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Secondary poor graft function (sPGF) increases the risk of life-threatening complications
after hematopoietic stem cell transplantation (HSCT). The incidence, clinical outcomes,
and risk factors of sPGF have not been elucidated in haploidentical (haplo-) HSCT for
acquired aplastic anemia (AA) patients. We retrospectively reviewed 423 consecutive AA
patients who underwent haplo-HSCT between January 2006 and December 2020 and
report a 3-year cumulative incidence of 4.62% (95% confidence interval [CI]: 3.92%-
10.23%) of sPGF. While no primary PGF occurred. The median time to sPGF was 121
days (range 30-626 days) after transplantation. To clarify the risk factors for sPGF, 17
sPGF cases and 382 without PGF were further analyzed. Compared to patients without
PGF, the 2-year overall survival was significantly poorer for sPGF patients (67.7% vs
90.8%, p =.002). Twelve sPGF patients were alive until the last follow-up, and 7 achieved
transfusion independency. The multivariable analyses revealed that later neutrophil
engraftment (OR 2.819, p=.049) and a history of refractory cytomegalovirus viremia
(OR=7.038, p=.002) post-transplantation were associated with sPGF. There was weak
evidence that a history of grade 3-4 acute graft-versus-host disease increased the risk of
sPGF (p=.063). We advocated better post-transplantation strategies to balance the risk of
immunosuppression and viral reactivation for haplo-HSCT in AA patients.
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1. INTRODUCTION

Survival after hematopoietic stem cell transplantation (HSCT) in
acquired aplastic anemia (AA) has been remarkedly improved
over the last three decades. Haploidentical (haplo-) HSCT
provides easily available donors for patients with AA and
guarantees a favorable engraftment rate (1–3). Stable
hematopoietic recovery is the key point of successful HSCT for
AA. However, hematologists have noticed that even if the
patients achieved initial hematopoietic reconstitution and
maintain complete donor-originated hematopoietic cells, they
may develop intractable multilineage cytopenia afterwards (4, 5).
This is defined as secondary poor graft function (sPGF), and it
occurs in 5-27% of post-transplantation cases (6). Patients with
sPGF lose their initial hematopoietic reconstitution, which leads
to increased risks of severe infection, major bleeding events, and
other life-threatening complications after transplantation. The
therapeutic options for sPGF are limited, and the prognosis
remains poor.

Studies have reported several risk factors for sPGF.
Cytomegalovirus (CMV) reactivation and graft-versus-host
disease (GvHD) are the two most recognized risk factors (6).
Other potential risk factors include haplo-HSCT setting,
recipient age, conditioning regimen, Epstein-Barr virus (EBV)
infection, etc. (7–9) However, these conclusions were limited by
heterogeneity in disease categories and transplantation settings.
The clinical outcomes and risk factors of sPGF have not been
elucidated in haplo-HSCT for AA patients. Based on the largest-
scale AA cases receiving haplo-HSCT, we herein retrospectively
analyzed the incidence, outcomes, and risk factors of sPGF.
2. METHOD

2.1 Study Population
In this study, we reviewed 423 consecutive AA patients who
underwent haplo-HSCT as first HSCT between January 2006 and
December 2020 at Peking University People’s Hospital
(PKUPH). Written informed consent was obtained from each
patient before transplantation. The study protocol followed the
Declaration of Helsinki and was approved by the Ethics Review
Committee of PKUPH. The cumulative incidence of PGF was
estimated based on the whole cohort. Then, patients who
developed graft failure after haplo-HSCT (primary graft failure
n=2, and secondary graft failure n=3; 1.18% in total) or died of
any cause within 28 days post-transplantation (n=19, 4.49%)
were excluded from further analysis.

