### **Supplementary Information**

# Memory-dictated Dynamics of Single-atom Pt on CeO<sub>2</sub> for CO Oxidation

Zihao Zhang,<sup>1,2,†</sup> Jinshu Tian,<sup>1,†</sup> Yubing Lu,<sup>1</sup> Shize Yang,<sup>3</sup> Dong Jiang,<sup>2</sup> Weixin Huang,<sup>2</sup> Yixiao Li,<sup>2</sup> Jiyun Hong,<sup>4</sup> Adam S. Hoffman,<sup>4</sup> Simon R. Bare,<sup>4</sup> Mark H. Engelhard,<sup>1</sup> Abhaya K. Datye,<sup>5</sup> Yong Wang\*,<sup>1,2</sup>

#### Content

Supplementary Tables S1-S3

Supplementary Figures S1-S37

<sup>&</sup>lt;sup>1</sup> Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA

<sup>&</sup>lt;sup>2</sup> The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA

<sup>&</sup>lt;sup>3</sup> Eyring Materials Center, Arizona State University, Tempe, AZ 85257, USA

<sup>&</sup>lt;sup>4</sup> Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

<sup>&</sup>lt;sup>5</sup> Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA

<sup>&</sup>lt;sup>†</sup> These authors contributed equally

<sup>\*</sup>Corresponding author. Email: <a href="mailto:yong.wang@pnnl.gov">yong.wang@pnnl.gov</a> (Y. Wang)

### **Supplementary Tables**

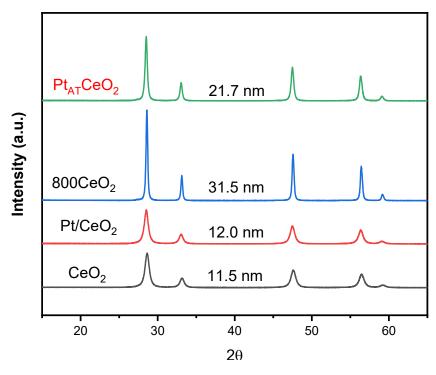
**Table S1** The actual Pt loadings and surface atomic percentage (Pt, Ce, and O) determined by ICP-AES and XPS, respectively

| Samples                                                | Pt (wt%) | Surface at. Pt% | Surface at. Ce% | Surface at. |
|--------------------------------------------------------|----------|-----------------|-----------------|-------------|
| $CeO_2$                                                | ~        | ~               | 27.5            | 72.5        |
| Pt/CeO <sub>2</sub>                                    | 0.75     | 0.8             | 26.6            | 72.6        |
| $Pt_{AT}CeO_2$                                         | 0.81     | 0.9             | 26.0            | 73.1        |
| Pt/CeO <sub>2</sub> -180 °C <sup>a</sup>               | ~        | 0.7             | 14.7            | 84.6        |
| Pt <sub>AT</sub> CeO <sub>2</sub> -180 °C <sup>a</sup> | ~        | 1.2             | 19.8            | 79.1        |
| CeO <sub>2</sub> -CO                                   | ~        | ~               | 25.5            | 74.5        |
| Pt/CeO <sub>2</sub> -CO                                | ~        | 0.4             | 25.2            | 74.5        |
| Pt <sub>AT</sub> CeO <sub>2</sub> -CO                  | ~        | 0.6             | 25.5            | 73.9        |

 $<sup>^{</sup>a}$ Pt/CeO<sub>2</sub>-180  $^{\circ}$ C and Pt<sub>AT</sub>CeO<sub>2</sub>-180  $^{\circ}$ C represent the catalysts after treatment at 180  $^{\circ}$ C under CO oxidation condition for 20 mins before test.

**Table S2** Best-fit EXAFS models characterizing results at the Pt  $L_3$ -edge for the Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub> in ambient air at 25 °C, and CO oxidation condition at 25 °C and 180 °C. R: radial distance. CN: coordination number. E<sub>0</sub>: correction to the threshold energy,  $\sigma^2$ : Debye-Waller-like term

| Samples                                                    | Path | R (Å)           | CN            | $\sigma^2 \times 10^3$ (Å <sup>2</sup> ) | E <sub>0</sub> (eV) | R factor |
|------------------------------------------------------------|------|-----------------|---------------|------------------------------------------|---------------------|----------|
| Pt/CeO <sub>2</sub> -ambient air                           | Pt-O | $2.00 \pm 0.01$ | $5.0 \pm 0.4$ | $2 \pm 1$                                | $4.5\pm1.1$         | 0.003    |
| Pt <sub>AT</sub> CeO <sub>2</sub> -ambient air             | Pt-O | $2.00 \pm 0.01$ | $4.9 \pm 0.5$ | 2 ± 1                                    | $3.7\pm1.5$         | 0.005    |
| Pt/CeO <sub>2</sub> -CO/O <sub>2</sub> 25°C                | Pt-O | $2.00\pm0.03$   | $3.1\pm0.9$   | $3\pm3$                                  | $6.3 \pm 3.7$       | 0.008    |
| Pt <sub>AT</sub> CeO <sub>2</sub> -CO/O <sub>2</sub> 25°C  | Pt-O | $2.00\pm0.02$   | $4.8\pm1.2$   | $4\pm3$                                  | $5.3\pm3.2$         | 0.006    |
| Pt/CeO <sub>2</sub> -CO/O <sub>2</sub> 180°C               | Pt-O | $2.00\pm0.02$   | $2.8 \pm 0.7$ | $4\pm3$                                  | $6.2\pm3.2$         | 0.006    |
| Pt <sub>AT</sub> CeO <sub>2</sub> -CO/O <sub>2</sub> 180°C | Pt-O | $2.00 \pm 0.01$ | $3.2 \pm 0.6$ | $3\pm2$                                  | $5.6\pm2.2$         | 0.003    |


