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Abstract

Background: A database for hepatocellular carcinoma (HCC) patients who had received hepatic resection was used to
develop prediction models for 1-, 3- and 5-year disease-free survival based on a set of clinical parameters for this patient
group.

Methods: The three prediction models included an artificial neural network (ANN) model, a logistic regression (LR) model,
and a decision tree (DT) model. Data for 427, 354 and 297 HCC patients with histories of 1-, 3- and 5-year disease-free
survival after hepatic resection, respectively, were extracted from the HCC patient database. From each of the three groups,
80% of the cases (342, 283 and 238 cases of 1-, 3- and 5-year disease-free survival, respectively) were selected to provide
training data for the prediction models. The remaining 20% of cases in each group (85, 71 and 59 cases in the three
respective groups) were assigned to validation groups for performance comparisons of the three models. Area under
receiver operating characteristics curve (AUROC) was used as the performance index for evaluating the three models.

Conclusions: The ANN model outperformed the LR and DT models in terms of prediction accuracy. This study demonstrated
the feasibility of using ANNs in medical decision support systems for predicting disease-free survival based on clinical
databases in HCC patients who have received hepatic resection.
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Introduction

Globally, hepatocellular carcinoma (HCC) is among the most

prevalent malignant tumors [1]. Of all cancers, HCC has had the

highest and second highest mortality rates in males and in females,

respectively, since the early 1980s [2]. In Taiwan, the incidence

rates of HCC have steadily increased in the past two decades: the

respective age-standardized incidence rates for men and women

increased from 55.8 and 22.3 per 100,000 in 2002 to 62.1 and

25.6 per 100,000 in 2007 [3]. In 2009, HCC also comprised

38.0% and 14.9% of all cancer-related deaths in men and women

in Taiwan, respectively [4]. Hepatic resection is the most common

treatment modality for HCC and is among the most effective

interventions [5–7] for achieving long-term survival. However,

even after undergoing hepatic resection, patients with HCC may

still have very poor prognoses because of the low survival and high

recurrence rates associated with this procedure [8]. Therefore, the

aim of this study was to construct an accurate and effective model

for predicting disease-free survival in HCC patients who have

received hepatic resection. An improved model would enable further

development of computerized medical decision support systems for

aiding surgeons and healthcare institutions in constructing guidelines

for interpreting clinical outcomes. Although previous studies [9,10]

have examined disease-free survival rates at various endpoints, none

have evaluated the accuracy of models for predicting disease-free

survival after hepatic resection in HCC patients at different

endpoints (i.e., 1, 3, and 5 years after resection).

Recently, machine-learning and statistical methods have been

applied to develop prediction models for clinical diagnosis and

treatment, e.g., artificial neural networks (ANNs), logistic regres-

sion (LR) and decision tree (DT) (see, e.g., [11–27] and the

references therein). Clinical application of these prediction models

can potentially improve diagnostic accuracy, treatment decisions,

and efficiency in using limited health care resources [11].

Artificial neural networks have proven particularly effective for

nonlinear mapping based on human knowledge and are attracting

interest for use in solving complex classification problems [28,29].

A multilayer ANN containing layers of simple computing nodes is

analogous to brain neural networks that can accurately approx-

imate nonlinear continuous functions and reveal previously

unknown relationships between given input and output variables

[30,31]. Because of their unique structure, ANNs can learn by

using algorithms such as backpropagation algorithm and evolu-

tionary algorithm [32,33]. Potential medical applications of ANNs
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include problems in which the relationship between independent

variables and clinical outcome are poorly understood [34].

Because ANNs are capable of self training with minimal human

intervention, many studies of large epidemiology databases have,

in addition to traditional statistical methods, used ANNs for

further insight into the interrelationships among variables.

