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A B S T R A C T   

Objective: Neuroblastoma (NB) is a prevalent pediatric tumor originating from primordial neural 
crest cells. As one of the latest epigenetics investigations focuses, RNA 5-methylcytosine (m5C) is 
closely related to cancer risk. TET methylcytosine dioxygenase 3 (TET3) is a demethylase for m5C 
modification. Whether there is an association between TET3 gene polymorphisms and neuro
blastoma risk remains unclear. 
Methods: We conducted an epidemiological study in 402 patients and 473 controls to evaluate the 
relationship between TET3 gene SNPs (rs7560668 T > C, rs828867 G > A, and rs6546891 A > G) 
and NB susceptibility. 
Results: Our results showed that rs828867 G > A significantly reduced NB risk in Chinese children 
[GA vs. GG, adjusted odds ratio (OR) = 0.72, 95% confidence interval (CI) = 0.52–0.98, P=0.040; 
GA/AA vs. GG, adjusted OR = 0.74, 95% CI = 0.55–0.998, P=0.048]. Individuals with 2–3 risk 
genotypes had a significantly higher NB risk than those with 0–1 risk genotypes (adjusted OR =
1.40, 95% CI = 1.04–1.88, P=0.027). The stratified analysis showed that the rs828867 G > A 
associated with decreased NB risk is remarkable among children aged >18 months (adjusted OR 
= 0.67, 95% CI = 0.46–0.96, P=0.029) and patients at clinical III + IV stages (adjusted OR =
0.67, 95% CI = 0.45–0.98, P=0.040). Compared with the 0–1 risk genotype, the concurrence of 
2–3 risk genotypes significantly increased NB risk in the following subgroups: children aged >18 
months and patients at clinical III + IV stages. GTEx analysis suggested that rs828867 G > A was 
significantly associated with RP11-287D1.4 and POLE4 mRNA expression. 
Conclusions: Overall, our results revealed that rs828867 G > A in the TET3 gene is significantly 
associated with predisposition to NB.  
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1. Introduction 

Neuroblastoma (NB) is one of the most common developmental neoplasms of the nervous system in pediatrics [1–3]. It accounts for 
approximately 10% of pediatric tumors, affecting nearly 7.7 cases per million in Chinese children [4,5]. According to tumor resect
ability, NB can be classified into clinical I, II, III, and IV malignancies using the International Staging System for Neuroblastoma (INSS) 
and 4S stages [6]. NB is reported to spontaneously regress in low-risk patients [7–9]. However, nearly half of all newly diagnosed NBs 
are high-risk patients with a survival rate <50% [10], which has detrimental effects on the quality of life for patients and their families. 

Genetic alteration plays a decisive role in NB susceptibility, tumorigenesis, prognosis, and survival [11]. Genome-wide association 
studies (GWASs) provide a powerful method to explore the causal genetic variants of NB and have achieved prominent advancements 
[12]. Studies have revealed that three single nucleotide polymorphisms (SNPs) in the neurofilament gene NEFL are associated with NB 
risk, among which rs1059111 is significantly correlated with increased expression of NEFL [13]. Lagmay et al. found that the IL-6 gene 
rs1800795 polymorphism is a novel prognostic marker in high-risk neuroblastoma and can also predict prognosis [14]. Although many 
key SNPs have been identified in decades, further exploration is still needed to draw the genetic landscape in NB. 

