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ABSTRACT
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages).
As vaccine carriers, they have elicited both cellular and humoral responses against a variety of
pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen
epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are
exploited for widespread vaccine development.
Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the
display of specific antigenic peptides which induce antibody production to prevent or curtail infection.
Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the
development of different applications of inovirus-based phage display vaccines across a broad range of
pathogens and hosts is reviewed. The references cited in this review were selected from established
databases based on the authors’ knowledge of the study subject.
Expert commentary: The importance of phage-display technology has been recently highlighted by
the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore,
the symbiotic nature of filamentous viruses infecting intestinal F+ E. coli strains offers an attractive
platform for the development of novel vaccines that stimulate mucosal immunity
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1. Introduction

Research regarding the potential to use viruses to combat
disease has been ongoing for over 100 years [1,2]. While
viruses have often been considered pernicious as they co-opt
a host for their own survival, often killing the host in the
process, new work with viruses that can be exploited as
bacteriophages but without the harmful effects has arisen
[3]. These viruses, which can be easily manipulated and
employed for phage display ability, are being increasingly
used for a variety of potent biomedical tools [4]. These fila-
mentous bacterial viruses, which make up the genus Inovirus
in the family Inoviridae, are thread-like viruses containing
single-stranded DNA genomes know as filamentous bacterio-
phages [5–7]. Over 50 different species of filamentous viruses
are known, of which a majority can infect Gram-negative
bacteria.

Although inoviruses are now being used for their phage
display capabilities, these filamentous viruses have a relation-
ship with the cell that they infect that is more similar to
symbiotic non-pathogenic animal viruses than classical
phages. Unlike phages, which term comes from the Greek
word φάγος for destroyer, inoviruses do not kill their host
and only slightly affect cell growth despite yielding titers of
up to 1013 virions per milliliter of liquid culture. Progeny
virions are assembled in the host cell’s membrane where
single-stranded DNA binding proteins are replaced by major
capsid protein subunits before being released into the cell,

resulting in opaque plaques on bacterial lawns [8,9]. Receptor
organelles in the bacterial host that are encoded by transmis-
sible plasmids facilitate the interactions between inovirus and
cell [5,10]. The functional architecture of inoviruses provides
the foundation for their application in vaccine-related projects
since inoviruses do not cause harm.

A great number of inovirus species across the world have
been isolated and characterized [5]. Despite variation by spe-
cies, they have the same general physical characteristics. The
virions are flexible, thin cylindrical filaments [6,7] under 10 nm
in diameter and approximately 1000 nm in length (see Figure
1(a) for details). Most of a single virion is composed of several
thousand major capsid or coat protein subunits. These sur-
round a circular single-stranded DNA molecule. At the prox-
imal end of the virion there are a few minor proteins which
attach to the cell to initiate infection. At the distal end, there
other minor proteins which are used for nucleation and
assembly on the host membrane. The structures and life cycles
are conserved across different species of inoviruses, resulting
in similar functional applications.

Research into inovirus structure and application has been
dominated by studies of Ff [11], which infect male (F+) strains
of E. coli. The most used and best understood of the Ff
inoviruses are the closely related fd, f1, and M13 types (for
reviews see [9–11]) for which extensive information regarding
their life cycle and genetics is known. These nearly identical
viruses almost perfectly share all structural motifs, including
DNA and protein sequences and gene organization [12–14],
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although there are slight variations between the genomes.
There are 10 genes and a non-coding intergenic region
which are conserved across the Ff species [15–17] as well as
DNA replication and transcriptional machinery (for a recent

review see [10]). Proteins are encoded by 5 genes in the virion
(g3, g6, g7, g8, and g9). Gene 8 proteins (gp8), the major coat
protein, make up the vast majority of the virion, occurring in
fivefold axial symmetry. Gene proteins 3 and 6 (gp3 and gp6)
are located on the proximal end of the virion and are involved
in stabilization and infecting the host cell. Gene proteins 7 and
9 (gp7 and gp9) are on the distal end of the virion and per-
form initiation assembly [18–20]. As shown in the end-to-end
model in Figure 1(a), minor coat protein subunits have fivefold
axial symmetry. While much research has been done into the
structure of the Ff virus over the past 50 years, a conclusive
structure has not been determined since the viruses cannot be
crystallized. X-ray fiber diffraction studies and physiochemical
measurements have revealed the five-star helical symmetry (5-
fold rotation axis) of the gp8 subunit and are referred to as
Class I [21–23]. However, the structure of the ssDNA and its
relationship to the protein sheath is poorly understood, due to
the small amount of DNA in individual virions. However, the
architecture is sufficiently understood to take advantage of
the structures and capabilities of the virus throughout its life
cycle.