2.2 Transplantation Protocol
All patients received mixed graft infusion of granulocyte colony-
stimulating factor (G-CSF) mobilized bone marrow (BM) and
peripheral blood (PB) stem cells except for three cases (0.67%) in
which only PB grafts were infused. The conditioning regimen for
acquired AA patients included: (1) BuCy-ATG conditioning
including busulfan (Bu, 3.2 mg/kg daily on days -8 and -7),
cyclophosphamide (Cy, 50 mg/kg daily on days -5 to -2), and
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rabbit antithymocyte globulin (rATG, 2.5 mg/kg daily on days -5
to -2, from SangStat, France); and (2) the BuCylowFlu-ATG
regimen consisting of Bu (0.8 mg/kg 4 times daily on days -8
and -7), Cy (25 mg/kg daily on days -5 to -2), Flu (30 mg/m2
daily on days -6 to -2), and rATG (2.5 mg/kg daily on days
-5 to -2) (10, 11). The prophylaxis of GvHD was described
elsewhere (10).

All patients received ganciclovir (GCV)-based preemptive
therapy when CMV viremia was diagnosed. Foscarnet and
immunoglobulin were administered if patients were intolerant to
GCV or had an increase in CMVDNA copy after receiving full dose
of GCV for 1 week. Refractory infections were treated with CMV-
specific T cells at the discretion of physician. Once EBV viremia
developed, a reduction in the dose of immunosuppressants would
be taken for patients without or less than grade II aGvHD.
Rituximab was applied to progressive EBV infection based on
physician’s decision and EBV-associated post-transplant
lymphoproliferative disease. For refractory CMV and EBV co-
reactivation, CMV/EBV-specific T cells would be prepared and
infused (12, 13).

2.3 Protocol for DSA Detection and
Desensitization
The anti-human leukocyte antigen (HLA) antibody was
routinely examined pre-transplantation. Detection of donor-
specific antibody (DSA) was performed according to an
established protocol. DSA-positive patients (2000 ≤mean
fluorescence intensity [MFI] < 10000) were given rituximab 3
days before graft infusion. If available, DSA-negative umbilical
cord blood was also infused prior to infusion of allogeneic grafts
(14, 15). No patients in this study had a DSA MFI of ≥ 10000.

2.4 Evaluation and Definitions
Poor graft function (PGF) was defined as sustained cytopenia of 2
or 3 lineages (neutrophil count <.5 × 109/L, hemoglobin < 70 g/L,
and platelet count < 20 × 109/L) for over 2 weeks with full donor
chimerism of > 95%, hypoplastic-aplastic BM, and absence of
severe GvHD, active infection and drug toxicity. Primary PGF
referred to PGF that failed to achieve initial engraftment, and
sPGF was defined as a decrease of blood counts after prompt
recovery (16, 17). Chimerism analysis was evaluated using PB at 1,
2, 3, 6, 12 months post-transplantation and at annual outpatient
visits thereafter. The analysis of chimerism was also performed
every time when the blood counts obviously fluctuated. Immune
reconstitution within 30, 60, and 90 days after transplantation,
including CD3+, CD4+, and CD19+ cells, was documented.

Neutrophil engraftment was defined as the first of 3
consecutive days when the absolute neutrophil count reached
the level of >.5 × 109/L without G-CSF stimulation. Platelet
engraftment was defined as the first of 7 consecutive days when
the platelet count was > 20 × 109/L, independent of platelet
infusion. Both acute GvHD (aGvHD) and chronic GvHD
(cGvHD) were diagnosed and graded based on published
criteria (18, 19). CMV and EBV DNAemia ≥ 1 × 103 genome
copies/mL were considered positive using real-time quantitative
PCR (12, 13). Refractory CMV reactivation was defined as
May 2022 | Volume 13 | Article 896034
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growing CMV-DNA copies or viral load of the same level after at
least 2 weeks of appropriately dosed antiviral therapy. Recurrent
CMV reactivation was diagnosed when a patient who had
previous evidence of CMV viremia and had no virus detected
for at least 4 weeks during active surveillance developed a new
CMV viremia (20, 21). Overall survival (OS) was defined as the
time from the date of haplo-HSCT to death or the last follow-up.