However, since few studies have compared performance between

ANNs and other modeling techniques such as LR and DT, these

interrelationships are still unclear [35]. Our objective was to fill

a gap in the current literature by comparing the predictive

performance of three modeling techniques so that improved

models for predicting 1-, 3- and 5-year disease-free survival can be

implemented in knowledge-based computer programs and in

medical decision support systems.

This study therefore constructed a database of HCC patients

who had received hepatic resection between 2000 and 2007 at

either of two hospitals in Kaohsiung, Taiwan: Kaohsiung Medical

University Hospital and Yuan’s Hospital. The database included

demographic, clinical, surgical and outcome data. An ANN

model, an LR model, and a DT model were constructed to predict

1-, 3- and 5-year disease-free survival. The three models were

based on data for 80% of the cases, which were randomly selected.

The remaining 20% of the cases were then used for performance

tests of the three models. Predictive accuracy was compared by

areas under receiver operating characteristics curve (AUROC)

analyses.

Methods

Data collection and variable selection
The study population included 482 patients who had received

liver resection for HCC and were currently disease-free. The

exclusion criteria were any history of the following: (i) liver

resection; (ii) treatment with radiofrequency ablation or micro-

wave ablation; (iii) histopathological evidence of benign tumor

and/or non-primary liver cancer; (iv) unavailable and/or

incomplete medical history; (v) death within thirty days after

surgery; (vi) tumor remaining after resection; (vii) incomplete data

for key explained variables; and (viii) follow-up data for less than 1

year. Therefore, 427, 354 and 297 patients were classified into the

1-, 3- and 5-year disease-free survival groups, respectively. In each

patient, medical records were reviewed by the attending physician.

Data collection included demographic data, clinical features, and

surgical process and outcome. Ethical approval was provided by

Institutional Review Board of the Kaohsiung Medical University

Chung-Ho Memorial Hospital (KMUH-IRB-990166). Patients

provided written informed consent.

Patients were classified as disease-free hepatic resection

survivors if no death or recurrence occurred during the 1-, 3-,

or 5-year periods considered in the three survival models. In other

words, survival (no event) was defined as disease-free survival after

1, 3, or 5 years. Therefore, presence of an event (death or

recurrence) was coded as 1, and absence of an event (disease-free

survival) was coded as 0.

First, continuous explanatory variables were transformed into

categorical variables to minimize the effects of extreme values and

to enhance the computing efficiency of the ANN model. The cut-

off points for these variables were based on those used in previous

clinical studies [5,7,36–40]. Low and high risk were coded as 0 and

1, respectively. The variables included BUN AST, a-fetoprotein,

ALT, total bilirubin, and others. Other recoded items included

TNM stage, a common prognostic index of cancer risk or severity,

and ASA, a risk score for surgical procedures. The TNM stage

ranges from 1 to 6, and ASA score ranges from 1 to 4. Two

variables were recoded as 0 for low risk, 1 for medium risk, and 2

for high risk (Table 1). High risk was assumed to increase the

probability of recurrence (event). Second, to enhance the

calculation efficiency and prediction performance of the ANN

models, univariate Cox proportional hazard model was used to

test relationships among potential variables. Variables with

statistically significant associations (log-rank test, P,0.05) with

disease-free survival were retained to construct the ANN models

(Table 1). Finally, of the 31 input variables, the 15 statistically

significant variables used to construct the ANN models were liver

cirrhosis, chronic hepatitis, AST, ALT, total bilirubin, albumin,

creatinine, ASA classification, Child-Pugh classification, TNM

stage, tumor number, portal vein invasion, biliary invasion,

surgical procedure, and post-operative complication. Age and

gender were also included as control variables.

Training and validation data sets
From each of the three survival groups, 80% of the cases were

assigned to training groups for developing the ANN, LR and DT

models, and the remaining 20% were assigned to validation

groups for performance tests of the models for predicting 1-, 3-,

and 5-year disease-free survival. That is, of the 427 1-year cases,

342 were used for training, and 85 were used for validation; of the

354 3-year cases, 283 were used for training, and 71 were used for

validation; of the 297 5-year cases, 238 were used for training, and

59 were used for validation (Table 2). Table 2 shows that (i) the

specific data contained in each clinical case were summarized with

their descriptive characteristics for 1-, 3-, and 5-year disease-free

survival. For example, 245 (71.6%) patients were aged older than

65 years and 97 (28.4%) patients were aged 65 years or younger.