The life cycle of Ff filamentous viruses begins when an
adsorption structure on the proximal end of the virus is
adsorbed to the tip of the F+ specific pilus of E. coli.
Following binding between the virus and the bacterial cell
(for a recent review, see [10]), the major coat proteins of the

Article Highlights

● Inoviruses are easily manipulated viruses which coexist with their
host while causing minimal harm and are highly reproducible.

● Simple genetic manipulation makes the insertion of random or
specific oligonucleotides into the inovirus genome. These genetically
modified inoviruses can display corresponding oligopeptides as
fusion proteins on their surface and are referred to as inovirus-
associated vectors (IAVs).

● IAVs displaying randomly generated oligopeptides are used to iden-
tify the epitopes of specific antibodies through biopanning. By iso-
lating recombinant inoviruses displaying mimotypes resembling an
antibody discontinuous target epitope, the DNA and amino acid
sequence of the oligopeptides of interest can be determined.

● IAVs have bene used to do create vaccines against a variety of
infectious and non-infectious diseases, being used both to the screen
for immunogenic peptides and directly present immunogenic pep-
tides to the organism to elicit proper antibody production.

● IAVs are highly immunogenic, can stimulate both humoral and cel-
lular responses in a variety of diseases, pose no known health risks,
and are cost-efficient to produce.

This box summarizes key points contained in the article.

Figure 1. Schematic representation of a filamentous virus and Inovirus-Associated Vectors (IAVs).(a) On the left, a digital scanning transmission electron micrograph
(STEM) of unstained filamentous virus (fd). The ends of one complete virion are designated by arrows. On the right, a 3D scale schematic model of an end-to-end
virion, based on published physical data. The schematic indicates the circular single-stranded DNA (cssDNA) genome surrounded by the virion capsid (major coat
protein pg8) and the four minor coat proteins at the two ends of the virion (gp3 and gp6 at one end and gp7 and gp9 at the other). For recent detailed architectural
information, see recent review [31]).(b) Schematic representations of IAVs displaying foreign antigens (red spheres) on their surface. The name designation of each
IAV denotes the viral capsid protein by which the antigen is displayed. IAVs denoted by ‘m’ for ‘mosaic’ contain both the wild type and antigen display capsid
proteins. Adapted with permission from [31].
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virus become associated with the inner membrane of the cell
[24–26]. The virion’s circular single-stranded DNA (cssDNA) is
then ejected into the cytoplasm where it is converted to a
parental double-stranded replicative form (RF). Using a rolling-
circle mechanism, Ff inoviruses replicate their genome. The
new virion is assembled through a complex set of interactions
that binds the protein subunits to the ssDNA [15–17] and
embeds newly synthesized coat proteins into the bacterial
membrane [27–29]. ssDNA is passed through the mature
coat protein, spanning the bacterial membrane, and additional
coat proteins are added on the internal edge of the mem-
brane. Additional proteins are used to package the inovirus
and release it into the cell [23,30]. Inovirus assembly on the
inner membrane of the bacteria is a harmonized sequential
process with both viral-encoded and host proteins playing
important roles. For more extensive reviews on inovirus life
cycle and replication, see reviews [10,31]. Importantly, this
process, which requires both virus and host to complete,
does not kill the host, making inovirus replication a sustain-
able process.