 $\textbf{Table S3} \ \mathrm{BET} \ \mathrm{surface} \ \mathrm{area}, \ \mathrm{pore} \ \mathrm{volume}, \ \mathrm{pore} \ \mathrm{size}, \ \mathrm{and} \ \mathrm{average} \ \mathrm{crystallite} \ \mathrm{size} \ \mathrm{of} \ \mathrm{different} \ \mathrm{samples}$   $\mathrm{determined} \ \mathrm{by} \ N_2 \ \mathrm{adsorption-desorption} \ \mathrm{isotherms} \ \mathrm{and} \ XRD$ 

| Samples                                              | BET surface area (m <sup>2</sup> /g) | Pore volume (cm <sup>3</sup> /g) | Pore size (nm) | Crystallite size (nm) |
|------------------------------------------------------|--------------------------------------|----------------------------------|----------------|-----------------------|
| CeO <sub>2</sub>                                     | 53.3                                 | 0.34                             | 20.1           | 11.5                  |
| $800 CeO_2$                                          | 13.4                                 | 0.11                             | 34.1           | 31.5                  |
| $0.1Pt/800CeO_2$                                     | 14.2                                 | 0.12                             | 33.9           | 32.3                  |
| $0.1Pt_{AT}800CeO_2$                                 | 13.5                                 | 0.13                             | 38.0           | 32.0                  |
| 0.1Pt/CeO <sub>2</sub>                               | 53.6                                 | 0.26                             | 19.5           | ~                     |
| 0.1Pt <sub>AT</sub> CeO <sub>2</sub>                 | 13.8                                 | 0.16                             | 46.8           | ~                     |
| Pt/CeO <sub>2</sub>                                  | 51.1                                 | 0.26                             | 20.3           | 12.0                  |
| Pt/CeO <sub>2</sub> -CO                              | ~                                    | ~                                | ~              | 12.2                  |
| Pt/CeO <sub>2</sub> -CO-O <sub>2</sub>               | ~                                    | ~                                | ~              | 12.3                  |
| $Pt_{AT}CeO_2$                                       | 27.2                                 | 0.16                             | 23.9           | 21.7                  |
| Pt <sub>AT</sub> CeO <sub>2</sub> -CO                | ~                                    | ~                                | ~              | 21.8                  |
| Pt <sub>AT</sub> CeO <sub>2</sub> -CO-O <sub>2</sub> | ~                                    | ~                                | ~              | 20.5                  |

## **Supplementary Figures**



Fig. S1 HAADF-STEM images of (a,b) Pt<sub>AT</sub>CeO<sub>2</sub> and (c) Pt/CeO<sub>2</sub>



**Fig. S2** Powder XRD patterns of CeO<sub>2</sub> (calcined at 500 °C), Pt/CeO<sub>2</sub>, and Pt<sub>AT</sub>CeO<sub>2</sub>. 800CeO<sub>2</sub> is calcined directly at 800 °C for 10 h. The average CeO<sub>2</sub> crystallite sizes determined by Scherrer equation from CeO<sub>2</sub> (111) peak were also included

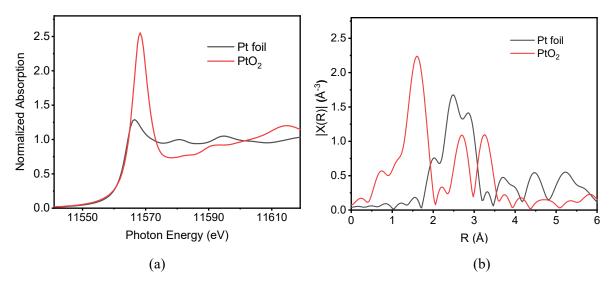
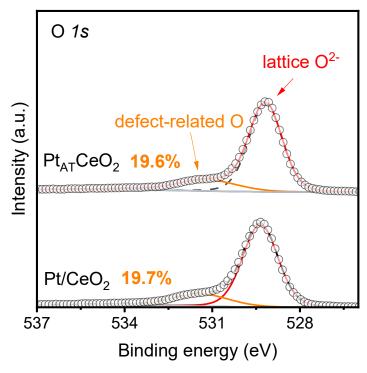
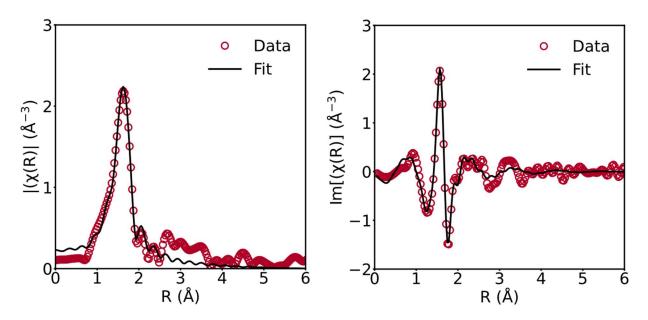
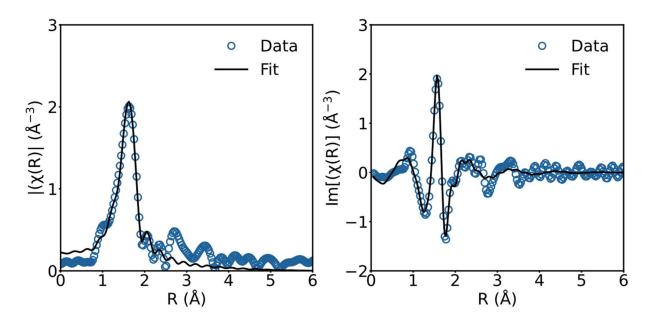
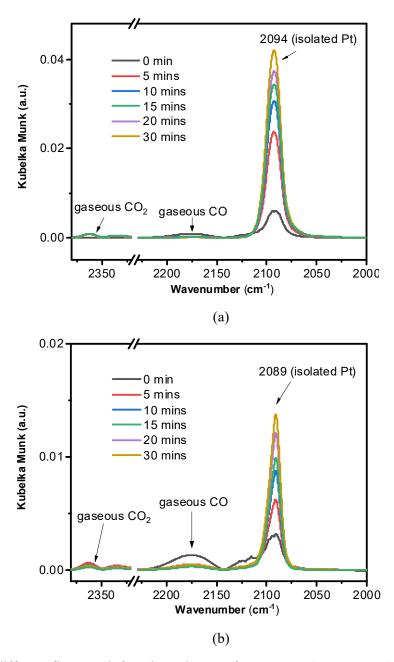
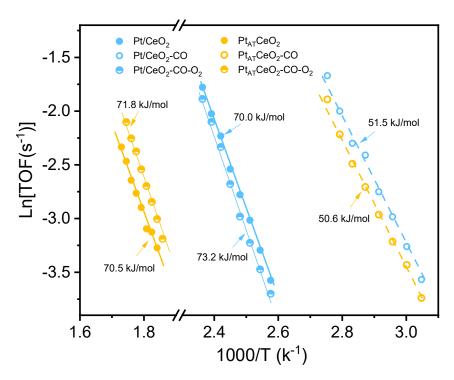