2.5 Statistical Analysis
The last follow-up for all survivors was April 1st, 2021. All clinical
data were analyzed using R software (version 3.6.3, https://www.
r-project.org) and Prism 8 (GraphPad Software, La Jolla, CA).
The continuous variables were summarized as median (range)
for nonnormally distributed data and compared using the Mann-
Whitney test, and the categorical variables were expressed as
count and percentage and compared using the chi-square test or
Fisher’s exact test. The cumulative incidence rate (CIR) of sPGF
or engraftment was estimated with death as a competing event
and performed using the “cmprsk” package. Virus reactivation
and aGvHD that developed before sPGF were calculated. The
CIR of GvHD and virus reactivation were also estimated
competing with events including death and PGF. In addition,
the Kaplan-Meier method was used to estimate survival curves.
Univariable analysis was performed based on logistic regression
models, and potential risk factors (p <.10) were further analyzed
in multivariable analysis. The infused doses of CD34+ cells
(stratified by median) and conditioning regimen (Flu-based vs
noFlu) were included with interest in multivariable analysis
regardless of their p-values. Before multivariable analysis, we
examined the correlation and multicollinearity among potential
risk factors. A multivariable logistic regression was used to
determine the independent effect of the included factors. All
statistical tests were 2-sided, and a p-value <.05 was considered
statistically significant.
3. RESULT

3.1 Incidence and Characteristics of sPGF
In the whole cohort, no primary PGF and mixed chimerism were
observed in our study. The 3-year CIR of sPGF was 4.62% (95%
CI: 3.92%-10.23%). All patients with sPGF had neutropenia
of <.5 × 109/L and thrombocytopenia of < 20 × 109/L with or
without red blood cell transfusion dependence.

The characteristics of sPGF (n=17) and noPGF (n=382)
patients are summarized in Table 1. The median time of sPGF
was 120 (range 30-626) days post-transplantation. Compared to
patients without PGF, patients with sPGF had marginally longer
interval from disease onset to haplo-HSCT (p=.057). Except for
the above parameters, patients with sPGF and those without PGF
had equivalent recipient, donor, and graft characteristics.

3.2 Transplantation Outcomes and
Complications Before sPGF
Except for one patient who died of thrombotic microangiopathy
at day +34, all patients included in this study were confirmed to
Frontiers in Immunology | www.frontiersin.org 3
achieve neutrophil engraftment. The CIR of 28-day neutrophil
engraftment for sPGF patients was marginally lower than that for
patients without PGF (94.12% [95% CI: 88.82%-96.95%] vs
99.74% [95% CI: 99.64%-99.81%], p=.081, Figure 1A). The
median time of neutrophil engraftment was delayed in the
sPGF group (15 [range 11-31] vs 12 [range 9-22] days, p=.005,
Table 1). Additionally, the CIR of 100-day platelet engraftment
was lower in patients who subsequently developed sPGF (52.94%
[95% CI: 28.89%-72.19%] vs 94.92% [95% CI: 94.11%-95.62%],
p<.001, Figure 1B).

Prior grade 3-4 aGvHD was also more likely to be observed
among sPGF patients (p=.040, Figure 1C). The incidences of
early CMV and EBV reactivation, either within 28 days (p=.158
and.467, respectively) or within 100 days (p=.701 and.921,
respectively), were similar between groups. More patients
with sPGF had a history of refractory CMV viremia
(p=.007, Figure 1D).

T cell reconstitution before sPGF was comparable at day 30
and day 60. However, CD19+ B cell reconstitution was delayed in
patients who developed sPGF later (p=.016, at day 30). At day 90,
patients in the sPGF group had a trend toward poorer T cell
reconstitution, although the data available was limited. In
addition, lower levels of lymphocytes were observed at day
90. (Figure 2)

3.3 Treatment and Outcomes of sPGF
Compared to the noPGF group, the sPGF group experienced
significantly poorer 2-year OS (67.71% [95% CI: 38.83%-85.15%]
vs 91.46% [95% CI: 88.07%-93.93%], p =.002). Twelve
sPGF patients were alive until the last follow-up, and 7 of
them were transfusion independent. Infection was the leading
cause of death (4/5) in sPGF group, and one died of
intracranial hemorrhage.