2. Inovirus-associated vectors

Inoviruses are useful for vaccine development because it is
possible to insert random oligonucleotides into their genome.
This easy genetic manipulation is the basis for inovirus display
(phage display) technology [32,33]. Inoviruses that have been
genetically modified to display these oligopeptides as fusion
proteins on their surface are referred to as inovirus-associated
vectors (IAVs). Oligopeptides can be displayed on any capsid
protein (gp3, gp6, gp7, gp8, and gp9) following genetic mod-
ification. A specific oligonucleotide sequence can be inserted
into the viral genome to display the desired oligopeptide as a
fusion with capsid proteins gp3, gp7, gp8, or gp9. This results
in the oligopeptide’s display on every copy of the target
capsid protein. However, mosaic inovirus particles can be
created where the specific capsid proteins display a mix of
wild type and recombinant proteins with the desired oligo-
peptide [34]. This is done using a phagemid vector which has
an extra copy of a capsid protein fused to the specific oligo-
nucleotide. A host exposed to both the phagemid vector and
a wild type capsid protein from a deficient helper phage
produces mosaic IAVs displaying both wild type and oligopep-
tide fused capsid proteins. Work using the capsid protein gp6
has resulted only in the production of mosaic IAVs (for reviews
see [35–37]) while both mosaic and non-mosaic IAVs have
been produced using gp3 and gp8 (for a review see [10])
and gp7 and gp9 (for reviews see [38–40]).

As a result of the different locations, structures, and abun-
dances of the capsid proteins in IAVs, they have differential
abilities to display different oligopeptides. Figure 1(b) shows
how each of the five capsid proteins of an IAV can display
antigens, as have been demonstrated in published literature.
The capsid protein that can display the most copies of the
desired oligopeptide is gp8 due to the large amount of gp8 in
each inovirus. A non-mosaic IAV can display a peptide on each
of the approximately 2,700 copies of gp8. However, doing so
with large peptides distorts the virus; only peptides of up to 6
amino acids can be displayed in such great quantity without

affecting the structure of the inovirus. However, producing a
mosaic IAV with oligopeptides on far fewer gp8 units will not
cause distortion [33]. While it is theoretically possible to dis-
play an entire protein on gp3 [41], presenting on all 5 copies
per virion, studies have demonstrated that at most one copy
of gp3 will display the desired protein [34].

The ability of IAVs to display different random oligopep-
tides on their surface has many applications, and is especially
useful in for vaccine development. The creation of Random
Peptide Libraries (RPL), where random oligopeptides are fused
to major capsid proteins (gp3 or gp8) and displayed on indi-
vidual inovirus clones creating a random variety of IAVs which
can be used for vaccine design via epitope mapping using
monoclonal or polyclonal antibodies. These random IAVs,
whose oligopeptide diversity increases with increased peptide
length, can be used to identify the epitopes of specific anti-
bodies through a process called biopanning. This allows for
the isolation of IAVs displaying mimotopes which mimic the
antibody discontinuous target epitope. By isolating the recom-
binant inoviruses bearing mimotopes, the DNA and amino
acid sequence of the oligopeptides of interest can be deter-
mined. Through this breakthrough technology which was the
subject matter of the Nobel Prize in Chemistry 2018 (see
‘Expert Commentary’ below), inovriuses displaying oligopep-
tides mimicking antigens (or specific epitopes of an antigen)
can be used to vaccinate hosts thus inducing the desired
antibody production. Vaccines of this sort have been devel-
oped in a variety of organisms against many different diseases
(See tables 1 and 2 in [31] for a list of inovirus-based vaccines),
as the introduction of the inoviruses can induce the produc-
tion of specific antibodies. While there have already been
various successes, this method can potentially open the door
to the development of many novel vaccines and vaccine
methodologies.

3. Inovirus display technology in vaccine design

IAVs have been successfully used as vaccine carriers for a
variety of species and diseases across a range of vaccine
studies (as shown in [31]). These vaccines have been effective
against infections agents such as viral, protozoan, and worm
parasites as well as non-infectious diseases including
Alzheimer’s and a variety of cancers. Inovirus display technol-
ogy has been used in two different ways to develop vaccines.
The first method employs inovirus display technology to
screen RPLs with monoclonal antibodies to determine which
peptides can be used. These immunogenic peptides are used
as vaccines either with carrier proteins or in their soluble forms
to elicit an immune response [42–55]. The second method not
only employs inoviruses for epitope mapping, but also utilizes
inoviruses to serve as the carrier for the isolated immunogenic
peptide [56–83]. Directly using IAVs to present the peptide has
been more consistently successful in producing the produc-
tion of the proper antibody than the introduction of soluble
peptides. Inovirus-bound peptides (on IAVs) consistently retain
their 3D structure and are more stable than soluble peptides,
which do not always reflect the desired antigen epitope [84].
IAVs are structurally simple, which allows the immune system
to respond to the fused peptides rather than the viral coat.
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Combined with ability to display many copies of the desired
peptide, IAVs are highly immunogenic, creating effective vac-
cines [85]. Because the inoviruses replicate in E. coli cultures,
the production of large numbers of vaccines is cost-efficient.
IAV’s structural simplicity, high immunogenicity, and econom-
ical production make them an efficient and attainable system
for creating a variety of effective vaccines.