In the 1-year training group, 252 (73.7%) patients were male, and

90 (26.3%) patients were female; (ii) at 1-, 3-, and 5 years after the

resection procedure, post-resection events (i.e., recurrence or

death) had occurred in 155 (36.3%), 226 (63.8%) and 247 (83.2%)

patients; and (iii) in all three survival models, the effects of input

variables did not significantly differ between training and

validation (P.0.05), which confirmed the reliability of the data

selection.

Modeling tools
The training group data were used to construct an ANN model,

an LR model and a DT model. The ANN model included input,

hidden, and output layers. Figure 1 shows the three independent

ANN models for 1-, 3- and 5-year disease-free survival. The input

layer in each of the three models contained 17 neurons: age,

gender, liver cirrhosis, chronic hepatitis, AST, ALT, total

bilirubin, albumin, creatinine, ASA classification, Child-Pugh

classification, TNM stage, tumor number, portal vein invasion,

biliary invasion, surgical procedure, and post-operative complica-

tion. In the hidden layers, the numbers of neurons were optimized

using training and validation data in a trial-and-error process to

maximize predictive accuracy [34], which resulted in 30, 17 and 7

neurons in the 1-, 3- and 5-year models, respectively. The output

layer in each of the three models had only one neuron

representing the disease-free survival of HCC patients after

hepatic resection.

The LR model generates the coefficients for the following

formula used for logit transformation of the probability of a patient

having a characteristic of interest: logit pð Þ~b0zb1x1zb2x2z

. . . zbkxk [23]. The formula p~1
�

1ze-logit pð Þ� �
used for

calculating the probability of the characteristic of interest in this

study, where 1 = disease-free survival status and 0 = non-disease-

free survival status.

Disease-Free Survival Neural Network Modeling
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Because of its easily interpreted decision rules, the DT model

with C4.5 [22] was used for classification and regression. In this

model, each object in the input dataset belongs to a class. Each

object is characterized by a set of attributes (variables or

predictors) that may have numerical and categorical (non-

numerical) values. The goal of DT is to use a training dataset

with known attribute-class combinations for generating a tree

structure with a rule set for correctly classifying and predicting a

similar test dataset. In addition to its root and internal (non-

terminal) decision nodes, a DT has a set of terminal nodes (leaves),

each of which represents a class. The rules associated with the DT,

from the root to each terminal node (leaf), are easily interpretable

for predicting a class. The steps of the learning process are (i) using

an impurity function to select the most discriminative variable for

data partitioning, (ii) repeating the partitioning until the nodes are

sufficiently pure for use as terminal nodes, and (iii) pruning the

completed tree to avoid over-fitting [41].

The software used to construct the ANN and DT models was

Waikato Environment for Knowledge Analysis (WEKA) version

3.6.0 [42]. The LR model was constructed using SPSS for

Windows version 6.1.

Results

For the training and validation groups, Figs. 2 and 3,

respectively, show the receiver operating characteristics (ROC)

curves for the 1-, 3- and 5-year disease-free survival models

constructed using ANN, LR and DT. Tables 3 and 4 show the

respective AUROC curves constructed using the data shown in

Figs. 2 and 3. For example, the AUROCs for 1-year models

Table 1. Potential input variables for prediction models (N = 482).

