drink differently flavored solutions of similar
palatability (e.g., both unsweetened or saccharin-sweetened fruit
flavors) but with the CS+ flavor paired with intragastric (IG)
nutrient infusions and the CS− paired with IG water infusions
[26, 27] (Fig. 3B). Flavor preferences can be conditioned by IG
infusions of complete liquid diets or individual macronutrients
(carbohydrate, fat, protein). This conditioning method is very
potent in that it (a) can convert innate aversions to bitter or sour
tastes to strong preference and (b) produces long-lasting
preferences that are resistant to forgetting or extinction [27, 85].
Another method for evaluating the reinforcing actions of nutrients
involves pairing a place (e.g., distinctive chamber) or sipper tube
position with the consumption of a nutritive substance (e.g.,
sucrose solution) [79, 80]. Unlike the case of conditioned flavor
preferences, the resistance to extinction of conditioned place/
position preferences over several trials has not been established.
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More recently, postoral nutrient reinforcement has been evaluated
in mice by using self-administration procedures in which an
operant response (licking unflavored water or a dry sipper tube,
lever pressing) is reinforced by IG nutrient infusions (e.g., sugar,
fat) [71, 81–83]. As discussed below, a new development in the
study of food preference learning is the use of opto/chemogenetic
approaches to target-specific neurons activated by postoral
nutrients to condition flavor preferences or block the expression
of previously learned preferences [65, 68, 84].

MECHANISMS FOR SUGAR-CONDITIONED PREFERENCES
The nutrient conditioning actions of carbohydrates are extensively
documented using various sugars, maltodextrins, or starches [27].
Rats and mice trained in alternate daily sessions (30 min–24 h) to
drink a CS+ flavored solution paired with concurrent IG infusions
of 8–32% glucose-based carbohydrates (glucose, sucrose, maltose,
maltodextrin) and a CS− flavor paired with IG water infusions
subsequently displayed a significant (70–90%) preference for the
CS+ over the CS− flavor in two-choice tests [27, 85] (Fig. 3).
Carbohydrate conditioned preferences have been considered to
be a form of “flavor-calorie” learning, but isocaloric carbohydrates
can differ substantially in their effectiveness to condition flavor
preferences. In particular, in rats and some mouse strains (FVB/N)
IG fructose infusions condition much weaker flavor preferences
than do isocaloric glucose infusions and in some mouse strains
(e.g., C57BL/6, B6) IG fructose is completely ineffective [74, 86–88].

Transduction site of postoral sugar signal
Information on the site(s) of action for postoral carbohydrate
conditioning is provided by results obtained with different
postoral infusions. In rats, (a) IG glucose infusions conditioned
flavor preferences only when the sugar was allowed to empty into
the intestinal tract [89] (b) glucose infused in the duodenum or
jejunum, but not the ileum, conditioned flavor preferences [90];
and (c) glucose infusions into the hepatic-portal vein failed to
condition preferences for a nonnutritive CS+ solution [90]. These

results implicate the upper intestinal tract as a critical site of action
for glucose sensing [85] (Fig. 4). Hepatic-portal glucose infusions
conditioned a preference for a CS+ flavored chow that itself
provided intestinal nutrient stimulation [91], suggesting that
portal glucose is an effective conditioning stimulus when
combined with preabsorptive nutrient stimulation. Consistent
with this interpretation, portal glucose infusions conditioned
preferences for flavored glucose but not for flavored saccharin
solutions [90]. Hepatic-portal glucose infusions, however, condi-
tioned a sipper tube side preference and increased dopamine
release in the nucleus accumbens which is critical for preference
conditioning in rats [92]. Thus, postabsorptive glucose alone
supports at least some forms of preference conditioning.
Sweet taste signaling proteins (T1R2, T1R3, gustducin, TRPM5)

are expressed in intestinal cells which suggests that intestinal
“sweet” sensing could mediate postoral sugar conditioning (Fig. 2).
However, this is not supported by the findings that IG infusions of
sweet receptor ligands fructose and sucralose do not support
flavor conditioning in B6 mice [93, 94]. Furthermore, IG sugar
infusions condition strong flavor preferences in knockout (KO)
mice lacking T1R3, gustducin, or TRPM5 [85]. Rather than intestinal
sweet receptors, glucose-specific sensors/ transporters (SGLT1,
SGLT3, and GLUT2) are implicated in postoral sugar conditioning.
In B6 mice, IG infusions of α-methyl-D-glucopyranoside (MDG), a
non-metabolizable glucose analog that binds to SGLT1 and SGLT3,
conditioned a CS+ flavor preference that was blocked by co-
infusions of the SGLT1/3 inhibitor phloridzin [94]. IG glucose
conditioning was blocked when the infusion included both
SGLT1/3 and GLUT2 inhibitors, implicating GLUT2 in glucose
conditioning. However, the genetic deletion of SGLT1 was
sufficient to block IG conditioning by MDG and glucose [95].
Note that glucose conditions stronger preferences than MDG,
which may be due to the ability of postabsorptive glucose but not
MDG to promote striatal dopamine release [94, 96]. In addition,
the accumulation of the non-metabolizable MDG in the body may
generate inhibitory signals that suppress conditioning. Never-
theless, the differential conditioning actions of glucose, fructose

Fig. 3 Nutrient-conditioned flavor preferences. A Naïve mice given two-bottle access to “isosweet” nutritive sugars (glucose or sucrose) and
nonnutritive sweeteners (sucralose, AceK) take 24 h or more to develop a preference for the sugar. Once trained, a sugar preference is
expressed in less than 2min [65, 68, 136]. B Naïve mice given one-bottle access (1 h/day) to a CS+ flavored saccharin solution paired with IG
16% glucose infusion increase their licking response within 10min in the first test session (CS+1) compared to prior sessions with a CS- flavor
paired with IG water (CS-0). In subsequent one-bottle CS+ sessions licking is increased from the very first min. In two-bottle tests all mice
licked more for the CS+ than CS−; 80% CS+ preference. Because mice were not infused in 2-bottle tests they licked much more than in one-
bottle tests [94].
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and non-metabolizable MDG are remarkable and indicate that
“the signaling system recognizes the sugar molecule itself rather
than its caloric content or metabolic products” [65, 94].