Fig. S3 Pt L<sub>3</sub>-edge XANES and the corresponding EXAFS spectra of references Pt foil and PtO<sub>2</sub>

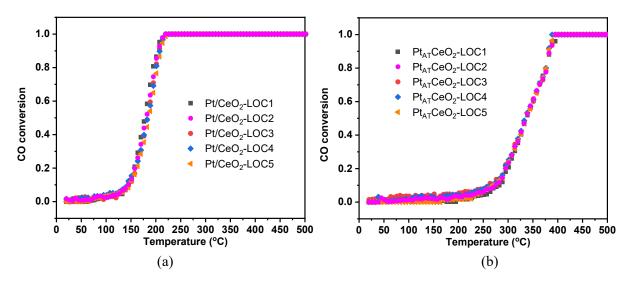






Fig. S4 O 1s XPS spectra of Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub>

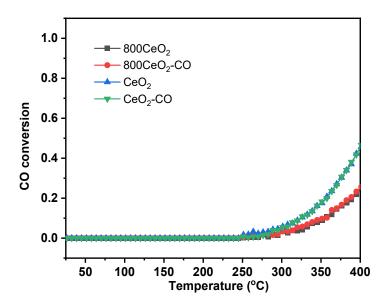



**Fig. S5** Pt  $L_3$ -edge X-ray absorption spectroscopy of fresh Pt/CeO<sub>2</sub>. Magnitude (left) and imaginary component (right) of the Fourier-transform of the  $\chi(k)$  data of fresh Pt/CeO<sub>2</sub> collected under air. Data (circle) and model fit (solid line). R= 1.2-2 Å for the fit window.  $\Delta k = 3-14 \text{ Å}^{-1}$  for the Fourier transform



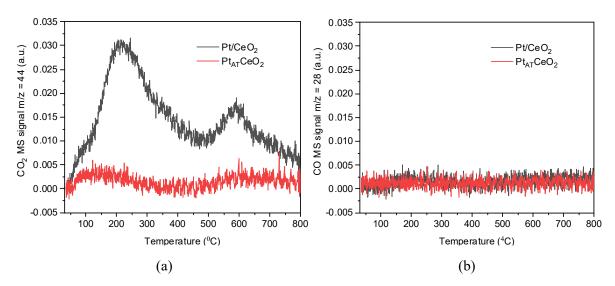

**Fig. S6** Pt  $L_3$ -edge X-ray absorption spectroscopy of fresh Pt<sub>AT</sub>CeO<sub>2</sub>. Magnitude (left) and imaginary component (right) of the Fourier-transform of the  $\chi(k)$  data of fresh Pt<sub>AT</sub>CeO<sub>2</sub> collected under air. Data (circle) and model fit (solid line). R= 1.2-2 Å for the fit window.  $\Delta k = 3-14 \text{ Å}^{-1}$  for the Fourier transform




**Fig. S7** *In situ* CO diffuse reflectance infrared Fourier transform spectra (CO-DRIFTs) for (a) Pt/CeO<sub>2</sub> and (b) Pt<sub>AT</sub>CeO<sub>2</sub> at 100 °C in the flowing 1% CO and 8% O<sub>2</sub> mixture (balanced in He) from 0  $\sim$  30 mins. Operation condition: After increasing temperature to 100 °C in O<sub>2</sub>/He, 1% CO was introduced and the spectra were recorded for the next 30 mins



**Fig. S8** Arrhenius plots of fresh, CO-reduced, and re-oxidized  $Pt/CeO_2$  and  $Pt_{AT}CeO_2$ . 1% CO and 4%  $O_2$  balanced in Ar with WHSV of 300 L/g\*h, 20 mg catalyst diluted with SiC to 400 mg




**Fig. S9** Five repeated light-off curves (LOCs) of fresh (a) Pt/CeO<sub>2</sub> and (b) Pt<sub>AT</sub>CeO<sub>2</sub>. Reaction conditions: catalyst loading = 20 mg, diluted with SiC to 400 mg, 1% CO and 4% O<sub>2</sub> balanced in Ar, total flow rate = 100 mL/min, ramping from 20 to 500 °C with the ramping rate of 3 °C/min for each cycle; For instance, Pt/CeO<sub>2</sub>-LOC2 represents the second light-off curve of Pt/CeO<sub>2</sub>; Pt<sub>AT</sub>CeO<sub>2</sub>-LOC4 represents the fourth light-off curve of Pt<sub>AT</sub>CeO<sub>2</sub>



**Fig. S10** CO oxidation performance (light-off curve) of  $CeO_2$  (precalcined at 500 °C) and  $800CeO_2$  (precalcined at 800 °C) before and after CO reduction. Reaction conditions: catalyst loading = 20 mg, diliuted with SiC to 400 mg, 1% CO and 4%  $O_2$  balanced in Ar, total flow rate = 100 mL/min, ramping from 20 to 400 °C with the ramping rate of 3 °C/min for each cycle

800CeO<sub>2</sub> shows slightly lower CO oxidation reactivity than CeO<sub>2</sub> (calcined at 500 °C), that is ascribed to its lower surface area (53.3 m<sup>2</sup>/g for CeO<sub>2</sub> and 13.4 m<sup>2</sup>/g for 800CeO<sub>2</sub>, **Table S3**). In addition, the CO oxidation reactivity of pure CeO<sub>2</sub> and 800CeO<sub>2</sub> does not change even after CO pretreatment.



**Fig. S11** (a) CO<sub>2</sub> MS signal (m/z = 44) and (b) CO MS signal (m/z = 28) during temperature programmed desorption of CO from 35 to 800 °C on Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub>. During the CO desorption process, only CO<sub>2</sub> was monitored with very little CO signal being detected, suggesting that adsorbed CO will react with lattice O of CeO<sub>2</sub> to form CO<sub>2</sub> before desorption