Variables Value P value

Demographic characteristics

Age (years)a 0:!65, 1:.65 (mean = 57.7) 0.43

Gendera 0: male, 1: female 0.43

Clinical features

Comorbidity 0: no, 1: yes 0.16

Liver cirrhosisb 0: no, 1: yes ,0.001

Chronic hepatitisb 0: no, 1: HBV, 2: HCV, 3: HBCV 0.29, 0.02, 0.01

a-Fetoprotein (ng/ml) 0:!100, 1:.100 0.10

AST (U/L)b 0:!80, 1:.80 ,0.001

ALT (U/L)b 0:!80, 1:.80 ,0.001

Total bilirubin (mg/dl)b 0:!1.0, 1:.1.0 0.01

Albumin (g/dl)b 0:.3.5, 1:!3.5 ,0.001

BUN (mg/dl) 0:!21, 1:.21 0.44

Creatinine (mg/dl)b 0:!1.4, 1:.1.4 0.09

Platelet (103/ml) 0:.150, 1:!150 ,0.001

Prothrombin time (%) 0:!80, 1:.80 0.61

ICGR15 (%) 0:!15, 1:.15 0.15

ASA classificationb 0: ASA = 1, 1: ASA = 2, 2: ASA = 3, 4 0.01, 0.13

Child-Pugh classificationb 0: A, 1: B,C 0.01

TNM stageb 0: I, 1: II, 2: IIIa, IIIb, IIIc, IV ,0.001, ,0.001

Tumor numberb 0: single, 1: multiple ,0.001

Tumor size (cm) 0:!5, 1:.5 0.08

Portal vein invasionb 0: no, 1: yes ,0.001

Biliary invasionb 0: no, 1: yes 0.02

Surgical process and outcome

Surgical procedureb 0: laparoscopic, 1: open surgery ,0.001

Extent of resection 0: minor, 1: major 0.45

Resection margin (mm) 0:.10, 1:!10 0.15

Surgical time 0:!180, 1:.180 0.34

Blood loss (ml) 0:!1000, 1:.1000 0.71

Blood transfusion 0: no, 1: yes 0.65

Blood transfusion (ml) 0:!1000, 1:.1000 0.06

Post-operative complicationb 0: no, 1: yes 0.01

Preoperative treatment 0: no, 1: yes 0.08

a: control input variable.
b: significant input variable.
doi:10.1371/journal.pone.0029179.t001
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Table 2. Comparison of clinical features between training and validation groups.

Variables Definitions

1-year
(N = 427)

3-year
(N = 354)

5-year
(N = 297)

Training
(N = 342)

Validation
(N = 85) P

Training
(N = 283)

Validation
(N = 71) P

Training
(N = 238)

Validation
(N = 59) P

N % N % N % N % N % N %

Age !65 245 71.6 67 78.8 0.181 206 72.8 54 76.1 0.578 177 74.4 40 67.8 0.308

.65 97 28.4 18 21.2 77 27.2 17 23.9 61 25.6 19 32.2

Gender Male 252 73.7 70 82.4 0.097 214 75.6 53 74.6 0.865 175 73.5 45 76.3 0.667

Female 90 26.3 15 17.6 69 24.4 18 25.4 63 26.5 14 23.7

Liver cirrhosis No 112 32.7 37 43.5 0.062 101 35.7 18 25.4 0.099 72 30.3 21 35.6 0.428

Yes 230 67.3 48 56.5 182 64.3 53 74.6 166 69.7 38 64.4

Chronic hepatitis No 37 10.8 12 14.1 0.644 28 9.9 10 14.1 0.390 22 9.2 9 15.3 0.603

HBV 185 54.1 40 47.1 145 51.2 35 49.3 119 50.0 27 45.8

HCV 95 27.8 27 31.8 90 31.8 18 25.4 75 31.5 18 30.5

HBCV 25 7.3 6 7.1 20 7.1 8 11.3 22 9.2 5 8.5

AST !80 284 83.0 65 76.5 0.161 227 80.2 56 78.9 0.801 185 77.7 47 79.7 0.748

.80 58 17.0 20 23.5 56 19.8 15 21.1 53 22.3 12 20.3

ALT !80 272 79.5 65 76.5 0.536 217 76.7 57 80.3 0.516 178 74.8 48 81.4 0.290

.80 70 20.5 20 23.5 66 23.3 14 19.7 60 25.2 11 18.6

Total bilirubin !1.0 246 71.9 63 74.1 0.686 203 71.7 53 74.6 0.623 166 69.7 46 78.0 0.211