Gut–brain pathway for unconditioned sugar signal
The gut–brain pathway(s) that mediate postoral glucose pre-
ference conditioning is not fully understood (Fig. 4). Several
studies reported that surgical transection of the subdiaphragmatic
vagal trunks (SDV) or subdiaphragmatic deafferentation (SDA) did
not prevent glucose-conditioned flavor preferences [97–100].
However, other recent findings implicate a central role for vagal
afferents. In particular, intestinal infusions of glucose, sucrose, and
MDG, but not fructose were found to act on intestinal neuropod
cells and rapidly stimulate vagal afferents via glutamatergic
synaptic connections [67, 68] (Fig. 4). In addition, optogenetically

silencing the neuropod or pharmacologically inhibiting the
glutamatergic vagal synapse blocked the expression of a learned
preference for sucrose over sucralose [68]. Tan et al. [65] further
reported that intestinal infusions of glucose and MDG but not the
nonnutritive sweetener acesulfame K (AceK) activated a bilateral
subset of proenkephalin-expressing neurons in the caudal nucleus
of the solitary tract (cNTS). The cNTS response was blocked by
acute bilateral surgical cervical vagotomy. In 48-h, two-bottle
choice tests, B6 mice initially consumed similar amounts of
600mM glucose and 30mM AceK solutions but developed a
strong glucose preference by the end of the test (Fig. 3). Similar
preference changes were observed with MDG vs. AceK but not
with fructose vs. AceK, consistent with differential flavor
conditioning actions of IG glucose, MDG, and fructose [94].
Evidence that the intestinal-vagal-cNTS circuit activated by
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Fig. 4 Proposed gut–brain pathways mediating postoral sugar and fat appetition in mice. (1) SGLT1-mediated glucose transport across the
brush border membrane leads to enterocyte depolarization and the release of glutamate from neuropod cells reaching into the lamina
propria. The synaptically released glutamate excites glutamate receptors located on sensory nerve terminals originating from unknown vagal
afferent neuron populations in both the left and right nodose ganglia and projecting through both left and right cervical vagus [68]. (2)
Glucose activates via SGLT1 a selective population of vagal afferent neurons and in turn a selective population of proenkephalin-expressing
neurons in the left and right NTS [65]. (3) Glucose metabolism can influence brain reward circuitries by an unknown metabolic sensor and
pathway [96]. (4) After absorption and reaching the hepatic-portal vein and liver, glucose activates the mesolimbic dopamine system by acting
in an unknown fashion on sensory terminals of vagal afferent fibers passing through the common hepatic branch associated with the left
cervical vagus [83]. (Note that these authors speculate that the postoral sucrose may act on neuropod cells or hepatic-portal sensors, admit
that there must be pathways in addition to the hepatic vagus; and their outcome behavior is operant sugar seeking) (5) The presence of
intestinal glucose is signaled in an SGLT1-dependent fashion via dorsal root afferent neurons passing through the celiac ganglia to inhibit
hypothalamic AgRP neurons [103]. (Note that there was no preference testing in this study). Inhibiting AgRP neurons conditions flavor
preferences [137]. (6) Fatty acids (FA) derived from dietary fat acting in part on intestinal GPR40 and GPR120 sensors signal brain reward
circuits via undefined pathways to condition CS+ flavor preferences and promote fat-seeking behavior [112]. (7) Dietary fat acting on
unspecified intestinal sensors activate brain reward systems via CCK-sensitive vagal afferent fibers passing through the right nodose ganglion
to condition relative preferences for dilute or concentrated fat emulsions and promote operant fat-seeking behavior [84]. (8) Dietary fat acting
on unspecified intestinal sensors via vagal afferent neurons to inhibit hypothalamic AgRP neurons [103]. Note that studies in rats indicate that
the upper small intestine is partially innervated by vagal fibers traveling in all the anterior and posterior celiac, the anterior and posterior
gastric, as well as the gastroduodenal branch dividing from the common hepatic branch [28].
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intestinal glucose and MDG is responsible for the preference
conditioning effects of these sugars is indicated by the findings
that (a) selective silencing of neurochemically-defined vagal
sensory neurons in the nodose ganglia blocked the development
of a preference for glucose over AceK and (b) selective silencing of
the proenkephalin-expressing cNTS neurons activated by intest-
inal glucose also blocked development of a preference for glucose
[65]. Furthermore, silencing cNTS neurons prevented the over-
consumption of glucose, relative to AceK, driven by the sugar’s
postoral actions.
While the above findings provide compelling evidence that the

intestinal-vagal-cNTS circuit mediates the glucose preference
conditioning, they do not account for the failure of surgical SDV
or SDA procedures to block glucose-conditioned preferences
[97–99]. However, it should not be surprising that these very
nonselective vagotomies led to misleading outcomes, particularly
in chronic situations. Because these crude vagotomies eliminate a
great number of vagal fibers with different functionalities, they
likely lead to adaptive changes in the bidirectional signaling
between the gut and the brain over time. In addition, they may
spare critical afferent vagal fibers that are deactivated by
optogenetic or neurochemical silencing of neuropod cell signaling
or nodose afferents [101]. Alternatively, there may be afferent fiber
regeneration after surgical SDV or SDA vagotomy but not after
neurochemical nodose vagotomy. Given the finding that acute
surgical cervical vagotomy blocked intestinal glucose activation of
cNTS neurons [65], it would be most informative to determine if
intestinal glucose activates cNTS neurons in animals with acute or
chronic SDV or SDA surgery.
Another consideration is the sufficiency of sugar-induced

activation of vagal afferents to condition flavor preferences. The
differential vagal activation effects of glucose, MDG and fructose
[65] are consistent with the differential flavor conditioning effects
observed with IG infusions of these sugars [85, 86, 94]. However,
intestinal infusions of galactose and non-metabolizable 3-O-
methyl-d-glucose (OMG) were similar to glucose and MDG in
stimulating vagal nerve activity [65] but IG galactose and OMG
were much less effective than glucose and MDG in conditioning
CS+ flavor preferences [87, 94]. Because glucose and MDG, unlike
galactose and OMG, are ligands for the glucose sensor SGLT3 as
well as SGLT1, perhaps both SGLT sensors mediate preference
conditioning, although SGLT3 involvement remains uncertain [95].
Alternatively, galactose and OMG may have postabsorptive
inhibitory actions that interfere with flavor conditioning [95].
Whatever the reason, the similar vagal activation patterns
observed with these four sugars do not correlate with their flavor
conditioning effects.
Even in the absence of unique flavor cues, postoral sugar

sensing can modulate consumatory and appetitive behaviors to
obtain sugars. This was demonstrated by the effectiveness of IG
sucrose and glucose infusions to reinforce operant licking of an
empty sipper tube in B6 mice [81, 82]. In contrast, B6 mice do not
maintain operant licking for IG fructose infusions, which is
consistent with the failure of IG fructose to condition flavor
preferences [81]. More recently, Fernandes et al. [83] reported that
oral sucrose and IG sucrose both reinforced operant lever pressing
in B6 mice. A critical role for brain dopamine circuits in mediating
lever pressing for IG sucrose infusions was revealed by the
findings that (a) IG sucrose infusions activated dopamine neurons
in the VTA and (b) KO mice with impaired VTA DA neuron function
were deficient in their lever pressing for sucrose rewards. The
involvement of the hepatic branch of the left vagus nerve in
postoral sucrose stimulation of VTA DA neurons and lever press
performance was indicated by the results of two experiments.
First, selective surgical transection of the common hepatic branch
blocked IG sucrose activation of VTA DA neurons. Second,
common hepatic branch vagotomy attenuated lever pressing for
IG sucrose infusions, although the lack of a complete blockade of