5-Methylcytosine (m5C) in DNA is one of the most studied epigenetic modifications and has been identified as a hallmark of cancer 
[15,16]. Recently, m5C modifications have also been observed in RNA (mRNA, tRNA, and tRNA) and are involved in cancer pro
gression [17–19]. As a reversible RNA modification, m5C is mainly catalyzed by NOP2/Sun-domain family members 1–7 (NSUN1-7) 
[20,21]. We previously found that the NSUN2 gene SNP rs13181449 C > T is significantly associated with reduced NB susceptibility 
[22]. Recent investigations have revealed the m5C demethylases, including TET methylcytosine dioxygenase (TET1, TET2, and TET3) 
[23–25]. TET3 is closely related to tumorigenesis and cancer prognosis. It is highly expressed in esophageal squamous cell carcinoma, 
papillary thyroid carcinoma, and ovarian cancer [26–28]. A recent study indicated that TET3 promotes acute myeloid leukemia (AML) 
growth by regulating glucose metabolism in AML cells [29]. Studies of TET3 regulatory mechanisms found that it could control gene 
expression by modulating m5C levels and recruiting proteins. In postmitotic neurons, TET3 activates mRNA expression of the 
neurotransmitter-releasing relative gene Rab3a by accumulating its DNA hydroxymethylation [30]. Xue et al. reported that TET3 
suppressed IFN-β transcription by interacting with the gene repressor HDAC1 [31]. Recent study revealed that TET3 expression 
positively correlated with NB patient prognosis [32]. Therefore, we speculated that TET3 genetic variations might correlate with NB 
risk. In this report, we conducted a study to elucidate the association between three TET3 SNPs and neuroblastoma risk in Chinese 
children. 

2. Materials and methods 

2.1. Study subjects 

This work was approved by the Institutional Review Board of Children’s Hospital of Nanjing Medical University (Approval No.: 
202112141-1). In total, 402 neuroblastoma patients and 473 control volunteers were registered in the Children’s Hospital of Nanjing 
Medical University in Jiangsu Province, China [33]. All patients consented to participate in this research and signed informed consent. 

2.2. SNP selection and genotyping 

In this study, three TET3 SNPs (rs7560668 T > C, rs828867 G > A, rs6546891 A > G) were selected and genotyped according to our 
published method [34–36]. These SNPs may impact RNA splicing and miRNA binding, as predicted with SNPinfo (https://snpinfo. 
niehs.nih.gov/snpinfo/snpfunc.html). Peripheral blood samples from controls and children diagnosed with neuroblastoma were 
used to extract genomic DNA with a TIANamp Genomic DNA Kit (TianGen Biotech Co., Ltd., Beijing, China). Then, we genotyped TET3 
gene SNPs by the TaqMan method using TaqMan Genotyping PCR PreMix (TianGen Biotech Co. Ltd., Beijing, China). To guarantee 
genotyping accuracy, 10% of the samples were randomly selected to repeat the assay, and 100% consistency was obtained. 

2.3. Statistical analysis 

In this study, the chi-squared test and t-test were used to detect significant differences between patients and controls based on the 
variable type. The Hardy-Weinberg equilibrium (HWE) of each SNP in control samples was evaluated using a goodness-of-fit chi- 
squared test. Unconditional logistic regression was conducted to analyze the odds ratios (ORs, adjusted by age and sex) and 95% 
confidence intervals (CIs) for the association of TET3 gene SNPs with neuroblastoma risk, which is adjusted for age and gender. The 
correlation between SNPs and gene expression was assessed from the Genotype-Tissue Expression (GTEx) data (https://www. 
gtexportal.org/home) [37]. 

3. Results 

3.1. TET3 polymorphisms are associated with neuroblastoma risk 

Genotyping of the TET3 gene was successfully conducted in 401 neuroblastoma patients and 473 control samples out of the 402 
cases and 473 controls, whose clinical characteristics were described in a published study (table S1) [22]. The genotype distribution of 
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all three TET3 SNPs complied with HWE (P=0.974 for rs7560668 T > C, P=0.817 for rs828867 G > A, and P=0.805 for rs6546891 A >
G). As shown in Table 1, rs828867 G >A was significantly associated with reduced neuroblastoma risk (GA vs. GG, adjusted OR = 0.72, 
95% CI = 0.52–0.98, P=0.040; GA/AA vs. GG, adjusted OR = 0.74, 95% CI = 0.55–0.998, P=0.048). No significant associations were 
found for rs7560668 T > C and rs6546891 A > G. Variants with OR>1 were identified as risk genotypes, including rs7560668 CC, 
rs828867 GG, and rs6546891 AG/GG. The presence of 2–3 risk genotypes in participants significantly increased neuroblastoma risk 
compared with those with 0–1 risk genotypes (adjusted OR = 1.40, 95% CI = 1.04–1.88, P=0.027). 