.1.0 96 28.1 22 25.9 80 28.3 18 25.4 72 30.3 13 22.0

Albumin .3.5 272 79.5 66 77.6 0.702 220 77.7 55 77.5 0.960 180 75.6 45 76.3 0.918

!3.5 70 20.5 19 22.4 63 22.3 16 22.5 58 24.4 14 23.7

Platelet .150 169 49.4 44 51.8 0.698 130 45.9 39 54.9 0.175 107 45.0 31 52.5 0.296

!150 173 50.6 41 48.2 153 54.1 32 45.1 131 55.0 28 47.5

ASA Classification 1 90 26.3 12 14.1 0.062 79 27.9 17 23.9 0.700 67 28.2 21 35.6 0.387

2 175 51.2 51 60.0 144 50.9 40 56.3 124 52.1 25 42.4

3, 4 77 22.5 22 25.9 60 21.2 14 19.7 47 19.7 13 22.0

Child-Pugh
Classification

A 334 97.7 83 97.6 0.994 277 97.9 68 95.8 0.314 230 96.6 58 98.3 0.504

B, C 8 2.3 2 2.4 6 2.1 3 4.2 8 3.4 1 1.7

TNM Stage I 200 58.5 47 55.3 0.807 159 56.2 36 50.7 0.468 124 52.1 28 47.5 0.765

II 108 31.6 30 35.3 94 33.2 29 40.8 88 37.0 23 39.0

IIIa, IIIb, IIIc, IV 34 9.9 8 9.4 30 10.6 6 8.5 26 10.9 8 13.6

Tumor no. Single 244 71.3 61 71.8 0.939 201 71.0 44 62.0 0.140 156 65.5 40 67.8 0.744

Multiple 98 28.7 24 28.2 82 29.0 27 38.0 82 34.5 19 32.2

Tumor size (cm) !5 268 77.2 67 77.0 0.965 204 74.7 50 73.5 0.840 154 73.0 37 69.8 0.644

.5 79 22.8 20 23.0 69 25.3 18 26.5 57 27.0 16 30.2

Portal vein invasion No 277 81.0 65 76.5 0.350 227 80.2 56 78.9 0.801 184 77.3 47 79.7 0.698

Yes 65 19.0 20 23.5 56 19.8 15 21.1 54 22.7 12 20.3

Biliary invasion No 334 97.7 83 97.6 0.994 276 97.5 69 97.2 0.869 230 96.6 58 98.3 0.504

Yes 8 2.3 2 2.4 7 2.5 2 2.8 8 3.4 1 1.7

Surgical procedure Laparoscopic 66 19.3 18 21.2 0.697 60 21.2 13 18.3 0.590 57 23.9 11 18.6 0.385

Open surgery 276 80.7 67 78.8 223 78.8 58 81.7 181 76.1 48 81.4

Post-operative
complication

No 311 90.9 78 91.8 0.810 255 90.1 63 88.7 0.732 214 89.9 50 84.7 0.258

Yes 31 9.1 7 8.2 28 9.9 8 11.3 24 10.1 9 15.3

Disease-free
survival status

No 211 61.7 61 71.8 0.084 108 38.2 20 28.2 0.117 36 15.1 14 23.7 0.114

Yes 131 38.3 24 28.2 175 61.8 51 71.8 202 84.9 45 76.3

doi:10.1371/journal.pone.0029179.t002
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constructed by ANN, LR and DT were 0.977, 0.771 and 0.734,

respectively. For the training data and validation data, Tables 3

and 4 show the respective AUROC values, sensitivities and

specificities for the 1-, 3- and 5-year disease-free survival models

obtained by ANN, LR and DT. In the 1-year model for the

training group, for instance, sensitivity and specificity were 0.962

and 0.916 when using ANN, 0.848 and 0.466 when using LR, and

0.948 and 0.458 when using DT, respectively. Notably, in all

training groups and in most validation groups sensitivity and

specificity for the 1-, 3- and 5-year models constructed using ANN

were not only within acceptable limits, but were actually superior

to those for models constructed using LR and DT.