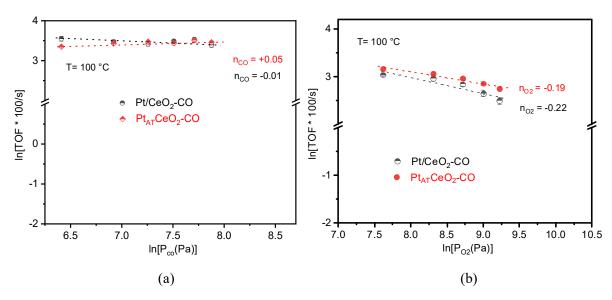
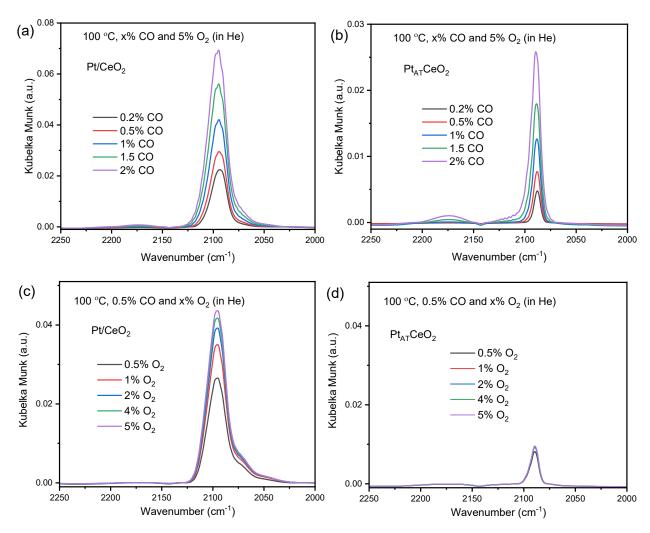
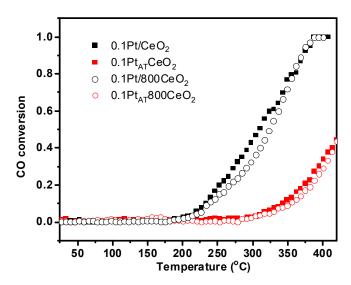
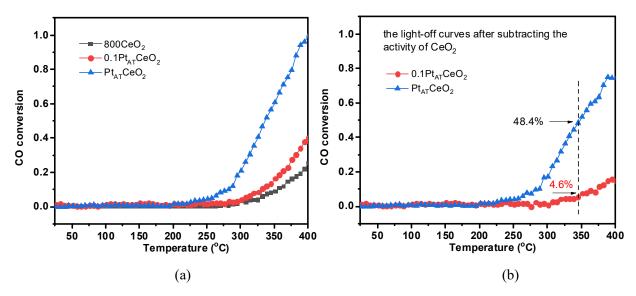




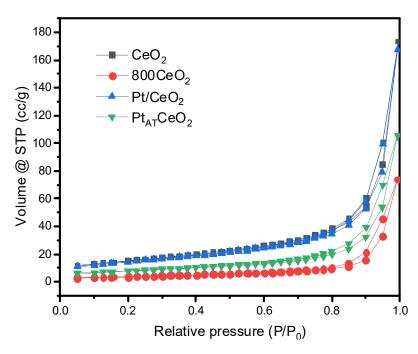

Fig. S12 (a) CO and (b)  $O_2$  partial pressure on the reaction rate (TOF) of Pt/CeO<sub>2</sub>-CO and Pt<sub>AT</sub>CeO<sub>2</sub>-CO, respectively. The reaction temperature is chosen as 100 °C. Two reduced catalysts show similar CO oxidation activity, and similar reaction orders in both CO and  $O_2$  due to the formation of Pt aggregates after reduction



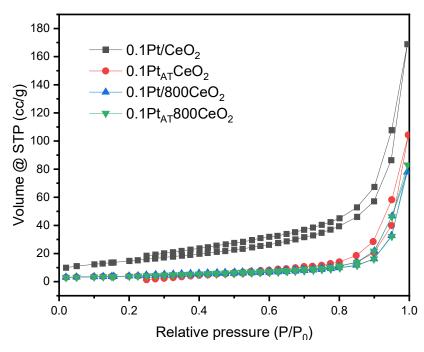

**Fig. S13** CO-DRIFTS of (a,c) Pt/CeO<sub>2</sub> and (b,d) Pt<sub>AT</sub>CeO<sub>2</sub>, the effect of (a,b) CO and (c,d) O<sub>2</sub> partial pressures on the surface coverage of Pt<sub>1</sub> species at 100 °C. For (a,b) CO-dependent experiments, CO partial pressure increases from 0.2% to 2% in sequence with 5% O<sub>2</sub>. For (c,d) O<sub>2</sub>-dependent experiments, O<sub>2</sub> partial pressure increases from 0.5% to 5% in sequence with 0.5% CO



**Fig. S14** CO oxidation performance (light-off curve) of 0.1Pt/CeO<sub>2</sub>, 0.1Pt<sub>AT</sub>CeO<sub>2</sub>, 0.1Pt/800CeO<sub>2</sub>, and 0.1Pt<sub>AT</sub>800CeO<sub>2</sub>. Reaction conditions: catalyst loading = 20 mg, diliuted with SiC to 400 mg, 1% CO and 4% O<sub>2</sub> balanced in Ar, total flow rate = 100 mL/min, ramping from 20 to 400 °C with the ramping rate of 3 °C/min for each cycle


The average CeO<sub>2</sub> crystallite sizes of Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub> are 12.0 and 21.7 nm (**Table S3**), as determined by the Scherrer equation of XRD patterns (**Fig. S2**). The surface areas of Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub> determined by N<sub>2</sub> adsorption-desorption isotherms (**Fig. S16**, **Table S3**) are 51.1 and 27.2 m²/g, respectively. Pt/CeO<sub>2</sub> has larger surface area and smaller CeO<sub>2</sub> size than Pt<sub>AT</sub>CeO<sub>2</sub>. To exclude the effect of surface area and CeO<sub>2</sub> grain size on reactivity, CeO<sub>2</sub> support was pre-calcined at 800 °C for 10 h to sacrifice the CeO<sub>2</sub> surface through particle agglomeration. A small amount of Pt (0.1 wt%) was then impregnated on the above-synthesized 800CeO<sub>2</sub> support to maintain the atomically dispersed nature, followed by calcination at 500 and 800 °C to obtain 0.1Pt/800CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>800CeO<sub>2</sub>, respectively. Because of the pre-calcination of the support at 800 °C, 0.1Pt/800CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>800CeO<sub>2</sub> exhibited similar porosity properties (**Table S3**, **Fig. S17**) and CeO<sub>2</sub> particle size (**Fig. S18**) to the 800CeO<sub>2</sub> support. The obtained 0.1Pt/800CeO<sub>2</sub> still showed much higher CO oxidation activity than 0.1Pt<sub>AT</sub>800CeO<sub>2</sub> (**Fig. S14**), although they have very similar surface area and CeO<sub>2</sub> grain size. To rule out the influence of few Pt clusters present in Pt/CeO<sub>2</sub> on activity, 0.1Pt/CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>CeO<sub>2</sub> with a low Pt loading (~0.1 wt%) were prepared, which also showed the similar activity trend (**Fig. S14**). At such a low Pt loading, it is unlikely for oxidized Pt clusters to exist in fresh 0.1Pt/CeO<sub>2</sub> after calcination at 500 °C in air.