All patients with sPGF received supportive treatment, G-CSF,
blood transfusion, androgens, immunosuppression agents, etc.
Only 1 patient had spontaneous hematopoietic recovery without
further treatment. Among the other 4 patients who received only
supportive treatment, 3 died of infection. Two patients
additionally received eltrombopag. One of them became
transfusion-independent and the other, although remained
transfusion-dependent, had extended the transfusion interval.

Ten sPGF patients received salvage treatments in forms of
cellular therapies (Figure 3). Two were infused with donor
lymphocytes with no improvement in hematopoietic function.
One of them died of infection, and the other died of intracranial
hemorrhage following a second transplantation from the original
donor. Upfront second transplantation was applied in another 4
cases. Three received grafts from their original donors and
experienced prolonged isolated thrombocytopenia, one of
whom discontinued blood transfusions after treatment with
eltrombopag. The other one received second transplantation
from another haploidentical donor (mother) and achieved
sustained transfusion independence. Of the three sPGF
patients who received mesenchymal cell infusions, only
1 patient achieved transfusion independence and the other 2
patients had no response. Notably, selective CD34+ cell
May 2022 | Volume 13 | Article 896034
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TABLE 1 | Characteristics of sPGF and noPGF groups and post-transplantation outcomes.

sPGF (n=17) noPGF (n=382) p-value

Recipient age, years, median (range) 26 (2-55) 14 (1-54) .261
≥16, n (%) 10 (58.8) 187 (49.0) .298

Male, n (%) 10 (58.8) 220 (57.6) .920
vSAA, n (%) 1 (5.9) 88 (23.0) .136
PNH clone, n (%) 2 (11.8) 36 (9.4) .669
AA course, month, median (range) 12 (3.0-192.0) 15 (1.0-468.0) .301
SAA course, month, median (range) 11.5 (3.0-108.0) 8 (0.5-264.0) .057
Prior CSA plus ATG, n (%) 1 (5.9) 73 (19.1) .217
Transfused RBC, unit, median (range) 30 (8-140) 20 (0-600) .202
Transfused PLT, unit, median (range) 24 (2-81) 15 (0-248) .188
SF level, ng/mL, median (range) 2586.0 (388.0-8804.0) 1719.0 (8.8-20251.0) .424
Donor age, years, median (range) 40 (18-61) 38 (8-65) .217
Donor source, n (%)
parent
sibling
offspring
collateral

14 (82.4)
2 (11.7)
1 (5.9)
0 (0.0)

297 (77.7)
63 (16.5)
20 (5.2)
2 (0.6)

.998

Donor-recipient sex match, n (%)
male to male
male to female
female to male
female to male

7 (41.2)
6 (35.3)
1 (5.9)
3 (17.6)

167 (43.7)
124 (32.5)
35 (9.2)
56 (14.7)

.961

HLA match, n (%)*
1/6
2/6
3/6

1 (5.9)
3 (17.6)
13 (76.5)

14 (3.7)
63 (16.5)
305 (76.5)

.562

Anti HLA-I, n (%)
positive
negative
missing data

2 (11.7)
13 (76.6)
2 (11.7)

62 (16.2)
249 (65.2)
71 (18.6)

.756

Anti HLA-II, n (%)
positive
negative
missing data

2 (11.7)
13 (76.6)
2 (11.7)

28 (7.3)
283 (74.1)
71 (18.6)

.620

DSA, n (%)
MFI < 2000
MFI ≥ 2000
negative
missing data

1 (5.9)
1 (5.9)

13 (76.5)
2 (11.8)

17 (4.5)
10 (2.6)

281 (73.6)
74 (19.4)

.478

ABO match, n (%)
match
minor mismatch
major mismatch
bidirectional mismatch

12 (70.6)
1 (5.9)
3 (17.6)
1 (5.9)

176 (46.1)
77 (20.2)
81 (21.2)
48 (12.6)

.283

Conditioning regimen, n (%)
Flu-based
noFlu

6 (35.3)
11 (64.7)

81 (21.2)
301 (78.8)