3.2. Stratification analysis 

We next analyzed the relationship between rs828867, rs6546891, and risk genotypes and neuroblastoma risk in subgroups 
separated by age, sex, site of origin, and clinical stage (Table 2). The stratification result presented a significant correlation between 
rs828867 GA/AA and reduced neuroblastoma risk in subgroups: children aged >18 months (adjusted OR = 0.67, 95% CI = 0.46–0.96, 
P=0.029) and patients at clinical III + IV stages (adjusted OR = 0.67, 95% CI = 0.45–0.98, P=0.040). The rs6546891 GG was 
significantly associated with improved neuroblastoma risk among patients with tumors of retroperitoneal origin (adjusted OR = 1.66, 
95% CI = 1.12–2.46, P=0.011). Moreover, the combination of 2–3 risk genotypes presents a higher neuroblastoma risk than 0–1 risk 
genotypes among children aged >18 months (adjusted OR = 1.61, 95% CI = 1.12–2.32, P=0.011) and patients at clinical III + IV 
stages (adjusted OR = 1.53, 95% CI = 1.04–2.25, P=0.032). 

3.3. TET3 rs828867 G > A correlated with gene expression 

To reveal the role of rs828867 G > A in gene expression, cis-expression quantitative trait loci (eQTL) analysis was performed using 
GTEx (Version: V8) in Single-Tissue eQTLs analysis (Fig. 1). The results showed that rs828867 GA/AA is significantly related to 
reduced RP11-287D1.4 mRNA expression in cultured fibroblast cells (P=1.4e-10, Fig. 1A), whole blood (P=1.4e-10, Fig. 1B), adrenal 
gland (P=7.4e-6, Fig. 1C), and EBV-transformed lymphocyte cells (P=3.0e-5, Fig. 1D). Furthermore, cultured fibroblasts with 
rs828867 GA/AA had higher POLE4 mRNA expression (P=1.9e-4, Fig. 1E). 

4. Discussion 

RNA m5C is a new focus of investigation in human malignancies. The understanding of the m5C regulatory mechanism in tumors is 
in its infancy [38]. To date, the association between m5C-related gene SNPs and cancer susceptibility is limited, especially the risk of 

Table 1 
Association between TET3 gene polymorphisms and neuroblastoma susceptibility in children from Jiangsu province.  

Genotype Cases (N = 401) Controls (N = 473) Pa Crude OR (95% CI) P Adjusted OR (95% CI)b Pb 

rs7560668 T > C (HWE = 0.976) 
TT 301 (75.06) 346 (73.15)  1.00  1.00  
TC 88 (21.95) 117 (24.74)  0.87 (0.63–1.19) 0.368 0.86 (0.63–1.19) 0.367 
CC 12 (2.99) 10 (2.11)  1.38 (0.59–3.24) 0.460 1.38 (0.59–3.24) 0.458 

Additive   0.763 0.96 (0.74–1.25) 0.763 0.96 (0.74–1.25) 0.763 
Dominant 100 (24.94) 127 (26.85) 0.521 0.91 (0.67–1.23) 0.522 0.91 (0.67–1.23) 0.521 
TT/TC 389 (97.01) 463 (97.89)  1.00  1.00  
CC 12 (2.99) 10 (2.11) 0.409 1.43 (0.61–3.34) 0.411 1.43 (0.61–3.35) 0.410 

rs828867 G > A (HWE = 0.817) 
GG 125 (31.17) 119 (25.16)  1.00  1.00  
GA 180 (44.89) 239 (50.53)  0.72 (0.52–0.98) 0.040 0.72 (0.52–0.98) 0.040 
AA 96 (23.94) 115 (24.31)  0.80 (0.55–1.15) 0.223 0.79 (0.55–1.15) 0.222 
Additive   0.192 0.88 (0.74–1.06) 0.192 0.88 (0.73–1.06) 0.191 
Dominant 276 (68.83) 354 (74.84) 0.048 0.74 (0.55–0.998) 0.049 0.74 (0.55–0.998) 0.048 
GG/GA 305 (76.06) 358 (75.69)  1.00  1.00  
AA 96 (23.94) 115 (24.31) 0.898 0.98 (0.72–1.34) 0.898 0.98 (0.72–1.34) 0.896 