It should be noted that CO conversion is almost 100% over Pt/CeO<sub>2</sub> at 200 °C (**Fig. 3a**), but only around 2% over 0.1Pt/CeO<sub>2</sub>. If the initial Pt<sub>1</sub> structure in Pt/CeO<sub>2</sub> was the real active site, we should expect around 10% conversion over 0.1Pt/CeO<sub>2</sub> at 200 °C. The much lower reactivity in 0.1Pt/CeO<sub>2</sub> might further prove that the *in situ* formed Pt clusters are the real active sites in Pt/CeO<sub>2</sub>, since the lower surface Pt<sub>1</sub> density in 0.1Pt/CeO<sub>2</sub> is less likely to sinter under the same condition.




**Fig. S15** (a) CO oxidation performance of 800CeO<sub>2</sub> (calcined at 800 °C), 0.1Pt<sub>AT</sub>CeO<sub>2</sub>, and Pt<sub>AT</sub>CeO<sub>2</sub>; (b) CO oxidation performance of 0.1Pt<sub>AT</sub>CeO<sub>2</sub>, and Pt<sub>AT</sub>CeO<sub>2</sub> after subtracting the activity of CeO<sub>2</sub>.

Because of the similar activity of 0.1Pt<sub>AT</sub>CeO<sub>2</sub> and pure CeO<sub>2</sub>, the effect of support on the reactivity should be discussed. We have combined the light-off curves for 800CeO<sub>2</sub>, Pt<sub>AT</sub>CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>CeO<sub>2</sub> (**Fig. S15a**). Apparently, the catalytic activities of Pt<sub>AT</sub>CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>CeO<sub>2</sub> are still higher than that of pure CeO<sub>2</sub>. Even with only 0.1 wt% Pt on CeO<sub>2</sub> surface, the difference in activity is evident, suggesting that the square-planar Pt<sub>1</sub> in Pt<sub>AT</sub>CeO<sub>2</sub> is indeed more active than CeO<sub>2</sub>. However, CeO<sub>2</sub> does contribute to some activity above 300 °C. To exclude the influence of CeO<sub>2</sub>, the light-off curves of Pt<sub>AT</sub>CeO<sub>2</sub> and 0.1Pt<sub>AT</sub>CeO<sub>2</sub> were obtained by simply subtracting the activity of CeO<sub>2</sub>, as seen in **Fig. S15b**. The CO conversion over Pt<sub>AT</sub>CeO<sub>2</sub> is roughly 10 times higher than that of 0.1Pt<sub>AT</sub>CeO<sub>2</sub>, for example, 48.4% and 4.6% at 347 °C, respectively (**Fig. S15b**). This further suggests the Pt<sub>1</sub> in Pt<sub>AT</sub>CeO<sub>2</sub> does not transform into Pt cluster, otherwise we will see a more than tenfold activity difference.



 $\textbf{Fig. S16} \; N_2 \; adsorption-desorption \; isotherms \; at \; 77 \; K \; of \; CeO_2, \; 800 CeO_2, \; Pt/CeO_2, \; and \; Pt_{AT}CeO_2$ 



 $\textbf{Fig. S17} \ N_2 \ adsorption-desorption \ isotherms \ at \ 77 \ K \ of \ 0.1Pt/CeO_2, \ 0.1Pt/ATCeO_2, \ 0.1Pt/800CeO_2, \ and \ 0.1Pt_{AT}800CeO_2$ 

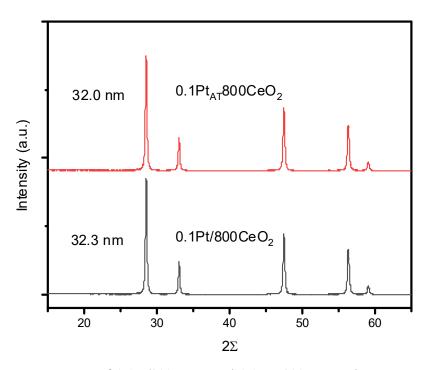
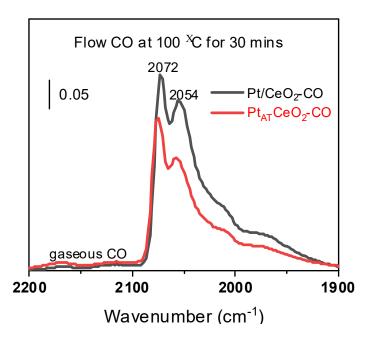
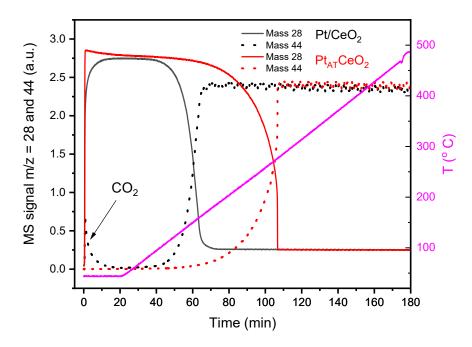





Fig. S18 Powder XRD patterns of  $0.1Pt/800CeO_2$ , and  $0.1Pt_{AT}800CeO_2$ . These two samples show very similar  $CeO_2$  crystallite size



**Fig. S19** CO-DRIFTs of Pt/CeO<sub>2</sub>-CO and Pt<sub>AT</sub>CeO<sub>2</sub>-CO. Operation condition: after pretreatment of fresh sample in CO at 275 °C for 20 mins, the sample was cooled down to 100 °C in CO before test.

By combining other characterization techniques, the infrared features around 2072 and 2054 cm<sup>-1</sup> can be attributed to the vibrations of CO adsorbed on the Pt NPs. For example, the formation of Pt NPs can be clearly confirmed by the TEM images (Fig. 5a,5d), XPS spectra (Fig. S23), and Raman spectra (Fig. S24).



