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Mass wasting susceptibility 
assessment of snow avalanches 
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Snow avalanche is among the most harmful natural hazards with major socioeconomic and 
environmental destruction in the cold and mountainous regions. The devastating propagation and 
accumulation of the snow avalanche debris and mass wasting of surface rocks and vegetation particles 
threaten human life, transportation networks, built environments, ecosystems, and water resources. 
Susceptibility assessment of snow avalanche hazardous areas is of utmost importance for mitigation 
and development of land-use policies. This research evaluates the performance of the well-known 
machine learning methods, i.e., generalized additive model (GAM), multivariate adaptive regression 
spline (MARS), boosted regression trees (BRT), and support vector machine (SVM), in modeling the 
mass wasting hazard induced by snow avalanches. The key features are identified by the recursive 
feature elimination (RFE) method and used for the model calibration. The results indicated a good 
performance of the modeling process (Accuracy > 0.88, Kappa > 0.76, Precision > 0.84, Recall > 0.86, 
and AUC > 0.89), which the SVM model highlighted superior performance than others. Sensitivity 
analysis demonstrated that the topographic position index (TPI) and distance to stream (DTS) were 
the most important variables which had more contribution in producing the susceptibility maps.

Snow avalanche is among the most destructive natural hazards in the cold and mountainous regions with dev-
astating socioeconomic and environmental impacts1–4. The mobility, transportation, tourism, and the leisure 
industries of the snowy mountain regions are under the avalanche’s uncertain threats. Damaging infrastructures, 
roads and railways obstruction, threatening human life and the built environments and settlements, and harming 
the water resources, ecosystems, and vegetations are associated with the propagation and deposition of snow 
avalanche debris5–11. The devastating propagation of the snow avalanches may also contribute to the mass wast-
ing of surface rocks and vegetation particles transported along the way and accumulated together with the snow 
avalanche debris12. The mass wasting induced by snow avalanche and the deposition of such snow-rock-debris 
poses longer-lasting damages with more destructive effects4,13,14. The global snow avalanche regime is increasingly 
reported to be changing within the past decade15–18. The climate change is introduced as a significant contributor 
in raising the occurrence rate and irregularity and increasing the risk and devastation19–22. Therefore, more than 
ever, the accurate spatial hazard modeling and susceptibility mapping of the avalanche slopes and hazardous 
locations are seen crucial for risk management, planning efficient mitigation and adaptation practices, and ter-
ritorial land-use policies.

Modeling the avalanche triggering mechanisms is complicated23–26. The complexity of avalanche models 
has been discussed in many studies27–31. The snowpack, meteorology, terrain, and slope characteristics are 
the predominant contributing factors initiating the avalanche movement and propagation, and the debris 
deposition2,32,33. Based on the interaction of these factors, the motion and run out of snow and eventually, the 
avalanche formation and propagation can be modeled2,32,34–36.

Various numerical methods for modeling the avalanche flow dynamics37–41, as well as statistical approaches 
for processing historical database information and climatological data sets15,42–45, have been proposed to predict 
the hazard susceptibility mapping. The models have been enhanced with the involvement of recent advanced 
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technologies of geographic information systems (GIS), remote sensing (RS), Satellite image processing, and arti-
ficial intelligence (AI) methods and applications2,29,46–49. GIS is a powerful tool for the construction of terrain’s 
geographical database to support building accurate prediction and decision-making models with high precision 
for terrain visualization50–54. Also, RS contributes to data collection through remotely sensing the inaccessible 
mountainous areas, which are a real asset in replacing costly and slow ground data collection systems without 
disturbing the snow cover2,29,55,56.