lever pressing for IG sucrose implicates other vagal or non-vagal
pathways in this response. Nevertheless, the authors implied that
the results are consistent with the finding of normal sugar-
conditioned flavor preferences in animals with SDV sparing the
common hepatic branch [99]. However, IG carbohydrate con-
ditioning was observed in animals with surgical SDV that included
the common hepatic branch as well as in animals with selective
common hepatic branch vagotomy [97–99, 102]. A potential role
of dorsal root afferents innervating the hepatic-portal vein and
projecting via the celiac/superior mesenteric ganglia and splanch-
nic nerve to the spinal cord in mediating the effects of absorbed
glucose on the hypothalamus is indicated by the findings of
Goldstein et al [103], but it is not clear whether this pathway is
involved in the learning process.
To summarize, advances in selective neural manipulation and

recording have significantly contributed to progress in under-
standing the nature of the unconditioned sugar signal generated
in the gut and the potential pathways linking this signal to reward
and reinforcement behavior in the brain. One common finding
relates to the importance of intestinal SGLT1 sensing to glucose-
conditioned preferences. Recent studies indicate that hepatic-
portal glucose also contributes to preference learning, although
how the sugar is sensed and signaled to the brain is not certain.
Also unknown is the mechanism by which postoral fructose
conditions flavor preferences in some inbred mice (e.g., FVB/N)
[88].

MECHANISMS FOR FAT-CONDITIONED PREFERENCES
As in the case of carbohydrates, many studies demonstrated that
orally consumed or postorally infused fat emulsions condition
flavor preferences, including that of fat, in rats and mice [27, 85].
Flavor preferences vary as a function of fat source, with long-chain
triglycerides being more effective than medium-chain triglycer-
ides, and some triglyceride fat sources more effective than others
(e.g., corn oil and safflower oil vs. beef tallow and vegetable
shortening) [104]. In rats, postoral fat infusions condition weaker
flavor preferences than do isocaloric sugar infusions [105] and
require more training trials [106], but this is not the case in mice
[107–109].
In addition to conditioning CS+ flavor preferences, IG fat

infusions rapidly stimulate CS+ intakes in the first training
sessions in mice, which suggests a preabsorptive site of action
[107, 109]. In order to be effective, infused fat must be digested to
fatty acids which can act on multiple intestinal fatty acid sensors
including CD36, GPR120 [O3FAR1], and GPR40 [FFAR1] [110] (Fig.
2). CD36 KO mice did not differ from WT mice in their preference
conditioning response to IG soybean oil infusions [111]. In
contrast, GPR40/120 double knockout (DKO) mice showed only
a marginal fat-conditioned flavor preference with 1-h training
sessions relative to WT mice (58% vs. 81%) [112]. However, with
24-h training, GPR40/120 DKO mice displayed a more substantial
conditioned preference although still weaker than that of WT mice
(70% vs. 96%). The 24-h results indicate that other intestinal or
postabsorptive sensors contribute to long-term fat-conditioned
preferences, e.g., GPR41, GPR43, GPR119 [34].
The gut–brain pathways that mediate postoral fat conditioning

are not fully understood. Early studies indicated that vagal
afferents are not essential because surgical or capsaicin vagal
deafferentation did not prevent animals from learning to prefer a
CS+ flavor paired with postoral fat infusions [98, 113]. However,
Qu et al. [97] reported that, unlike control mice, SDV mice did not
learn to prefer an orally consumed 7.5% fat emulsion over a 30%
emulsion, which was taken as evidence for “a deficit in lipid
postoral signaling.” Why control mice preferred the less concen-
trated emulsion was not explained but it may have occurred
because the satiating actions of the 30% fat counteracted its
postoral appetition actions [114]. Conceivably, the SDV mice did
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not come to prefer the 7.5% fat because vagotomy reduced the
satiating and therefore the appetition-limiting actions of the 30%
fat. In another study by the same investigators [84], bilateral
afferent vagotomies were produced by targeting nodose neurons
using the neurotoxin caspase (Caspase vagotomy) or CCK
receptor-expressing vagal neurons using the neurotoxin saporin
(CCK-SAP vagotomy). Flavor conditioning was evaluated by
training mice (1-h/day) with a CS+ flavor paired with IG infusions
of 5% lipid and a different CS+ flavor paired with IG infusions of
20% lipid (which were diluted in the gut to 2.5% and 10% lipid,
respectively by the consumed CS solutions). With this procedure,
the control mice learned to prefer the CS+ 20% flavor to the CS+
5% flavor while the sensory vagotomized mice equally preferred
the two CS+ flavors. This finding, however, does not demonstrate
that the vagotomized mice were completely insensitive to
postoral fat reinforcement because their preference for a water-
paired CS− flavor was not evaluated [115]. Also, the control and
vagotomized groups displayed similar increases in CS+ 5% and
CS+ 20% intakes during one-bottle training sessions which is
indicative of postoral fat reinforcement [116]. On the other hand,
in operant licking tests reinforced with IG infusions of 20% fat,
Caspase and CCK-SAP vagotomized mice, unlike controls, did not
increase their licking responses over test sessions which indicates
a reduced sensitivity to postoral fat reinforcement [84].
In addition to investigating postoral fat reward, Han et al. [84]

reported on the reward effects of optogenetic activation of vagal
afferent neurons projecting to the upper gut, using a combination
of a Cre-expressing adeno-associated virus injected into the
stomach and duodenum retrogradely transported to the nodose
ganglia, and a Cre-dependent light-sensitive depolarizing channel
injected into the left or right nodose ganglia. Using this approach,
they demonstrated that optogenetic activation of gut-projecting
afferent neurons in the right nodose ganglion (NG) had rewarding
actions as indicated by reinforcing (a) nose poking behavior; (b)
place preference conditioning; (c) flavor preference conditioning;
and by stimulating (d) dorsal striatal dopamine release. In contrast,
activation of neurons in the left NG had none of these effects. The
optogenetic findings imply that the right nodose mediates fat-
conditioned preferences, although Han et al. [84] did not evaluate
the effects of unilateral vagal afferent silencing on fat condition-
ing. The failure of left NG activation to have reinforcing effects
implies that vagal afferents mediating sugar reward do not pass
through the left NG, but Tan et al. [65] reported that intestinal
glucose equally activates vagal neurons in the left and right NG.
Further research is needed to resolve the vagal pathways involved
in fat and sugar reward.
The finding that selective deactivation of CCK-responsive vagal

afferents blocks flavor conditioning suggests a possible role of
nutrient-stimulated CCK release in such conditioning. An early
study reported that pairing a CS+ flavor with systemic injection of
a low dose of exogenous CCK conditioned a mild flavor preference
while higher doses were ineffective or conditioned a flavor
avoidance [117]. Yet, blocking CCK receptors with devazepide did
not prevent IG nutrient-conditioned preferences, indicating that
CCK signaling is not essential for postoral nutrient conditioning
[118]. Ghrelin is another gut hormone implicated in food reward
processing, but experiments with ghrelin receptor KO mice and
ghrelin receptor antagonists indicate that ghrelin signaling is not
essential for flavor preferences conditioning by IG sugar or fat
infusions [77].
In summary, contrary to earlier surgical vagotomy results, recent

findings implicate vagal afferents perhaps limited to the right
nodose ganglion in flavor conditioning by dilute vs. concentrated
fat emulsions and in operant licking for IG fat infusions [84].
Additional work is needed to verify the exclusive involvement of
vagal afferents on the right side in CS+ high vs. CS+ low fat
conditioning as well as fat-conditioned CS+ preferences relative
to a water-paired CS−.