**Fig. S20** MS signal m/z = 28 (CO) and 44 (CO<sub>2</sub>) intensity during temperature programmed surface reaction (TPSR). Before 0 min, the sample was pretreated in O<sub>2</sub> at 500 °C for 30 mins, then cool down to room temperature (RT) in O<sub>2</sub>. At 0 min, CO is introduced into O<sub>2</sub> flow with CO/O<sub>2</sub> ratio of 1:4 at RT. After 20 mins, the temperature increased to 500 °C with the heating rate of 3 °C/min to simulate the CO oxidation process. The reactivity result is consistent with light-off curve performance in Figure 3a

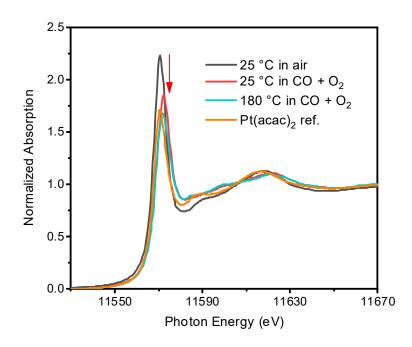



Fig. S21 Pt  $L_3$ -edge XANES of Pt/CeO<sub>2</sub> at 25 °C in ambient air, at 25 °C and 180 °C in CO oxidation condition, as well as the Pt(acac)<sub>2</sub> (Pt<sup>2+</sup>) reference

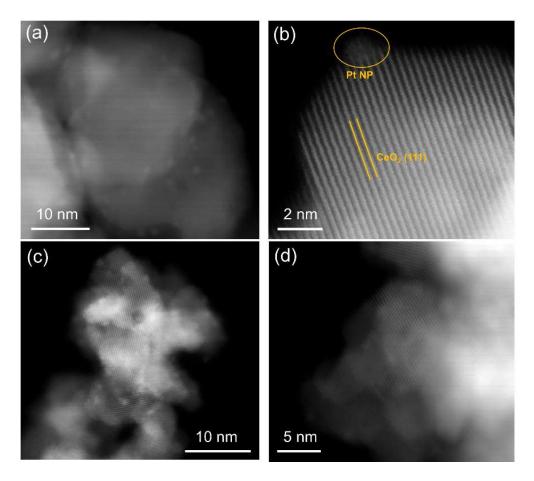
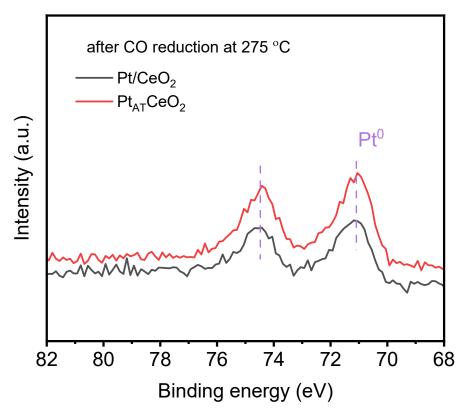
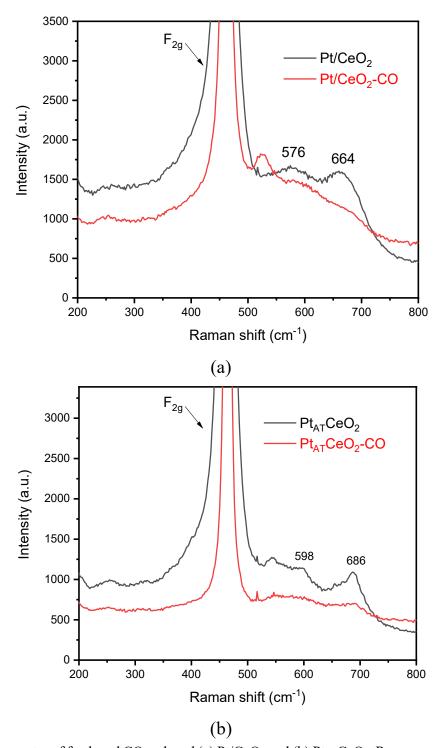
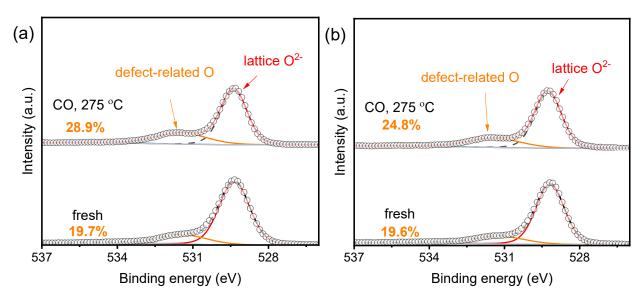
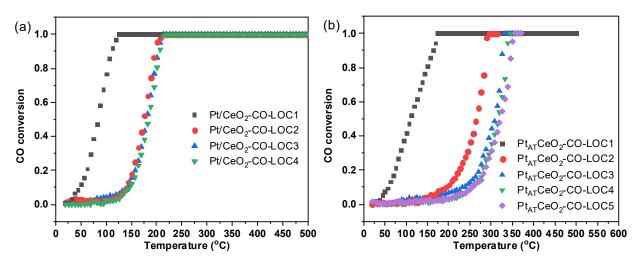



Fig. S22 HAADF-STEM images of (a, b)  $Pt_{AT}CeO_2$ -CO and (c, d)  $Pt/CeO_2$ -CO



Fig. S23 Pt 4f XPS spectra for Pt/CeO<sub>2</sub> and Pt<sub>AT</sub>CeO<sub>2</sub> after treatment in CO at 275 °C for 20 mins



**Fig. S24** Raman spectra of fresh and CO-reduced (a) Pt/CeO<sub>2</sub> and (b) Pt<sub>AT</sub>CeO<sub>2</sub>. Raman spectra of Pt/CeO<sub>2</sub>-CO and Pt<sub>AT</sub>CeO<sub>2</sub>-CO were collected after *in situ* reduction at 275 °C with CO in Raman cell. The distinct bands at 576 and 667 cm<sup>-1</sup> for Pt/CeO<sub>2</sub> and 598 and 686 cm<sup>-1</sup> for Pt<sub>AT</sub>CeO<sub>2</sub> are usually considered as the single-atom Pt features ascribed from the Pt-O or Pt-O-Ce vibrations. After the CO reduction, the Raman intensity of those peaks significantly decrease, which also suggest the formation of Pt NPs in Pt/CeO<sub>2</sub>-CO and Pt<sub>AT</sub>CeO<sub>2</sub>-CO.