rs6546891 A > G (HWE = 0.805) 
AA 97 (24.19) 134 (28.33)  1.00  1.00  
AG 194 (48.38) 233 (49.26)  1.15 (0.83–1.59) 0.396 1.15 (0.83–1.59) 0.396 
GG 110 (27.43) 106 (22.41)  1.43 (0.99–2.08) 0.059 1.44 (0.99–2.09) 0.058 
Additive   0.059 1.20 (0.99–1.44) 0.059 1.20 (0.99–1.45) 0.059 
Dominant 304 (75.81) 339 (71.67) 0.167 1.24 (0.91–1.68) 0.167 1.24 (0.92–1.68) 0.166 
AA/AG 291 (72.57) 367 (77.59)  1.00  1.00  
GG 110 (27.43) 106 (22.41) 0.086 1.31 (0.96–1.78) 0.087 1.31 (0.96–1.79) 0.086 

Combine risk genotypesc 

0-1 274 (68.33) 355 (75.05)  1.00  1.00  
2-3 127 (31.67) 118 (24.95) 0.027 1.39 (1.04–1.88) 0.028 1.40 (1.04–1.88) 0.027 

P, probability value; OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium. 
a χ2 test for genotype distributions between neuroblastoma patients and cancer-free controls. 
b Adjusted for age and sex. 
c Risk genotypes were carriers with rs7560668 CC, rs828867 GG and rs6546891 AG/GG genotypes. 
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Table 2 
Stratification analysis for the association between TET3 genotypes with neuroblastoma susceptibility in Jiangsu children.  

Variables rs828867 (cases/controls) Adjusted ORa Pa rs6546891 (cases/controls) Adjusted ORa Pa Risk genotypes (cases/controls) Adjusted ORa Pa  

GG GA/AA (95% CI)  AA/AG GG (95% CI)  0–1 2–3 (95% CI)  

Age, month 
≤18 43/41 96/98 0.93 (0.56–1.56) 0.791 94/104 45/35 1.42 (0.84–2.40) 0.186 96/97 43/42 1.04 (0.62–1.72) 0.896 
>18 82/78 180/256 0.67 (0.46–0.96) 0.029 197/263 65/71 1.23 (0.84–1.80) 0.298 178/258 84/76 1.61 (1.12–2.32) 0.011 

Gender 
Females 57/52 134/173 0.71 (0.46–1.10) 0.121 146/177 45/48 1.14 (0.72–1.81) 0.589 136/172 55/53 1.31 (0.85–2.04) 0.226 
Males 68/67 142/181 0.77 (0.52–1.16) 0.211 145/190 65/58 1.47 (0.97–2.22) 0.070 138/183 72/65 1.47 (0.98–2.20) 0.060 

Sites of origin 
Adrenal gland 26/119 67/354 0.87 (0.53–1.44) 0.591 73/367 20/106 0.95 (0.55–1.63) 0.847 65/355 28/118 1.29 (0.79–2.11) 0.305 
Retroperitoneal 53/119 114/354 0.72 (0.49–1.06) 0.099 113/367 54/106 1.66 (1.12–2.46) 0.011 115/355 52/118 1.36 (0.92–2.01) 0.120 
Mediastinum 38/119 81/354 0.72 (0.46–1.11) 0.137 90/367 29/106 1.11 (0.70–1.79) 0.653 81/355 38/118 1.41 (0.91–2.19) 0.124 
Others 7/119 11/354 0.53 (0.20–1.39) 0.196 11/367 7/106 2.22 (0.84–5.86) 0.109 10/355 8/118 2.40 (0.92–6.22) 0.073 