MECHANISMS FOR PROTEIN-CONDITIONED PREFERENCES
Orally consumed or postorally administered dietary proteins
condition flavor preferences in animals [27, 85]. Relatively little is
known, however, about the postoral mechanisms mediating this
form of nutrient learning. In rats protein-conditioned flavor
preferences are differentially altered by postoral carbohydrate
and protein loads, indicating that the animals distinguish between
postoral signals generated by these nutrients [119]. Given the
diversity of proteins, it is likely that postoral signaling is mediated
by one or more common amino acids. Glutamate is one such
amino acid and is the prototype for the umami taste receptor
(T1R1+T1R3) found in oral taste buds and intestinal enteroendo-
crine cells [120]. IG infusion of monosodium glutamate (MSG)
conditions CS+ flavor preferences in rats and mice [121–123]. Total
subdiaphragmatic vagotomy (SDV) and SDV with spared hepatic
branch blocked flavor conditioning by IG MSG infusions whereas
selective common hepatic branch vagotomy was ineffective [100].
SDV also greatly reduced the activation of brain areas by IG MSG
infusions [100]. These findings implicate vagal afferents outside the
common hepatic branch in postoral glutamate reinforcement,
although this requires confirmation with more selective vagal
deafferentation procedures. The postoral glutamate sensor that
mediated MSG conditioning is not known but does not require the
T1R3 receptor. This is indicated by the finding that T1R3 KO mice,
like WT mice, develop preferences for MSG and a MSG-paired CS+
flavor after one-bottle training [124]. The role of other gut
glutamate sensors (mGlu1, mGlu4, CaSR) in MSG conditioning
remains to be investigated [120].
Thus, there is now evidence implicating vagal afferents in the

appetite (preference and acceptance) conditioning actions of sugar,
fat, and glutamate in the gut. Interestingly, other recent findings
implicate vagal afferents in the hunger state induced by fasting
[125, 126]. In one study, selective ghrelin receptor (GHSR) knock-
down in vagal afferent neurons abrogated the hyperphagic effect of
ghrelin administered at dark onset and caused other behavioral and
metabolic impairments [126]. Another study identified a subpopula-
tion of fasting-activated NTS neurons co-expressing epinephrine and
NPY, the optogenetic activation of which stimulated feeding and
generated conditioned place preference [125]. This is in marked
contrast to the conditioned place preference produced by activation
of vagal afferents linked to postoral fat reward [84]. Taken together,
these findings indicate that distinct vagal-NTS pathways mediate the
appetite/reward actions of nutrients in the gut and the hunger/
aversive actions of fasting.

IMPLICATIONS FOR FOOD CHOICE BEHAVIOR AND
TREATMENT OR PREVENTION OF OBESITY
From the above discussions, it is clear that rodents use signals
generated by the interaction of specific nutrients with upper
intestinal enteroendocrine/neuropod cells and vagal sensory
neurons to learn preferences and make choices. There seem to
be separate signals for acceleration (appetition, reward) and
deceleration (satiation) of intake, and the combined effects are
important determinants of total energy intake at least in the short
term. However, because in most studies, relatively simple binary
choices such as glucose vs. water, or low vs. high concentrations
of fat emulsions were used [but see [127]], translation to real world
situations with much more complex food choices is difficult. As
discussed elsewhere, nutrient-conditioned preferences are docu-
mented in humans, but such conditioning is less readily obtained
in humans, particularly adults, than in rodents [27, 128, 129].
Future studies need to address these species differences. We also
have not yet seen any study that examines macronutrient choice
behavior in rodents with specific pathway deletions. For example,
would permanent silencing of the neuropod signal which renders
mice unable to recognize glucose [68] change their long-term
macronutrient choice using the geometric model?
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Another unanswered question is whether the changes in
energy intake resulting from specific pathway deletions have
any long-lasting effects on energy regulation and the develop-
ment of obesity, as quantitative or qualitative changes in food
intake do not necessarily lead to changes in body weight. For
example, would silencing glucose-sensitive NTS neurons which
suppress 24-h sugar intake [65] lead to long-term reductions in
the intake of sugar-rich drinks or foods and thereby attenuate
sugar-induced obesity? Tools are now available to carry out
inducible deletions of specific populations of vagal afferent
neurons. Given that at least some pathways include vagal afferent
signaling, could it be that the numbing of vagal afferent function
observed in high-fat fed mice [130] includes these critical vagal
afferent populations, and what implications might this have on
the course of obesity?
Bariatric surgeries are currently the most effective treatment

option for obesity, and there is great interest in deciphering the
mechanisms for their success. A role for vagal afferents contained
within the celiac branches in the weight loss effects of Roux-en-Y
gastric bypass surgery has been demonstrated in rats [131], but it
is not known whether the surgical celiac branch vagotomy
affected the vagal afferents mediating the neuropod signal
described by Buchanan et al. [68] or the vagal afferent neurons
described by Tan et al. [65]. In another study in rats, the common
hepatic branch of the left vagus, which was implicated in the
detection of the sugar signal by Fernandes et al. [83], was not
required for the weight-lowering effects of RYGB [132]. It was
claimed that a gut-vagal afferent-striatal pathway is recruited by
RYGB to reduce fat appetite in obese rats [133]. However, when
this pathway was interrupted with total subdiaphragmatic truncal
vagotomy (SDV), RYGB reduced body weight to exactly the same
extent as in sham vagotomized rats [133]. Again, the discrepancy
in these outcomes could be due to the issues with non-selectivity
of SDV and common hepatic branch vagotomy that were
described above.
As to potential relevance of sugar-conditioned preferences for

treating or preventing obesity, it may be feasible to mimic the
absorption of sugar by activating the downstream signaling
pathways. Tan and colleagues have already provided proof of
principle for such an approach by injecting a Cre-dependent AAV
encoding an excitatory designer receptor into the proenkephalin-
expressing neurons in the cNTS that are critical for preferences
based on sugar sensing [65]. Activating the designer receptor led
to a complete switch in licking from a preferred sweet grape-
flavored solution to a previously much less preferred non-sweet
cherry-flavored solution [65]. It would be interesting to test
whether other components of the gut-to-brain sugar-signaling
pathway, such as the specific vagal afferent neuron population, or
the molecular pathways coupling the SGLT1 transporter to vagal
afferents could also be co-opted. Once the specific signaling
pathways for fat and protein preference have been identified they
could be similarly co-opted for healthier eating.