.225

Graft characteristics
MNCs (×108/kg), median (range) 9.49 (7.02-17.35) 9.63 (5.07-44.52) .696
CD34+ cells (×106/kg), median (range) 2.96 (0.96-15.05) 2.87 (0.14-22.47) .671
CD4+/CD8+ in BM, median (range) 1.31 (0.41-2.34) 1.17 (0.09-14.80) .998

Neutrophil engraftment, n (%) 17 (100) 381 (99.7) 1.000
28-day engraftment rate (%) 94.1 99.7 .081
time of engraftment, day, median (range) 15 (11-31) 12 (9-22) .005

Platelet engraftment, n (%) 11 (64.7) 368 (96.3) <.001
100-day engraftment rate (%) 52.9 94.2 <.001
time of engraftment, day, median (range) 22 (10-338) 15 (5-180) .167

History of early CMV reactivation, n (%)
within 28 days 2 (11.8) 107 (28.0) .158
within 100 days 13 (76.5) 276 (72.3) .701

History of refractory CMViremia, n (%) 4 (23.5) 16 (4.2) .007
History of recurrent CMViremia, n (%) 2 (11.8) 44 (11.5) .752
History of early EBV reactivation, n (%)

(Continued)
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boost successfully resulted in normal blood counts in 2 patients
with sPGF.

3.4 Risk Factors for sPGF
3.4.1 Pre- or Post-Transplantation Variables
As presented in Figure 4, no potential risk factor was found
among the pre-transplantation variables of interest. Among the
post-transplantation variables, we found that later neutrophil
engraftment (OR 2.836, 95% CI [1.027, 7.830], p=.044), a
history of refractory CMV viremia (OR 7.038, 95% CI [2.063,
24.017], p=.002), and a history of grade 3-4 aGvHD (OR 3.254,
95% CI [1.004, 10.549], p=.049) were associated with sPGF in
the univariable analysis. No correlation was found among these
Frontiers in Immunology | www.frontiersin.org 5
variables (data not shown). When included in the multivariable
analysis (Table 2: model 1), later neutrophil engraftment and a
history of refractory CMV viremia were independent risk factors
for sPGF.

3.4.2 Combined Analysis of Pre- and Post-
Transplantation Variables
In the multivariable logistic regression model (Table 2: model 2),
later neutrophil engraftment (OR 2.819, 95% CI [1.005, 7.909],
p=.049) and refractory CMV viremia were independent risk
factors for sPGF (OR 6.986, 95% CI [2.002, 24.379], p=.002).
There was weak evidence that a history of grade 3-4 aGvHD was
associated with sPGF (p=.063).
TABLE 1 | Continued

sPGF (n=17) noPGF (n=382) p-value

within 28 days 1 (5.9) 11 (2.9) .467
within 100 days 2 (12.2) 55 (14.4) .921

History of aGvHD, n (%)
grade 2-4 aGvHD 5 (29.4) 120 (31.5) .778
grade 3-4 aGvHD 4 (23.5) 33 (8.6) .040

Follow-up time for survivor, days, median (range) 758 (94-1767) 1012 (94-4874)
May 2022 | Volume 13 | Article
sPGF secondary poor graft function, AA aplastic anemia, SAA severe aplastic anemia, vSAA very severe aplastic anemia, PNH paroxysmal nocturnal hemoglobinuria, CSA cyclosporine A,
ATG antithymocyte globulin, RBC red blood cell, PLT platelet, SF serum ferritin, HLA human leukocyte antigen, DSA donor-specific antibody, MFI mean fluorescent intensity, Flu
fludarabine, MNCs mononuclear cells, BM bone marrow, PPR poor platelet reconstitution, CMV cytomegalovirus, EBV Epstein-Barr virus, aGvHD acute graft-versus-host disease. P
value <.05 was emphasized with bold fonts.
* HLA-A, -B, and -DR matching was included.
A B

C D

FIGURE 1 | The CIR of transplantation outcomes and complications in sPGF patients and noPGF patients: (A) 28-day neutrophil engraftment, (B) 100-day platelet
engraftment, (C) grade 3-4 aGvHD, (D) refractory CMV viremia. Patients were censored when they were diagnosed with sPGF.
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A B