Much of the research involving inovirus-based vaccines has
been to target infectious diseases in animals. Studies have
shown that IAVs have been constructed to protect vaccinated
animals against a variety of infectious diseases by eliciting
both humoral [82] and cellular [86] immune responses. To
test the efficacy of IAV vaccines against target pathogens,
studies were conducted in which animals were challenged
with a specific pathogen following IAV vaccination. In these
studies, IAVs were shown to mitigate or prevent infection from
viruses and parasites. In one study, mice were completely
vaccinated against Human Respiratory Syncytial Virus (RSV)
by binding a 15-mer linear epitope to gp3, which induced a
humoral response [56]. Monoclonal antibodies against various
viral diseases have also been successfully screened against
RPLs to produce recombinant inovirus vaccines against
Herpes Simplex Virus type 2 (HSV-2) using a 15-mer peptide
[57] and against Neurotropic Murine Coronavirus sing a 13-
mer peptide [58]. These inovirus vaccines induced humoral
responses in mice, greatly reducing mortality and providing
protection relative to the dose of the vaccine [57].

IAV vaccines have also been developed against fungal para-
sites in animals, providing both individual protection and large
scale vaccination success. In 2005, Yang et al. and, in 2006, Wang
et al. used inoviruses to vaccinate against systemic candidiasis, a
fungal infection caused by Candida albicans. They used the
inoviral coat protein gp8 to display a 6 amino acid peptide
epitope of the fungal heat shock protein 90 to vaccinate against
the infection [59,60]. Not only did vaccination lower the burden
of infection, but it also increased the lifespan in the infectedmice
[59]. In 2004, Manoutsarian et al. used IAVs to vaccinate pigs
against Taenia solium, a parasitic worm which causes neurocys-
ticercosis in humans but uses pigs as intermediate hosts. Unlike
previous studies, which used a single specific peptide fused to a
inovirus, four different antigenic peptides were displayed by
inoviruses in a cocktail of recombinant IAVs. The induction of a
cellular response completely vaccinated 1/3 of the pigs in the
study and reduced the number of cysticerci in all other pigs [61].
Following the success of this study, a large-scale vaccination of
1047 pigs inMexicowas undertaken in 2008. The pigs in a natural
environment were successfully immunized, reducing parasite
presence in the vaccinated pigs, and providing a more cost-
efficient alternative to vaccination with synthetic peptides [87].
Many additional vaccines have been developed that induced
both humoral and cellular responses against parasites in animals
providing partial protection against the infection and reducing
infection burden. Many of these studies were done by screening
monoclonal and polyclonal antibodies against large RPL (for a
review of more inovirus vaccine studies see [31]).

In addition to their success against infectious diseases,
inovirus display technology has been successfully used to
design vaccines which prevent or mitigate the progression of

non-infectious diseases. IAVs have been used to display anti-
gen epitopes which elicit immune responses against tumors
and other non-infectious diseases. An epitope of the
Melanoma Antigen A1 (MAGE A1) displayed on gp8 induced
a cellular immune response against the melanoma tumor in
vaccinated mice. Not only did vaccination inhibit tumor
growth, but it reduced mortality in the targeted mice [88].
Induction of a cellular response, decreased tumor growth, and
higher survival rate was observed in mice vaccinated against
murine mastocytoma P815 in a later study [89]. The highly
immunogenic characteristics of inovirus display technology
has also been used to activate immune responses against
colorectal cancer tumors, which often evade antitumor
immune responses, and to reduce tumor growth [90].
Inovirus-based vaccines have also been used against diseases
such as Alzheimer’s. The same methods have been used to
induct antibodies against β-amyloid plaques by displaying a
specific 4 amino acid antigenic epitope on the surface of the
inovirus. Multiple studies in mice using recombinant ino-
viruses have induced a humoral response and reduced β-
amyloid plaque burden [91–94]. While not used preventatively
as has been done with infectious diseases, IAVs can vaccinate
animals against further disease progression in non-infectious
diseases. These findings suggest that there will be future
development of inovirus-based vaccines against non-infec-
tious diseases that mitigate the damage done to both animals
and humans.