CONCLUSIONS AND FUTURE DIRECTIONS
The wide availability of foods rich in sugar and fat is a significant
factor in the current obesity epidemic. The inherently attractive
flavor of these foods is one factor that promotes their selection
and consumption. Rodent studies have established that sugar and
fat also activate nutrient sensors in the gut that signal brain
reward and learning systems that further enhance the wanting
and liking of foods high in these nutrients. Until recently, little was
known about the gut–brain pathways that transmit nutrient-
generated appetition signals. Recent studies now implicate vagal
afferent connections between intestinal nutrient sensing enter-
oendocrine and neuropod cells and caudal NTS neurons which
project to higher brain systems. In the case of sugars, glucose
binds to the SGLT1 transporter/sensor on neuropod cells which, in

turn, activates glutamatergic synaptic receptors on adjacent vagal
afferent fibers. Postabsorptive glucose is also detected at hepatic-
portal sites although the sensing mechanism and signaling
pathway to the brain are uncertain. In the case of fats, fatty acids
act in part on GPR40 and GPR120 intestinal receptors which, in
turn, stimulate CCK-sensitive afferent fibers. Other pre- and/or
postabsorptive fatty acid sensors are also implicated in postoral fat
appetition. Central neural systems triggered by these visceral
appetition signals include striatal dopamine circuits and limbic
motivational and hippocampal memory circuits [134, 135]. Many
details remain to be elucidated, including the relative ineffective-
ness of some sugars (fructose, galactose) to stimulate appetite,
failure of surgical vagotomy to block flavor conditioning, and
the contribution of visceral appetition signals to long-term food
intake and body weight regulation. Most importantly, the role of
the newly revealed gut nutrient sensors and gut–brain pathways
in human food appetite and preferences, and how these gut
appetition mechanisms might contribute to therapeutic
approaches to overeating and obesity, need further exploration.

REFERENCES
1. Collaboration NCDRF. Worldwide trends in body-mass index, underweight,

overweight, and obesity from 1975 to 2016: a pooled analysis of 2416
population-based measurement studies in 128.9 million children, adolescents,
and adults. Lancet. 2017;390:2627–42.

2. Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy
implications in global obesity. Nat Rev Endocrinol. 2020;16:615–6.

3. Allender S, Owen B, Kuhlberg J, Lowe J, Nagorcka-Smith P, Whelan J, et al. A
community based systems diagram of obesity causes. PLoS One. 2015;10:
e0129683.

4. Berthoud HR, Morrison CD, Munzberg H. The obesity epidemic in the face of
homeostatic body weight regulation: What went wrong and how can it be
fixed? Physiol Behav 2020;222:112959.

5. Boyland EJ, Whalen R. Food advertising to children and its effects on diet:
review of recent prevalence and impact data. Pediatr Diabetes. 2015;16:331–7.

6. Sadeghirad B, Duhaney T, Motaghipisheh S, Campbell NR, Johnston BC. Influ-
ence of unhealthy food and beverage marketing on children’s dietary intake
and preference: a systematic review and meta-analysis of randomized trials.
Obes Rev 2016;17:945–59.

7. Cannon W. The wisdom of the body, Norton: New York, 1939.
8. Richter C. Total self-regulatory functions of animals and human beings. Harvey

Lect. 1943;38:63–103.
9. Galef BG Jr. A contrarian view of the wisdom of the body as it relates to dietary

self-selection. Psychol Rev 1991;98:218–23.
10. Berthoud HR, Seeley RJ. Neural and Metabolic Control of Macronutrient Intake,

CRC Press: Boca Raton, 2000.
11. Seeley RJ, Berthoud HR Neural and metabolic control of macronutrient selec-

tion: consensus and controversy. In: Berthoud HR, Seeley RJ, eitors. Neural and
metabolic control of macronutrient intake. CRC Press: Boca Raton, 2000, pp
489–96.

12. Wiater MF, Hudson BD, Virgin Y, Ritter S. Protein appetite is increased after
central leptin-induced fat depletion. Am J Physiol Regul Integr Comp Physiol.
2007;293:R1468–73.

13. Raubenheimer D, Simpson SJ. Protein leverage: theoretical foundations and ten
points of clarification. Obesity (Silver Spring). 2019;27:1225–38.

14. Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, et al.
FGF21 and the Physiological regulation of macronutrient preference. Endocri-
nology. 2020;161:3.

15. Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, et al.
Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform
cortex. Science. 2005;307:1776–8.

16. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tome D.
Peripheral and central mechanisms involved in the control of food intake by
dietary amino acids and proteins. Nutr Res Rev 2012;25:29–39.

17. Berthoud HR. The neurobiology of food intake in an obesogenic environment.
Proc Nutr Soc. 2012;71:478–87.

18. Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-
sweetened beverage consumption will reduce the prevalence of obesity and
obesity-related diseases. Obes Rev 2013;14:606–19.

19. Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in
the epidemic of obesity and diabetes?: health be damned! Pour on the sugar.
Diabetes Care. 2014;37:950–6.

H.-R. Berthoud et al.

2165

International Journal of Obesity (2021) 45:2156 – 2168



20. Simpson SJ, Batley R, Raubenheimer D. Geometric analysis of macronutrient
intake in humans: the power of protein? Appetite. 2003;41:123–40.

21. Larsson MH, Hakansson P, Jansen FP, Magnell K, Brodin P. Ablation of TRPM5 in
mice results in reduced body weight gain and improved glucose tolerance and
protects from excessive consumption of sweet palatable food when fed high
caloric diets. PLoS One. 2015;10:e0138373.

22. Andres-Hernando A, Kuwabara M, Orlicky DJ, Vandenbeuch A, Cicerchi C, Kin-
namon SC, et al. Sugar causes obesity and metabolic syndrome in mice inde-
pendently of sweet taste. Am J Physiol Endocrinol Metab 2020;319:E276–E290.

23. Glendinning JI, Gillman J, Zamer H, Margolskee RF, Sclafani A. The role of T1r3
and Trpm5 in carbohydrate-induced obesity in mice. Physiol Behav
2012;107:50–8.