C D

FIGURE 2 | Immune reconstitution at day 30, 60, and 90 in sPGF patients and noPGF patients: (A) absolute lymphocyte count (ALC), (B) CD3+ T cell, (C) CD3
+CD4+ T cell, (D) CD19+ B cell.
FIGURE 3 | Treatment and outcomes in sPGF patients.
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FIGURE 4 | Univariable analysis of risk factors associated with sPGF.
TABLE 2 | Multivariable analysis of factors associated with sPGF.

p-value Odds Ratio 95% confidence interval

Model 1*
Later ANC engraftment (≥ median vs < median) .038 3.027 1.063-8.622
History of refractory CMViremia (yes vs no) .006 6.020 1.664-21.785
History of grade III-IV aGvHD (yes vs no) .073

Model 2†

Conditioning regimen (Flu-based vs noFlu) .208
CD34+ cell doses (≥ median vs < median) .314
Later ANC engraftment (≥ median vs < median) .049 2.819 1.005-7.909
History of refractory CMViremia (yes vs no) .002 6.986 2.002-24.379
History of grade III-IV aGvHD (yes vs no) .063
Frontiers in Immunology | www.frontiersin.org
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sPGF secondary poor graft function, Flu fludarabine, CMViremia cytomegalovirus viremia, aGvHD acute graft versus disease. P-value <.05 was emphasized with bold fonts.
*The Enter method was used.
†The forward: LR method was used.
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4. DISCUSSION

PGF is a type of BM failure syndrome and leads to high
morbidity and mortality post-transplantation. Based on the
largest-scale AA cases that received haplo-HSCT, we revealed a
CIR of 4.62% of sPGF at 3 years post-transplantation. OS was
significantly decreased in sPGF patients. Later neutrophil
engraftment and a history of refractory CMV viremia were the
independent risk factors for sPGF.

Several studies on hematological malignancies suggested that
haplo-HSCT can be associated with a greater risk of sPGF (9, 22).
However, a previous report from our center demonstrated no
association between haplo-HSCT setting and sPGF (23). In line
with Liu et al. (24), our results reported an acceptable incidence
of sPGF after haplo-HSCT for AA. In contrast, Japanese
colleagues reported a higher incidence of sPGF of 15% in 49
pediatric AA patients, which included 3 transplantations from
matched sibling donors (20.0%), 3 from unrelated donors
(10.3%), and 1 from haploidentical donor (20%) (25). Similar
to the study of Kako et al (8), Flu was suggested to be responsible
for the increased incidence of sPGF, which was denied by our
studies (11). The discrepancy in results can be explained by the
difference in conditioning regimen instead of HSCT type, as Liu
and we additionally applied 2 days of Bu to ensure successful
engraftment and stable full donor chimerism in the haplo-setting
(26). Of note, in line with prior reports, patients with high titers
of DSA were successfully handled with rituximab desensitization
(15, 27) and co-infusion with DSA-free cord blood (28), and as a
result, none of the patient experienced primary PGF. Employing
intensive conditioning regimens may be beneficial in
maintaining stable donor-type chimerism and excellent
hematopoietic recovery in AA patients undergoing HSCT.
Further research should be conducted to clarify this hypothesis.

Widely proposed is the “seed, soil and climate” model for the
pathophysiology of PGF (6, 29). Current literature suggests
hematopoietic stem cells (seed) abnormalities have a causative
role in PGF. In the present study, patients with sPGF or without
PGF received grafts of similar dose and composition. Impressively,
the dose of infused CD34+ cells was not associated with sPGF.
However, we did observe distinct features of engraftment between
the two groups. The univariable and multivariable analyses
identified later neutrophil engraftment as an indicator of sPGF.
Our results indicate that the development of sPGF is more likely the
result of qualitative, rather than quantitative, abnormality of
hematopoietic stem cells. Several studies demonstrated that no
deficit was found in the cells’ capacity to repopulate the marrow
when stored CD34+ cells from donors whose recipients developed
PGFwere xenografted tomice (30). Moreover, donor-derived CD34
+ cells boost is an emerging therapeutic option with promising
response rates in patients with sPGF, as presented in this report and
others (31–33). Taken together with these findings, these data
suggests that the deficits in “seed” are acquired after
transplantation. Inducers or enhancers of allo-immunity (climate),
such as CMV reactivation and GvHD, may amplify the intrinsic
dysfunction of hematopoietic stem cells, ultimately leading to sPGF.