**Fig. S25** O*Is* XPS spectra of fresh and reduced (a) Pt/CeO<sub>2</sub> and (b) Pt<sub>AT</sub>CeO<sub>2</sub> samples. The peak at  $\sim$ 529.3 eV is attributed to the lattice O, and the peaks at  $\sim$ 531.4 eV and 534.3 eV are ascribed to two types of defect-related O.



**Fig. S26** Multiple light-off curves of (a) Pt/CeO<sub>2</sub>-CO and (b) Pt<sub>AT</sub>CeO<sub>2</sub>-CO samples. Each light-off curve was performed from 25 to 500 °C. For instance, Pt/CeO<sub>2</sub>-CO-LOC2 represents the second light-off curve of Pt/CeO<sub>2</sub>-CO; Pt<sub>AT</sub>CeO<sub>2</sub>-CO-LOC4 represents the fourth light-off curve of Pt<sub>AT</sub>CeO<sub>2</sub>-CO

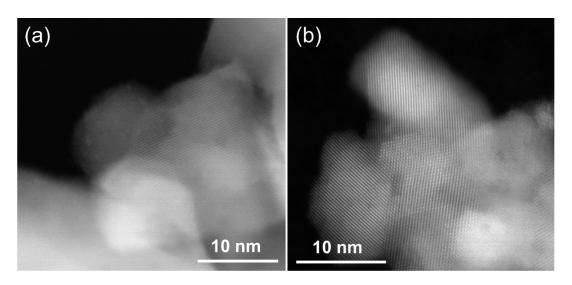
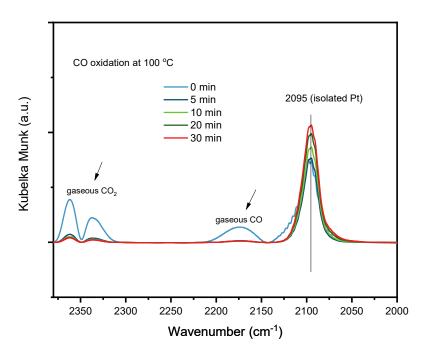
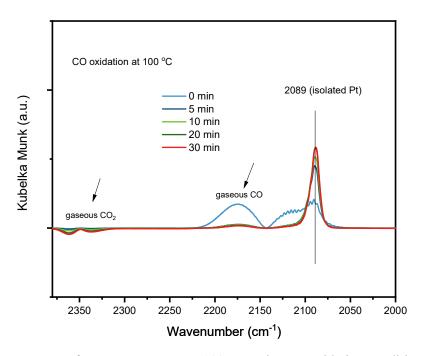
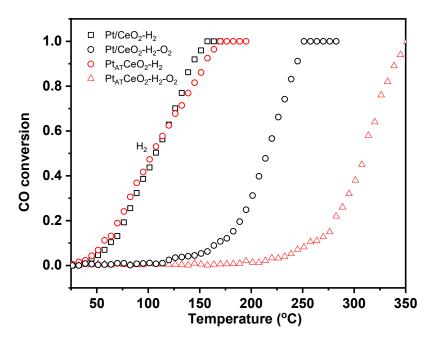
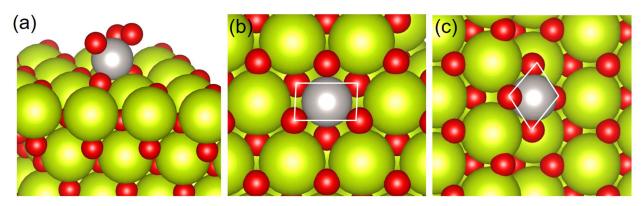



Fig. S27 HAADF-STEM images of (a)  $Pt_{AT}CeO_2$ -CO- $O_2$  and (b)  $Pt/CeO_2$ -CO- $O_2$ 

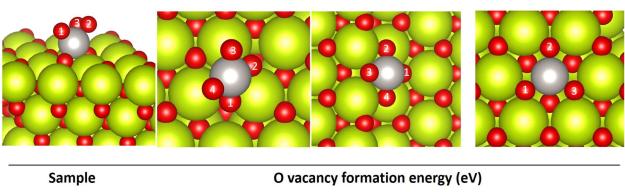






Fig. S28 In situ CO-DRIFTs of Pt/CeO<sub>2</sub>-CO-O<sub>2</sub> at 100 °C under CO oxidation condition up to 30 mins.



 $\textbf{Fig. S29} \textit{ In situ} \ \text{CO-DRIFTs of } Pt_{AT}CeO_2\text{-CO-}O_2 \ \text{at } 100\ ^{\circ}\text{C under CO oxidation condition up to } 30 \ \text{mins}$ 




**Fig. S30** CO oxidation performance (light-off curve) of  $Pt/CeO_2-H_2$ ,  $Pt_{AT}CeO_2-H_2$ ,  $Pt/CeO_2-H_2-O_2$ ,  $Pt_{AT}CeO_2-H_2-O_2$ . Reaction conditions: catalyst loading = 20 mg, diliuted with SiC to 400 mg, 1% CO and 4%  $O_2$  balanced in Ar, total flow rate = 100 mL/min, ramping from 20 to 500 °C with the ramping rate of 3 °C/min for each cycle



#### (d) EXAFS fits vs. DFT model (First shell Pt-O)

|                                          | XAFS Fit        | DFT                              |
|------------------------------------------|-----------------|----------------------------------|
| Pt/CeO <sub>2</sub>                      |                 |                                  |
| N <sub>Pt-O</sub>                        | 5.00 ± 0.43     | 5                                |
| R <sub>Pt-O</sub>                        | 2.00 ± 0.01     | 1.9-2.1                          |
| $\sigma^2 \times 10^3  (\mathring{A}^2)$ | 2 ± 1           |                                  |
| $\Delta E_0$ (eV)                        | $4.48 \pm 1.14$ |                                  |
| R factor                                 | 0.003           |                                  |
| Pt <sub>AT</sub> CeO <sub>2</sub>        |                 |                                  |
| N <sub>Pt-O</sub>                        | $4.89 \pm 0.52$ | 6 (surface)/4 (step)             |
| R <sub>Pt-O</sub>                        | $2.00 \pm 0.01$ | 2.0-2.1 (surface)/1.9-2.0 (step) |
| $\sigma^2 \times 10^3  (\mathring{A}^2)$ | 2 ± 1           |                                  |
| $\Delta E_0$ (eV)                        | $3.74 \pm 1.45$ |                                  |
| R factor                                 | 0.005           |                                  |