Machine learning (ML) has recently delivered fascinating results in advancing accurate models for susceptibil-
ity mapping of geohazards, e.g., earthquakes, landslides, earth fissures, and rockfalls57–62. However, the application 
of machine learning methods in avalanche prediction has been minimal63,64. Moreover, limited attention has been 
devoted to the hazard susceptibility of the mass wasting induced by snow avalanches which are accumulated 
as avalanche debris. As a response to these research gaps, this research’s contribution is to model the hazard 
susceptibility of mass wasting by the snow avalanches in the mountainous region of Alborz Province, Iran, using 
well-known techniques that have not been used in this field so far.

This manuscript is structured in four sections. Section two presents the details of the study area, data, and the 
ML and the feature selection methods used for snow avalanche debris modeling. The results and discussion are 
described in section three. Section four presents the conclusions and discusses the ML methods’ future direction 
for prediction of the snow avalanche mass wasting.

Data and methods
Description of the study area.  Taleghan watershed is located in the Alborz Province, Iran. It is extended 
from latitudes 36° 05′ to 36° 20′ N and longitudes 50° 36′ to 51° 11′ E with an area about 947 km2 (Fig. 1). The 
average annual temperature is about 11.4 °C and the average annual precipitation is about 520 mm. According 
to Hosseini65, most of the precipitation during the cold period (i.e., December to March) is as snow, which its 
ratio to annual precipitation varies between 33 and 51% during different years. The geology includes about 50 
lithological strata, which the oldest is Precambrian, and the recent alluvial deposits are from the Pleistocene. 
This watershed’s lithology is mainly marly formations. The main soil orders of this region are Entisol and Incep-
tisol. Previous studies have shown sedimentation rates to be approximately 871 m3/km2/y; the preponderance of 
marly deposits accounts for a high erosion rate66. Considering how important the Taleghan dam is for metropol-
itan Tehran’s drinking water supply, the maintenance of the dam’s reservoir and reduction of sediment yield are 
crucial. Based on the long-term monitoring of river sediment, the annual sediment yield of the Taleghan water-

Figure 1.   Location of the study area. The red circles denote locations of occurred snow avalanche debris. The 
black triangular indicate weather stations. The map was generated using ArcGIS Desktop 10.3, https​://deskt​
op.arcgi​s.com/en.

https://desktop.arcgis.com/en
https://desktop.arcgis.com/en
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shed is about 10 tones/ha/y67. The Taleghan watershed is the upstream of two dams: the Taleghan (completed in 
2006) and the Sefid-rood dam (completed in 1963), which both of them suffer from high sedimentation. One 
of the main sources of the watershed’s sediments is related to the snow avalanches debris, which deposits large 
volumes of sediment near the streams (Fig. 2). These deposits are exposed to being washed by the high flash 
floods. Therefore, it is important to know the hazardous snow avalanche debris areas to implement sediment-
yield prevention initiatives.

Inventory map of snow avalanche debris.  Each snow avalanche consists of the starting zone, track, 
and runout zone63. After occurring a snow avalanche, the snow avalanche debris remains inside the snow runout 
(deposit) zone. As ice and snowmelt, these materials become visible (e.g., Fig. 2c). Most snow avalanches’ debris 
is very angular, enabling them to be differentiated from glacial, other drift-ice origins or rockfalls68. In this 
research, by considering the abovementioned conditions, a number of 98 locations of occurred snow avalanche 
debris were recorded based on the repeated field surveys (Fig. 1). In first, the probable locations of snow ava-
lanche debris were selected based on the topographic maps and then based on the Google Earth. Then, through 
field surveys, the location of the avalanches containing sedimentary deposits was recorded. By observing the 
material accumulated in the snow at the end of the snow avalanche passages in the spring thaw period, the cause 
of this debris (i.e., snow avalanche) has been confirmed. Some samples of the recorded snow avalanche debris 
are shown in Fig. 2.