Despite the advances in the use of IAVs to combat disease, the
consistent development of inovirus-based vaccines still faces
challenges. Even when inoviruses have been screened with spe-
cific antibodies to bear the desired peptide mimotopes, immu-
nization using IAVs does not always produce the expected
immune response. Keller et al. in 1993 were unable to induce
the production of broadly neutralizing antibodies against
Human Immunodeficiency Virus Type-1 (HIV-1) in rabbits despite
having screened for the proper mimotopes [66]. Dorgham et al.
in 2005 screened a 15-mer RPL using a broadly neutralizing
antibody and, using the selected inoviruses, were able to induce
antibodies in vaccinated mice. However, the induced antibodies
did not exhibit neutralizing activity against HIV-1 [68]. Other RPLs
screened against monoclonal and broadly neutralizing antibo-
dies have produced antibodies that do not have neutralizing
capabilities [55,70]. In one such case, crystallization of the specific
mimotope revealed that the oligopeptide borne by the inovirus
was structurally different that the natural antibody epitope [69].
This structural issue is likely at the foundation of many of the
issues involving ineffectual inovirus-based vaccines. When IAVs
fail, it is probable that the chosen mimotopes poorly resemble
the original antibody epitopes and cannot function in the
desired fashion, either failing to induce antibodies or inducing
of antibodies without neutralizing capabilities.

Despite the efficacy of these inovirus-based vaccines against a
variety of infectious and non-infectious diseases, there are still
many diseases for which effective vaccines have not been devel-
oped using phage display or other methods. For example as
discussed above, despite extensive work with inoviruses begin-
ning in 1993 by Keller et al. [66], there has been very little success
developing a (HIV-1) vaccine [95]. While four major epitopes on
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the HIV-1 envelope gp41 and gp120 glycoproteins have been
identified [96–98], inducing the production of effective antibo-
dies has not been successful [70]. While current techniques have
not succeeded, both humoral and cellular responses to HIV-1
through inovirus-based vaccines are being researched [99,100].
However, the groundwork for future work involving HIV-1 and
other diseases has been laid out, paving the way for a multitude
of various new inovirus-based vaccines.

While there have been many vaccine studies targeting HIV-
1 using IAVs, none have been completely successful. Studies
involving inovirus based-vaccines targeting HIV-1 initially only
used the broadly neutralizing monoclonal antibodies 2F5,
2G12 and b12 [55,66–70]. However, as discussed above,
these studies have either failed to induce antibodies or
induced non-neutralizing antibodies, despite often inducing
a humoral response. In other studies, polyclonal sera from HIV-
1-infected individuals have been used to screen RPLs to search
for new broadly neutralizing monoclonal anti-HIV-1 antibodies
[71–75,101]. These studies have used IAVs to induce the pro-
tection of neutralizing antibodies in mice [73] and macaques
(against Simian-Human Immunodeficiency Virus) [75]. Inovirus-
based vaccines targeting HIV-1 have been able to control viral
load in a variety of non-human mammals after a challenge by
HIV-1 or induce neutralizing antibodies, but not inhibit novel
infection or induce broadly neutralizing antibodies.
Additionally, inovirus-based HIV-1 vaccines have often failed
due to the autoreactivity of the monoclonal antibodies that
can hopefully be avoided with the new ‘next generation’
broadly neutralizing antibodies [102–106].

4. Conclusion

Inoviral vectors have been used extensively in the develop-
ment of vaccines against a variety of infectious and non-
infectious diseases over the past two decades. As shown
above, the IAVs have successfully induced a humoral or cellu-
lar response, or both. In the studies, the vaccines could pro-
vide partial or complete protection against pathogens causing
infectious disease or merely lower the burden of infection.
Against non-infectious diseases, inovirus-based vaccines have
been shown to be effective at mitigating disease development
by initiating productive immune responses. There have
already been many applications of vaccines against infectious
and non-infectious diseases using inoviral vectors and IAVs
have distinct characteristics that make them more applicable
for the development of new vaccines than other viral vectors.