**Fig. S31** The optimized models of (a) adsorbed  $Pt_1$ , (b) square planar  $Pt_1$  on  $CeO_2$  surface and (c) square planar  $Pt_1$  on  $CeO_2$  step site, as well as the (d) comparison of EXAFS fits and DFT model with first shell Pt-O. Pt: grey, Ce: yellow, O: red



| Sample                                      | O vacancy formation energy (eV) |      |       |      |
|---------------------------------------------|---------------------------------|------|-------|------|
|                                             | 1                               | 2    | 3     | 4    |
| Adsorbed PtO <sub>5</sub>                   | 0.02                            | 0.01 | -0.25 | ~    |
| Adsorbed PtO <sub>4</sub>                   | 0.73                            | 0.28 | 0.23  | 0.41 |
| Square planar Pt <sub>1</sub><br>on step    | 2.68                            | 1.82 | 2.08  | 1.65 |
| Square planar<br>Pt <sub>1</sub> on surface | 1.14                            | 1.15 | 1.12  | ~    |

 $\textbf{Fig. S32} \ \ \text{Oxygen vacancy formation energy of adsorbed} \ \ Pt_1 \ \text{and square planar} \ \ Pt_1 \ \text{on} \ \ CeO_2(111) \ \text{step and surface}$ 

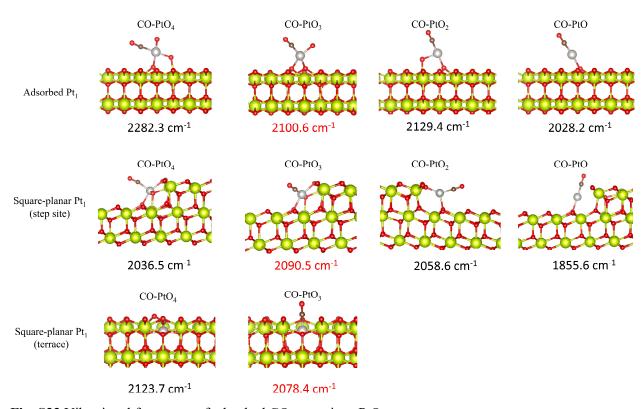



Fig. S33 Vibrational frequency of adsorbed CO on various PtO<sub>x</sub> structures

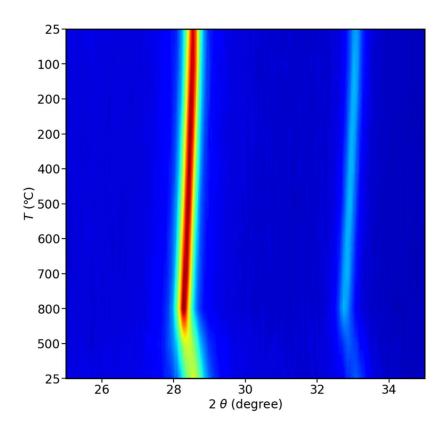



Fig. S34 In situ XRD intensity map for Pt/CeO<sub>2</sub> as a function of 2 $\theta$  and temperature with the temperature first increases from 25 to 800 °C, and then decreases from 800 to 25 °C

2θ value decreases with the increase of temperature, and then increases as decreasing the temperature. This suggests the lattice expansion of CeO<sub>2</sub> during the ramping process, and lattice shrink during the cooling process. In other words, Ce-O distance in CeO<sub>2</sub> unit cell will be elongated at high temperature, which might be the driving force for the formation of square planar Pt<sub>1</sub>. Also, the color represents the intensity of XRD pattern, in which red means higher intensity.

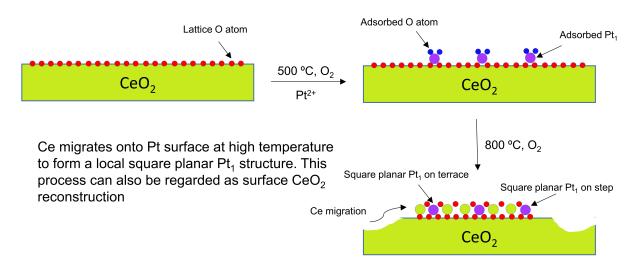
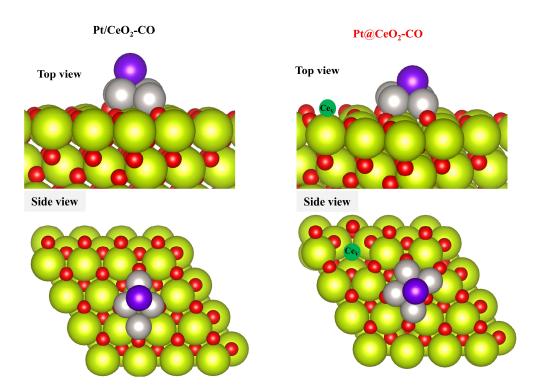




Fig. S35 The formation mechanism of adsorbed  $Pt_1$  at low calcination temperature and square planar  $Pt_1$  at high calcination temperature



**Fig. S36** The optimized models of Pt NPs (five Pt atoms) on  $CeO_2$  (111) surface without  $Ce_v$  (left, Pt/CeO<sub>2</sub>-CO) and with  $Ce_v$  (right, Pt<sub>AT</sub>CeO<sub>2</sub>-CO). Pt: grey, Ce: yellow, O: red. We mark top Pt atom as purple since the redispersion progress of this atom will be simulated later

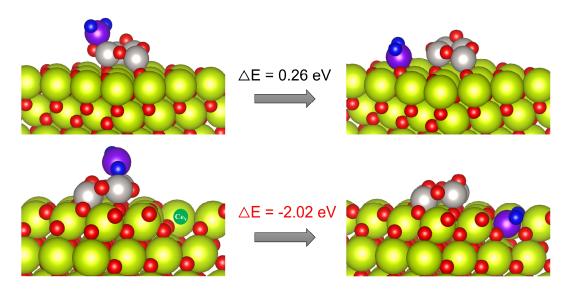



Fig. 37 The energy for redispersion of top Pt atom in  $PtO_x$  cluster to  $CeO_2$  (111) surface and  $V_{Ce}$ . The energy is given in eV. Pt: grey, Ce: yellow, O: red, top Pt atom: purple, top O: blue