Predictors used for snow avalanche debris modeling.  Snow avalanche debris can apply the con-
siderable erosive forces on soils and may scrape away and entrain soil into the deposition zone. The chemical 
composition of the soil material entrained by the snow avalanche debris is changed and potentially contributing 
to form the landforms69. However, many factors affect the quantity of snow avalanche deposits and creating this 
natural hazard. These factors are including morphological features, climate, soil properties, vegetation cover, etc. 
In this study, for snow avalanche debris modeling, tried to consider the most related factors to the occurrence 
of snow avalanche debris:

Elevation: Snow accumulation and melt are related to elevation (Fig. 3a), but the relationship between eleva-
tion and snow avalanche debris is more complicated than what is perceived in the watershed70. One of the 

Figure 2.   Some samples of snow avalanche debris which transferred the sediment into rivers in the region. The 
photographs were taken by Moslem Borji in 2019. The map was generated using ArcGIS Desktop 10.3, https​://
deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
https://desktop.arcgis.com/en
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most important factors that cause more deposition at the snow avalanche debris’s runout zone is the pressure 
of snow. Snow pressure destroys rocky outcrops, and top layers of soil located on the crossing avalanches 
pass. Although elevation is not an inherent property of snow pressure, it affects the relative density of snow. 
The elevation factor contributes to increasing the relative density of snow, which increases the creep of snow 
fragments. Between the elevation of 1500 to 3000 m, for every 100 m of elevation, a two percent rise in snow 
pressure is calculated71. Thus, there is a direct relationship between the snow avalanche’s elevation and the 
sediment yield71.
Slope: High slopes (more than 50° or 120%) rarely contribute to snow avalanche debris, because they dis-
charge continually during each new snowfall (Fig. 3b). Also, low slopes (less than 30° or 58%) no have the 
required potential (force) to create avalanches. However, slopes 30°–50° are more likely to the occurrence of 
avalanches. Due to the numerous factors that affect the snow avalanche debris, even with an equal gradient, 
the likelihood of avalanches in different places will not be the same71.
Aspect: Geographic aspect (Fig. 3c) is of primary significance to avalanches. Different aspects have differ-
ent influences on accumulating and melting of the snow because of the meteorological parameters, such as 
temperature, precipitation, wind velocity, and sunshine hours63,64,72.
Curvature: Convex areas produce an increase in the rate of total motion of the snow cover downhill (a com-
bination of creep and slide). In a suitable condition for avalanche releasing (presence of a stratum with low 
shear strength), the fracture will initially occur in these convex areas where there is tension force within the 
snow cover. So, the curvature map (Fig. 3d) can be an important layer in snow avalanche debris modeling.
Topographic Position Index (TPI): The general concept and application of the TPI is to define and determine 
the boundary of landforms in an accurate and non-descriptive manner such as heights, steep slopes, flat areas, 
valleys, etc. using a DEM automatically and rapidly73. The TPI reflects the notion that the positive values of 
TPI represent areas that are higher than the surrounding points (hills), and the negative values represent 
regions with lower positions around them (valleys) (Fig. 3e). The values near zero indicate flat areas (where 
the gradient is close to zero) or areas with a steady slope73. This layer indicates valleys, streams, open slopes, 
mid-alluvial valleys, and u form valleys, which affect the occurrence of snow avalanche debris.
Vector Ruggedness Measure (VRM): VRM (Fig. 3f) presents the roughness of the ground which, affects the 
movement of snow avalanche debris. For example, rocks and rock outcrops (i.e., irregular surfaces) may 
promote instability or stability of the snow avalanches63.
Distance to Fault (DTF): The most important step in initiating the movement of thick snow fragments from 
the starting area is the formation of a weak layer fracture74. Many natural and anthropogenic factors such as 
load variation due to skiers, explosion, aircraft noise, and distance from active faults can cause these weak 
layer fractures (Fig. 3g).
Distance to Road (DTR): This factor causes weak layers in the thick snow and increases the amount of debris 