24. Linne Y, Barkeling B, Rossner S, Rooth P. Vision and eating behavior. Obes Res
2002;10:92–5.

25. Gibbs J, Smith GP. Cholecystokinin and satiety in rats and rhesus monkeys. Am J
Clin Nutr 1977;30:758–61.

26. Sclafani A. How food preferences are learned: laboratory animal models. Proc
Nutr Soc 1995;54:419–27.

27. Sclafani A, Ackroff K. Formation of flavor aversions and preferences. In: Myerhof
BFW (ed) The senses: a comprehensive reference, Second Edition. Elsevier:
Oxford, 2020, pp 333–52.

28. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent
vagal system. Auton Neurosci 2000;85:1–17.

29. Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA, et al. Genetic iden-
tification of vagal sensory neurons that control feeding. Cell. 2019;179:1129–43.
e23

30. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels
of the intestinal environment and orchestrators of mucosal immunity. Mucosal
Immunol. 2018;11:3–20.

31. Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal
epithelium. Annu Rev Physiol 2016;78:277–99.

32. Koepsell H. Glucose transporters in the small intestine in health and disease.
Pflugers Arch. 2020;472:1207–48.

33. Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, et al. Na
(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption
and glucose-dependent incretin secretion. Diabetes. 2012;61:187–96.

34. Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing
mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am
J Physiol Endocrinol Metab 2019;317:E559–E572.

35. Daniel H. Molecular and integrative physiology of intestinal peptide transport.
Annu Rev Physiol 2004;66:361–84.

36. Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current
concepts and relevance to disease. Nat Rev Gastroenterol Hepatol
2020;17:169–83.

37. Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and
gut hormones in metabolism. Nat Rev Endocrinol 2019;15:226–37.

38. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest
2015;125:908–17.

39. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent.
Gut. 2002;51:i2–5.

40. Janig W. The integrative action of the autonomic nervous system, Cambridge
University Press: Cambridge, 2006.

41. Sugiura Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative
analysis of central terminal projections of visceral and somatic unmyelinated (C)
primary afferent fibers in the guinea pig. J Comp Neurol 1993;332:315–25.

42. Schwartz GJ, Moran TH. CCK elicits and modulates vagal afferent activity arising
from gastric and duodenal sites. Ann NY Acad Sci 1994;713:121–8.

43. Berthoud HR, Patterson LM. Anatomical relationship between vagal afferent
fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal
mucosa. Acta Anat (Basel). 1996;156:123–31.

44. Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. Neuroanatomy of extrinsic
afferents supplying the gastrointestinal tract. Neurogastroenterol Motil
2004;16:28–33.

45. Powley TL, Spaulding RA, Haglof SA. Vagal afferent innervation of the proximal
gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor archi-
tecture. J Comp Neurol 2011;519:644–60.

46. Mei N. Vagal glucoreceptors in the small intestine of the cat. J Physiol
1978;282:485–506.

47. Mei N. Recent studies on intestinal vagal afferent innervation. Functional
implications J Auton Nerv Syst 1983;9:199–206.

48. Mei N. Intestinal chemosensitivity. Physiol Rev 1985;65:211–37.
49. Jeanningros R. Vagal unitary responses to intestinal amino acid infusions in the

anesthetized cat: a putative signal for protein induced satiety. Physiol Behav
1982;28:9–21.

50. Melone J. Vagal receptors sensitive to lipids in the small intestine of the cat. J
Auton Nerv Syst 1986;17:231–41.

51. Babic T, Townsend RL, Patterson LM, Sutton GM, Zheng H, Berthoud HR. Phe-
notype of neurons in the nucleus of the solitary tract that express CCK-induced
activation of the ERK signaling pathway. Am J Physiol Regul Integr Comp Physiol
2009;296:R845–54.

52. Glatzle J, Kreis ME, Kawano K, Raybould HE, Zittel TT. Postprandial neuronal
activation in the nucleus of the solitary tract is partly mediated by CCK-A
receptors. Am J Physiol Regul Integr Comp Physiol 2001;281:R222–9.

53. Burdyga G, de Lartigue G, Raybould HE, Morris R, Dimaline R, Varro A, et al.
Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons
serving the stomach. J Neurosci 2008;28:11583–92.

54. Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco-Lopez
G. Vagal afferents mediate early satiation and prevent flavour avoidance
learning in response to intraperitoneally infused exendin-4. J Neuroendocrinol
2012;24:1505–16.

55. Ronveaux CC, Tome D, Raybould HE. Glucagon-like peptide 1 interacts with
ghrelin and leptin to regulate glucose metabolism and food intake through
vagal afferent neuron signaling. J Nutr 2015;145:672–80.

56. Krieger JP, Arnold M, Pettersen KG, Lossel P, Langhans W, Lee SJ. Knockdown of
GLP-1 receptors in vagal afferents affects normal food intake and glycemia.
Diabetes. 2016;65:34–43.

57. Prechtl JC, Powley TL. A light and electron microscopic examination of the vagal
hepatic branch of the rat. Anat Embryol (Berl) 1987;176:115–26.

58. Berthoud HR, Kressel M, Neuhuber WL. An anterograde tracing study of the
vagal innervation of rat liver, portal vein and biliary system. Anat Embryol (Berl)
1992;186:431–42.

59. de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal
afferent neurons results in hyperphagia and obesity. Mol Metab 2014;3:595–607.

60. Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK. Genetic tracing of
Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 2011;519:3085–101.

61. Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory
neurons that detect stretch and nutrients in the digestive system. Cell.
2016;166:209–21.

62. Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, et al. Profiling of G
protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing
mechanisms. Mol Metab 2018;12:62–75.

63. Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in
vagal afferent neurons supports the absorption and storage of nutrients from
high-fat diet. Int J Obes (Lond). 2020;45:348–57.

64. Kupari J, Haring M, Agirre E, Castelo-Branco G, Ernfors P. An atlas of vagal
sensory neurons and their molecular specialization. Cell Rep. 2019;27:2508–23.
e4.

65. Tan HE, Sisti AC, Jin H, Vignovich M, Villavicencio M, Tsang KS, et al. The gut-
brain axis mediates sugar preference. Nature. 2020;580:511–6.

66. Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, et al.
Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J
Clin Invest 2015;125:782–6.

67. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A
gut-brain neural circuit for nutrient sensory transduction. Science.
2018;361:6408.

68. Buchanan KL, Rupprecht,LE, Sahasrabudhe,A, Kaelberer,MM, Klein,M, Villalobos,
J, et al. A gut sensor for sugar preference. bioRxiv 2020; https://doi.org/10.1101/
2020.03.06.981365.

69. Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohorquez DV. Neuropod cells:
the emerging biology of gut-brain sensory transduction. Annu Rev Neurosci
2020;43:337–53.

70. Müller TD, Finan B, Bloom SR, D'alessio D, Drucker DJ, Flatt PR, et al. Glucagon-
like peptide 1 (GLP-1). Mol Metab 2019;30:72–130.

71. Sclafani A, Ackroff K. Nutrient-conditioned intake stimulation does not require a
distinctive flavor cue in rats. Appetite. 2020;154:104793.