Clinical stages 
I + II+4s 49/119 123/354 0.85 (0.57–1.25) 0.401 134/367 38/106 0.98 (0.64–1.50) 0.932 120/355 52/118 1.31 (0.89–1.93) 0.171 
III + IV 55/119 108/354 0.67 (0.45–0.98) 0.040 114/367 49/106 1.47 (0.99–2.20) 0.058 108/355 55/118 1.53 (1.04–2.25) 0.032 

P, probability value; OR, odds ratio; CI, confidence interval. 
a Adjusted for age and gender, omitting the correspondence factor. 
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NB. Our previous study showed that rs13181449 C > T in the m5C methyltransferase gene NSUN2 might reduce NB risk [22]. Liao 
et al. reported that TET1 gene rs150689919 was not associated with Parkinson’s disease [39]. Abdel-Wahab et al. revealed that TET2 
SNPs were significantly correlated with primary myelofibrosis susceptibility and acute myeloid leukemia survival [40]. No studies 
investigating the role of TET3 gene SNPs in disease predispositions have been available until now. In this study, we conducted the first 
epidemiological study on the association of TET3 gene SNPs and NB risk. The workflow and main result are shown in Fig. 2. Among 
three SNPs (rs7560668 T > C, rs828867 G > A, and rs6546891 A > G) in the TET3 gene, rs828867 G > A is associated with reduced 
neuroblastoma susceptibility in Chinese children. This result provides new evidence to substantiate the association between m5C 
“eraser” polymorphisms and cancer risk. 

Individuals with 2–3 risk genotypes have significantly higher NB risk than those with 0–1 risk genotypes. Moreover, we conducted a 
stratification analysis based on clinical information, which suggested that the protective effects of rs828867 G > A were significantly 
improved in children aged >18 months and patients at clinical stages III + IV. SNP data, in combination with DNA-based molecular 
computation, could facilitate clinical diagnosis [41]. Identification of multiple disease-disposing SNPs enables the construction of 

Fig. 1. Expression quantitative trait loci (eQTL) analyses for the TET3 gene rs828867 G > A polymorphism using the GTEx portal database. The 
results showed that rs828867 GA/AA is significantly related to reduced RP11-287D1.4 mRNA expression in (A) cultured fibroblast cells (P=1.4e-10), 
(B) whole blood (P=1.4e-10), (C) adrenal gland (P=7.4e-6), and (D) EBV-transformed lymphocyte cells (P=3.0e-5); thus, there was higher POLE4 
mRNA expression (P=1.9e-4) in cultured fibroblast cells (E). The violin shows the distribution of data; the box is decided by the interquartile range; 
the above line: the 75th percentile of the data (Q75), the under line: the 25th percentile of the data (Q25); the white line: the 50th percentile of the 
data (Q50). 

Fig. 2. The workflow and main result of this study.  
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logistic models for disease risk prediction [42]. We have reported the association of SNPs in genes encoding multiple epigenetic 
regulators with NB risk in previously published studies [43–45]. These identified susceptibility loci improve the understanding of NB 
risk. However, how to combine these susceptibility loci to develop NB risk prediction models is still a great challenge. 

Neuroblastoma arises in the sympathetic nervous system, including the adrenal gland and sympathetic ganglia [46]. 
Cancer-associated fibroblast contributes to angiogenesis, immunosuppression, and tumor progression in neuroblastoma [47]. Lym
phocytes and whole blood could represent the human immune system state and the overall indicator of tumor growth, respectively. In 
this study, we found that the TET3 gene rs828867 affects the mRNA expression of its surrounding genes RP11-287D1.4 and POLE4 in 
cultured fibroblast cells, and RP11-287D1.4 in the adrenal gland, EBV-transformed lymphocytes cells, and whose blood (Fig. 1). 
However, it is not clear whether the altered expression levels of surrounding genes contribute to reduced NB risk. Further investigation 
is needed to confirm and elucidate the regulatory mechanism. 

5. Conclusion 

In summary, we found that rs828867 G > A is significantly associated with reduced NB risk and correlated with the mRNA 
expression of RP11-287D1.4 and POLE4. Further investigation is warranted to clarify the regulatory mechanism of rs828867 G > A in 
NB. 
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