CMV inhibits hematopoiesis directly by infecting bone
marrow or suppress hematopoiesis indirectly through the
Frontiers in Immunology | www.frontiersin.org 8
infection of stromal cells (34, 35). Previous studies (7, 23, 36)
have identified CMV viremia as an independent risk factor for
sPGF. It is reported that recipients undergoing haplo-HSCT have
a higher incidence of CMV reactivation, as well as refractory
CMV viremia (37, 38). Lv et al. recently revealed that CMV
reactivation was the only hazard element for sPGF in haplo-
HSCT (9). Nevertheless, one should note that refractory CMV
viremia rather than early CMV reactivation increased the risk of
sPGF in our study. Patients in the sPGF group had lower B cell
levels in the first month after haplo-HSCT, which may explain
their greater susceptibility to refractory CMV viremia (38).
Our results indicated that the influence of CMV on the BM
niche can be time-dependent and may be irreversible under
sufficient viral load. Since the clinical course of CMV
reactivation is often complicated with GvHD, administration
of immunosuppressants and immune reconstitution, further
study on the impact of clinical characteristics and kinetics of
CMV on graft hematopoietic function is required. On the other
hand, antiviral medications, including GCV and foscarnet, can
exacerbate the suppression in hematopoiesis (22) and are major
players in the development of sPGF. Given the fact that GCV was
involved in all CMV-positive patients in this study, it was
impossible to separate the influence of CMV itself and anti-
CMV pharmacotherapy. Anyway, timely evaluation and
initiation of CMV-specific cellular therapy may be of great
help to avoid inhibition of hematopoiesis and provide better
transplant outcomes (13, 39).

The occurrence of aGvHD has also been accepted as
contributing to the development of sPGF (36, 40). In this study,
we found a marginal association between grade 3-4 aGvHD and
sPGF. In vivo studies corroborated that GvHD can lead to PGF via
overactivated T cells and dysregulated cytokines (41, 42).
Moreover, severe aGvHD requires intensive immunosuppression
and thus always occurs in concert with prolonged viral
reactivation. Limited by the number of cases, we were unable to
analyze the effect of aGvHD and co-current CMV viremia on
sPGF. Large-scale studies can help understand this process.
Reducing the incidence of aGvHD is now one of the most
important goals of unmanipulated haplo-HSCT for AA patients,
but it is noteworthy that we need to develop better strategies to
balance the risk of immunosuppression and viral reactivation. In
the ATG-based modality of in vivo T cell depletion, the dose of
ATG is positively related to delayed immune reconstitution and
the risk of viral infection (37, 43, 44). Recent works provide a
promising option by optimizing ATG dosing (2.5 mg/kg daily for
3 days) to reduce viral activation while maintaining sufficient
GvHD prophylaxis in haplo-HSCT (45, 46). Similar phenomena
were observed in haplo-HSCT using a combination of post-
transplantation cyclophosphamide and low-dose ATG (47, 48).
A lower dose of ATG (2.5 mg/kg) successfully reduces CMV
reactivation without compromising the favorable effect of
preventing GvHD (49). Studies should be conducted in larger
cohorts to determine the optimal dose of ATG to reach maximum
immunosuppression, minimum risk of severe infections and in the
end the best survival.

In conclusion, sPGF can develop in 4.62% of AA patients after
haplo-HSCT and significantly decreases survival. The
May 2022 | Volume 13 | Article 896034
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independent hazard elements for sPGF were later neutrophil
engraftment and a history of refractory CMV reactivation.
Considering the limited number of sPGF cases in this report,
our results warrant investigation in further studies.
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