72. Chambers KC. Conditioned taste aversions. World J Otorhinolaryngol Head Neck
Surg. 2018;4:92–100.

73. Lin JY, Arthurs J, Reilly S. Conditioned taste aversions: From poisons to pain to
drugs of abuse. Psychon Bull Rev 2017;24:335–51.

74. Zukerman S, Ackroff K, Sclafani A. Post-oral glucose stimulation of intake and
conditioned flavor preference in C57BL/6J mice: a concentration-response
study. Physiol Behav 2013;109:33–41.

75. Sclafani A. Gut-brain nutrient signaling. Appetition vs satiation. Appetite.
2013;71:454–8.

76. Warwick ZS, Weingarten HP. Dissociation of palatability and calorie effects in
learned flavor preferences. Physiol Behav 1994;55:501–4.

77. Sclafani A, Touzani K, Ackroff K. Ghrelin signaling is not essential for sugar or fat
conditioned flavor preferences in mice. Physiol Behav 2015;149:14–22.

H.-R. Berthoud et al.

2166

International Journal of Obesity (2021) 45:2156 – 2168

https://doi.org/10.1101/2020.03.06.981365
https://doi.org/10.1101/2020.03.06.981365


78. Sclafani A, Zukerman S, Ackroff K. Postoral glucose sensing, not caloric content,
determines sugar reward in C57BL/6J mice. Chem Senses. 2015;40:245–58.

79. White NM, Carr GD. The conditioned place preference is affected by two
independent reinforcement processes. Pharmacol Biochem Behav
1985;23:37–42.

80. de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis
MA, et al. Food reward in the absence of taste receptor signaling. Neuron.
2008;57:930–41.

81. Sclafani A, Ackroff K. Operant licking for intragastric sugar infusions: Differential
reinforcing actions of glucose, sucrose and fructose in mice. Physiol Behav
2016;153:115–24.

82. Ferreira JG, Tellez LA, Ren X, Yeckel CW, de Araujo IE. Regulation of fat intake in
the absence of flavour signalling. J Physiol. 2012;590:953–72.

83. Fernandes AB, Alves da Silva J, Almeida J, Cui G, Gerfen CR, Costa RM, et al.
Postingestive modulation of food seeking depends on vagus-mediated dopa-
mine neuron activity. Neuron. 2020;106:778–88. e6.

84. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A neural circuit for
gut-induced reward. Cell. 2018;175:665–78. e23.

85. Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and
conditioning food preferences. Am J Physiol Regul Integr Comp Physiol
2012;302:R1119–33.

86. Sclafani A, Cardieri C, Tucker K, Blusk D, Ackroff K. Intragastric glucose but not
fructose conditions robust flavor preferences in rats. Am J Physiol 1993;265:
R320–5.

87. Sclafani A, Ackroff K. Flavor preferences conditioned by intragastric glucose but
not fructose or galactose in C57BL/6J mice. Physiol Behav 2012;106:457–61.

88. Sclafani A, Zukerman S, Ackroff K. Fructose- and glucose-conditioned pre-
ferences in FVB mice: strain differences in post-oral sugar appetition. Am J
Physiol Regul Integr. Comp Physiol 2014;307:R1448–57.

89. Drucker DB, Sclafani A. The role of gastric and postgastric sites in glucose-
conditioned flavor preferences in rats. Physiol Behav 1997;61:351–8.

90. Ackroff K, Yiin YM, Sclafani A. Post-oral infusion sites that support glucose-
conditioned flavor preferences in rats. Physiol Behav 2010;99:402–11.

91. Tordoff MG, Friedman MI. Hepatic portal glucose infusions decrease food intake
and increase food preference. Am J Physiol 1986;251:R192–6.

92. Oliveira-Maia AJ, Roberts CD, Walker QD, Luo B, Kuhn C, Simon SA, et al.
Intravascular food reward. PLoS One. 2011;6:e24992.

93. Sclafani A, Glass DS, Margolskee RF, Glendinning JI. Gut T1R3 sweet taste
receptors do not mediate sucrose-conditioned flavor preferences in mice. Am J
Physiol Regul Integr Comp Physiol 2010;299:R1643–50.

94. Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and
nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol
2013;305:R840–53.

95. Sclafani A, Koepsell H, Ackroff K. SGLT1 sugar transporter/sensor is required for
post-oral glucose appetition. Am J Physiol Regul Integr Comp Physiol 2016;310:
R631–9.

96. Zhang L, Han W, Lin C, Li F, de Araujo IE. Sugar metabolism regulates flavor
preferences and portal glucose sensing. Front Integr Neurosci 2018;12:57.

97. Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the duodenum and the
vagus nerve in learned nutrient preferences. Appetite. 2019;139:145–51.

98. Sclafani A, Ackroff K, Schwartz GJ. Selective effects of vagal deafferentation and
celiac-superior mesenteric ganglionectomy on the reinforcing and satiating
action of intestinal nutrients. Physiol. Behav. 2003;78:285–94.

99. Sclafani A, Lucas F. Abdominal vagotomy does not block carbohydrate-
conditioned flavor preferences in rats. Physiol Behav 1996;60:447–53.

100. Uematsu A, Tsurugizawa T, Uneyama H, Torii K. Brain-gut communication via
vagus nerve modulates conditioned flavor preference. Eur J Neurosci
2010;31:1136–43.

101. Maniscalco JW, Rinaman L. Vagal interoceptive modulation of motivated
behavior. Physiology (Bethesda). 2018;33:151–67.

102. Horn CC, Mitchell JC. Does selective vagotomy affect conditioned flavor-nutrient
preferences in rats? Physiol Behav 1996;59:33–8.

103. Goldstein N, McKnight AD, Carty JR, Arnold M, Betley JN, Alhadeff AL. Hypo-
thalamic detection of macronutrients via multiple gut-brain pathways. Cell
Metab. 2021;33:676–87.

104. Ackroff K, Lucas F, Sclafani A. Flavor preference conditioning as a function of fat
source. Physiol Behav 2005;85:448–60.

105. Lucas F, Sclafani A. Differential reinforcing and satiating effects of intragastric fat
and carbohydrate infusions in rats. Physiol Behav 1999;66:381–8.

106. Ackroff K, Dym C, Yiin YM, Sclafani A. Rapid acquisition of conditioned flavor
preferences in rats. Physiol Behav 2009;97:406–13.

107. Ackroff K, Sclafani A. Post-oral fat stimulation of intake and conditioned flavor
preference in C57BL/6J mice: a concentration-response study. Physiol Behav
2014;129:64–72.

108. Sclafani A, Glendinning JI. Sugar and fat conditioned flavor preferences in
C57BL/6J and 129 mice: oral and postoral interactions. Am J Physiol Regul Integr
Comp Physiol 2005;289:R712–20.

109. Zukerman S, Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and
flavor conditioning by glucose and fat in the mouse. Am J Physiol Regul Integr
Comp Physiol 2011;301:R1635–47.