5. Expert opinion

Inoviruses and by extent IAVs are highly immunogenic and do
not require adjuvants, facilitating the ease and simplicity of
usage as vaccines. They can display multiple (from few to
thousands) copies of a peptide on their surface while still
maintaining the desired structure and conformation as well
as infectivity with their bacterial hosts. IAVs, by displaying only
particular peptides, allow the immune system to interact with
a specific epitope rather than a larger, more complex protein,
yielding a more targeted response. They are capable of stimu-
lating humoral and cellular immune responses and do not

pose known health risks to animals or humans. IAVs can be
administered safely in high doses through multiple routes,
enhancing their usage in a variety of contexts [107]. With
their cost-efficient production, structural simplicity, and record
of success in a variety of contexts, IAVs have the potential to
be exploited for many new vaccines in humans and animals
against a variety of diseases.

Advances in inovirus research and phage display technol-
ogy are making the development of new vaccines for a variety
of diseases feasible in the near future. Currently, there are
many diseases without vaccines or for which treatment is
highly invasive. Further development involving IAVs will be
likely to introduce more, better, and increasingly cost-effective
vaccines. As the structure and tools for genetic manipulation
of inoviruses are being better developed, IAVs will likely begin
to be more extensively introduced into animal and human
use. The current research is only revealing the tip of the
iceberg of the extensive ways in which inovirus-based vac-
cines will be applied in future use. Accordingly, there are
aspects of the genetic engineering of phage-display that
need to be further expanded. Specifically, further studies
should be conducted to evaluate the maximum antigenic
load capacity of the gp8 coat protein without jeopardizing
the architectural integrity and infectivity of the IAV (Ff.g8, see
Figure 1). Furthermore, additional research about the potential
of using the other capsid proteins (gp3, gp6, gp7, and gp9) or
combinations of any of the capsid proteins for antigen display
is needed. Additionally, future studies could elucidate the
nuances of the uses of individual capsid proteins for specia-
lized applications such as antigen display, penetration, target-
ing, etc. An additional aspect of IAVs that needs to be further
explored is how antigenic display on the surface of IAVs
induces immunogenicity. This predictive work needs to be
undertaken by experimental and computational (in silico)
research.

Further research will involve the development of new vac-
cines and improving the efficacy of current vaccines.
Additional undertakings should be done into identifying the
structure of the viruses, since this will better be able to inform
how the phage-display technology will best be applied as
more complex work is being done using monoclonal and
polyclonal antibodies to create more nuanced vaccines. The
future has a dual focus: the development of vaccines for
infectious diseases and the induction of immune responses
in non-infectious diseases to limit the harm that they do (or
eliminate them).

The underlying principle of future IAV-based vaccine devel-
opment could be based on the unique natural symbiosis,
which is known to exist between humans, non-pathogenic
bacteria such as E. coli, and inoviruses. It is well established
that humans or other warm-blooded animals acquire E.coli,
including F+ strains, during their first few days in life or even
before birth and that they are never thereafter without it. F-
specific inoviruses (Ff inoviruses) cannot infect humans, but
they propagate at high viral loads in specific strains of E. coli
including non-pathogenic strains which are symbiotic to
humans. Future IAV-based vaccines within the next five to
ten years could take advantage of the triple symbiotic nature
between humans, enteric F + E. coli strains and F+-specific
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inoviruses to target the induction of mucosal immunity. This
approach will be particularly effective against sexually trans-
mitted pathogens such as HIV-1.

Much future study lies the further development of IAVs and
how they can induce immune responses on a broad scale.
Research regarding the development and advantages of
phage display technology was recently recognized by the
Nobel Committee. George P. Smith and Gregory P. Winter
were awarded the Nobel Prize in Chemistry 2018 for the
‘elegant method known as phage display, where a bacterioph-
age – a virus that infects bacteria – can be used to evolve new
proteins … [This] revolution … is bringing and will bring the
greatest benefit to humankind’ [108]. The development of
more and better inovirus-based vaccines will continue to
advance preventative treatment against diseases which have
not been able to be combatted.
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