Discussion

Model sensitivity and specificity are important when testing

whether a model can accurately recognize positive and negative

outcomes. Sensitivity and specificity must also be measured to

determine the proportion of false negatives or false positives

produced by a model [24]. Comparing false positive and false

negative rates reveals the tendency of a model to misclassify

positive patients as negative patients and vice versa [43]. The ideal

model has both high sensitivity and high specificity [43]. In the

current study, comparisons of predictive performance showed that

the LR and DT models had poor sensitivity (,40%) but high

specificity (.80%) for predicting 5-year disease-free survival in the

training groups (Table 3); the DT model had poor specificity

(,40%) but high sensitivity (.80%) for predicting 1-year disease-

free survival in the validation groups (Table 4), and the LR and

DT models had poor sensitivity (,40%) but high specificity

(.80%) for predicting 5-year disease-free survival in the validation

groups (Table 4). Specifically, Table 4 shows that the sensitivity

values for predictions of 5-year disease-free survival with LR and

DT models in the validation groups were zero. The explanation is

the occurrence of false positives (i.e., type I error) [24]. That is, the

LR and DT models, which had very low sensitivity, could be not

used to screen for disease-free survival in HCC patients who had

received hepatic resection since they lacked sufficient specificity for

identifying true positives. However, sensitivity and specificity

remained high in all ANN models (Tables 3 and 4). Since

AUROC provides a superior performance index in addition to

superior accuracy, AUROC was used to evaluate the predictive

accuracy of classifiers [44]. The AUROC of a classifier can be

defined as the probability of the classifier ranking a randomly

Figure 1. Framework of artificial neural network for the 1-, 3- and 5-year disease-free survival models. The input layer in each of the
three models contained 17 neurons. In the hidden layers, the numbers of neurons were 30, 17 and 7 the 1-, 3- and 5-year models, respectively. The
output layer in each of the three models had only one neuron representing the disease-free survival of HCC patients after hepatic resection.
doi:10.1371/journal.pone.0029179.g001
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chosen positive example higher than a randomly chosen negative

example [44]. Therefore, the higher the AUROC, the higher the

predictive accuracy [45]. This study also used AUROC values for

performance comparisons of different prediction models. For the

training groups, Table 3 shows that the AUROC values for 1-, 3-

and 5-year disease-free survival were 0.977, 0.989 and 0.963 for

ANN models, 0.771, 0.751 and 0.769 for LR models, and 0.734,

0.825 and 0.760 for DT models, respectively. In the validation

groups (Table 4), the respective values were 0.777, 0.774 and

0.864 for ANN models, 0.772, 0.725 and 0.736 for LR models and

0.718, 0.561 and 0.627 for DT models. In all disease-free survival

models, AUROC values obtained by ANN were superior to those

obtained by LR and DT. Thus, the ANN models outperformed

the LR and DT models in terms of predictive accuracy. The ROC

curves in Figures 2 and 3 further show that the ANN was

consistently more accurate in predicting 1-, 3- and 5-year disease-

free survival compared to the LR and DT models, both of which

demonstrated inconsistent results. The above comparisons thus

confirm that ANN outperforms both LR and DT in predicting

disease-free survival in HCC patients who have received hepatic

resection.