110. Sclafani A, Ackroff K. Role of lipolysis in postoral and oral fat preferences in mice.
Am J Physiol Regul Integr Comp Physiol 2018;315:R434–R441.

111. Sclafani A, Ackroff K, Abumrad NA. CD36 gene deletion reduces fat preference
and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr
Comp Physiol. 2007;293:R1823–32.

112. Sclafani A, Zukerman S, Ackroff K. GPR40 and GPR120 fatty acid sensors are
critical for postoral but not oral mediation of fat preferences in the mouse. Am J
Physiol. Regul Integr Comp Physiol. 2013;305:R1490–7.

113. Lucas F, Sclafani A. Capsaicin attenuates feeding suppression but not reinfor-
cement by intestinal nutrients. Am J Physiol 1996;270:R1059–64.

114. Sclafani A, Ackroff K. The relationship between food reward and satiation
revisited. Physiol Behav 2004;82:89–95.

115. Sclafani A, Ackroff K. Capsaicin-induced visceral deafferentation does not
attenuate flavor conditioning by intragastric fat infusions in mice. Physiol Behav
2019;208:112586.

116. Ackroff K, Sclafani A. Post-oral fat stimulation of intake and conditioned flavor
preference in C57BL/6J mice: a concentration-response study. Physiol Behav
2014;129:64–72.

117. Perez C, Sclafani A. Cholecystokinin conditions flavor preferences in rats. Am J
Physiol 1991;260:R179–85.

118. Perez C, Lucas F. Sclafani A. Devazepide, a CCK(A) antagonist, attenuates the
satiating but not the preference conditioning effects of intestinal carbohydrate
infusions in rats. Pharmacol Biochem Behav 1998;59:451–7.

119. Perez C, Ackroff K, Sclafani A. Carbohydrate- and protein-conditioned flavor
preferences: effects of nutrient preloads. Physiol Behav 1996;59:467–74.

120. Bezencon C, le Coutre J, Damak S. Taste-signaling proteins are coexpressed in
solitary intestinal epithelial cells. Chem Senses. 2007;32:41–9.

121. Uematsu A, Tsurugizawa T, Kondoh T, Torii K. Conditioned flavor preference
learning by intragastric administration of L-glutamate in rats. Neurosci Lett
2009;451:190–3.

122. Ackroff K, Sclafani A. Flavor preferences conditioned by post-oral infusion of
monosodium glutamate in rats. Physiol Behav 2011;104:488–94.

123. Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric mono-
sodium glutamate in mice. Chem Senses. 2013;38:759–67.

124. Ackroff K, Sclafani A. Flavor preferences conditioned by oral monosodium
glutamate in mice. Chem Senses. 2013;38:745–58.

125. Chen J, Cheng M, Wang L, Zhang L, Xu D, Cao P, et al. A vagal-NTS neural
pathway that stimulates feeding. Curr Biol 2020;30:3986–98. e5.

126. Davis EA, Wald HS, Suarez AN, Zubcevic J, Liu CM, Cortella AM, et al. Ghrelin
signaling affects feeding behavior, metabolism, and memory through the vagus
nerve. Curr. Biol. 2020;30:4510–8. e6.

127. Lucas F, Ackroff K, Sclafani A. High-fat diet preference and overeating mediated
by postingestive factors in rats. Am J Physiol 1998;275:R1511–22.

128. Yeomans MR. Flavour-nutrient learning in humans: an elusive phenomenon?
Physiol Behav 2012;106:345–55.

129. Myers KP. The convergence of psychology and neurobiology in flavor-nutrient
learning. Appetite. 2018;122:36–43.

130. Page AJ, Kentish SJ. Plasticity of gastrointestinal vagal afferent satiety signals.
Neurogastroenterol Motil 2017;29:5.

131. Hao Z, Townsend RL, Mumphrey MB, Patterson LM, Ye J, Berthoud HR. Vagal
innervation of intestine contributes to weight loss After Roux-en-Y gastric
bypass surgery in rats. Obes. Surg. 2014;24:2145–51.

132. Shin AC, Zheng H, Berthoud HR. Vagal innervation of the hepatic portal vein and
liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia,
weight loss, and hypermetabolism. Ann. Surg. 2012;255:294–301.

133. Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, et al. Gastric
bypass surgery recruits a gut PPAR-alpha-striatal D1R pathway to reduce fat
appetite in obese rats. Cell Metab. 2017;25:335–44.

134. Yang AK, Mendoza JA, Lafferty CK, Lacroix F, Britt JP. Hippocampal Input to the
nucleus accumbens shell enhances food palatability. Biol. Psychiatry.
2020;87:597–608.

135. de Araujo IE, Schatzker M, Small DM. Rethinking food reward. Annu. Rev. Psy-
chol. 2020;71:139–64.

136. Baader-Pagler T, Eckhardt M, Himmelsbach F, Sauer A, Stierstorfer BE, Hamilton
BS. SGLT6 - A pharmacological target for the treatment of obesity? Adipocyte.
2018;7:277–84.

137. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, Yu Y, et al. Neurons for hunger
and thirst transmit a negative-valence teaching signal. Nature. 2015;521:180–5.

H.-R. Berthoud et al.

2167

International Journal of Obesity (2021) 45:2156 – 2168



ACKNOWLEDGEMENTS
Research in the HRB laboratory was funded by National Institutes of Health Grant
DK047348, and research in the Morrison Laboratory was funded by National Institutes
of Health Grant DK105032. Research in the AS and KA laboratory was funded by
National Institutes of Health Grant DK031135 and the Research Foundation of the
City University of New York. We thank Dr. Diego Bohórquez for providing helpful
feedback on the manuscript.

CONFLICT OF INTEREST
HRB, CDM, KA, and AS have received grant support from the National Institutes of
Health.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to H.-R.B. or A.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

H.-R. Berthoud et al.

2168

International Journal of Obesity (2021) 45:2156 – 2168

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Learning of food preferences: mechanisms and implications for obesity &#x00026; metabolic diseases
	Introduction
	The biology of food choice
	Historical background
	Evidence for self-regulation of protein, carbohydrates, and fat intake
	Potential mechanisms for macronutrient choice

	Organization of gut&#x02013;nobreakbrain communication subserving nutritional homeostasis
	Mechanosensors
	Chemosensors for macronutrients
	Neural signaling pathways to the brain
	Humoral signaling

	Experimental paradigms for food preference learning
	Mechanisms for sugar-conditioned preferences
	Transduction site of postoral sugar signal
	Gut&#x02013;nobreakbrain pathway for unconditioned sugar signal

	Mechanisms for fat-conditioned preferences
	Mechanisms for protein-conditioned preferences
	Implications for food choice behavior and treatment or prevention of obesity
	Conclusions and future directions
	Acknowledgements
	Conflict of interest
	ADDITIONAL INFORMATION