Even when only seventeen easily obtainable parameters were

used, the ANN models developed in this study demonstrated

acceptable accuracy. Variables that were not significantly

associated with disease-free survival were intentionally omitted

when constructing the ANN models. The dependent variable

indicates a decision by the lead surgeon in each case to perform a

surgical intervention. In predictive mode, however, it can be

considered a reliable estimation of confidence in the decision to

operate on a specific patient since the ANN models were trained

Figure 2. ROC curves and AUROCs for the 1-, 3- and 5-year disease-free survival models constructed for training groups using ANN,
LR and DT. The AUROC values for 1-year (A), 3-year (B) and 5-year (C) disease-free survival were 0.977, 0.989 and 0.963 for ANN models, 0.771, 0.751
and 0.769 for LR models, and 0.734, 0.825 and 0.760 for DT models, respectively. In all disease-free survival models for training groups, AUROC values
obtained by ANN were superior to those obtained by LR and DT.
doi:10.1371/journal.pone.0029179.g002

Disease-Free Survival Neural Network Modeling
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Figure 3. ROC curves and AUROCs for the 1-, 3- and 5-year disease-free survival models constructed for validation groups using
ANN, LR and DT. The AUROC values for 1-year (A), 3-year (B) and 5-year (C) disease-free survival were 0.777, 0.774 and 0.864 for ANN models, 0.772,
0.725 and 0.736 for LR models, and 0.718, 0.561 and 0.627 for DT models, respectively. In all disease-free survival models for validation groups, AUROC
values obtained by ANN were superior to those obtained by LR and DT.
doi:10.1371/journal.pone.0029179.g003

Table 3. Performance comparison of ANN, LR and DT models for predicting 1-, 3- and 5-year disease-free survival in training
groups.

1-year
(N = 342)

3-year
(N = 283)

5-year
(N = 238)

ANN LR DT ANN LR DT ANN LR DT

AUROC 0.977 0.771 0.734 0.989 0.751 0.825 0.963 0.769 0.675

Sensitivity 0.962 0.848 0.948 0.963 0.519 0.750 0.935 0.109 0.196

Specificity 0.916 0.466 0.458 0.931 0.789 0.811 0.979 0.958 0.979

doi:10.1371/journal.pone.0029179.t003

Disease-Free Survival Neural Network Modeling
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by a large patient database from teaching hospitals with highly

qualified surgeons. Moreover, omitting this variable expanded the

potential applications of the resultant model to circumstances in

which advanced diagnostic.

Yeh et al. [10] used multiple logistic regression to predict

associations between clinicopathologic factors and .5-year

survival without recurrence in HCC patients treated with

hepatectomy. Ercolani et al. [9] also evaluated prognostic factors

affecting 5-year disease-free survival after liver resection in HCC

patients with cirrhosis. However, the above studies [9,10] focused

on survival rates and predictors and did not compare the

predictive accuracy of different statistical models. The current

study, however, compared different statistical models in terms of

accuracy in predicting 1-, 3- and 5-year disease-free survival after

hepatic resection in HCC patients. The comparisons revealed that

predictive accuracy significantly differed among ANNs, LRs and

DTs. To our knowledge, very few studies have compared

predictive performance in these three methods. The model

comparisons showed that the ANN models of disease-free survival

obtained superior AUROC values and have potential applications

in decision support systems used to assess the need for hepatic

resection in HCC patients.

In conclusion, comparison of prediction models for 1-, 3- and 5-

year disease-free survival in HCC patients who have received

hepatic resection revealed that the prediction models obtained by

ANN machine learning method were superior to those obtained

by conventional LR and DT. The AUROC values in the ANN

models were generally higher than those in LR and DT models.

That is, The ANN model had superior predictive accuracy.

Therefore, this study demonstrated the feasibility of applying ANN

in medical decision support systems that use clinical databases to

predict disease-free survival in HCC patients who have received

hepatic resection. Physicians may also consider machine-learning

methods as a supplemental tool for clinical decision-making and

prognostic evaluation.
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