deposition at the runout zone by moving vehicles on the road and generating heat and impact on local tem-
peratures, as well as by the sound of beeps and vibrations (Fig. 3h).
Distance to Stream (DTS): The snow avalanche deposits in the study area are directly related to the distance 
from the stream (Fig. 3i). Sediments accumulated along the river are transported by water flow and as the toe 
of the avalanche is emptied. So, the slope of the passage increased, then snow avalanche debris is increased.
Drainage Density (DD): DD specifies the density of streams per unit ground, which is essential for occurring 
the snow avalanche debris occurrence75. Increasing the drainage density will create snow passage channels, 
and avalanche falls (Fig. 3j).
Precipitation: Increasing the amount of precipitation increases the causes of the snow thickness in the area 
(Fig. 3k). Considering further essential factors to the avalanche formation, it is evidenced that snow-crossing 
discharge is increased by increasing precipitation. This would lead to increasing the debris.
Stream Power Index (SPI): The SPI (Fig. 3l) indicates the erosive power of running water, directly affecting 
the slope toe erosion and stream incision76. So, it is the main factor that controls the slope erosion processes 
and snow avalanches.
Topographic Wetness Index (TWI): The TWI (Fig. 3m), is a steady wetness index, which is commonly used 
to quantify topographic control on hydrological processes75. TWI is one of the most important factors that 
indicate the potential of runoff generation. In other words, the high values of TWI mean the high potential 
of runoff generation and vice versa. Therefore, in areas with high runoff, sediment deposits are transported 
downstream to different parts of the avalanche pass.
Land use: Land use has a complex effect on the occurrence of avalanches and resulting deposits. For example, 
if the height of grass and bushes are higher than snow in rangelands, then the rangeland has a decreasing 
role in avalanche fall71. For extracting the land use map in this study, satellite data from the Sentinel-2 mis-
sion was chosen for two main reasons: (1) its relatively high 10 m spatial resolution, and (2) its radiometry 
includes three vegetation red edge bands. These two characteristics make the Sentinel-2 data appealing for 
land use extraction. According to the land use map, the rangelands include the region’s highest area (Fig. 3n).
Lithology: Lithology and rock units have an important role in the slope failure in mass movements such as 
avalanches, landslides, and debris flows77. Rock unit type is important in heat absorption and transfers to 
snow cover. Dark igneous rocks have the highest thermal absorption. These rocks can provide a suitable base 
for fracturing snow masses by absorbing heat and melting snow in the lower layers and creating pores in 
the snow masses. Conversely, light rocks such as lime and sandstone and igneous rocks absorb less heat and 
therefore control the movement of snow masses. Most rock units in areas with snow avalanche risk include 
andesite trace, basalt trace, basanite, andesite, agglomerate, tuff, and pyroclastic (Fig. 3o).
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Figure 3.   Snow avalanche debris conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) 
topographic position index (TPI), (f) vector ruggedness measure (VRM), (g) distance to fault (DTF), (h) 
distance to road (DTR), (i) distance to stream (DTS), (j) drainage density (DD), (k) precipitation, (l) stream 
power index (SPI), (m) topographic wetness index (TWI), (n) landuse, and (o) lithology. The maps were 
generated using ArcGIS Desktop 10.3, https​://deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
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In this study, the ALOS PALSAR Digital Elevation Model (DEM) (https​://verte​x.daac.asf.alask​a.edu/) with 
a pixel size of 12.5 m × 12.5 m was used to map the DEM derivatives (i.e., slope, aspect, curvature, TPI, VRM, 
SPI, and TWI). The spatial resolution of other input factors was resampled into an equal resolution of the DEM 
derivatives (i.e., 12.5 m × 12.5 m) using the Resample Tool in the ArcGIS environment. Also, the number of pixels 
and the extend of layers were controlled to be same for the spatial modeling.

Multicollinearity analysis.  Multicollinearity expresses the linear relationship between two or more inde-
pendent variables. It is a data problem that may cause serious difficulty with the reliability of the estimates during 
the modeling process78. In this study, the Variance Inflation Factor (VIF) was used to assess the multicollinearity 
among the explanatory variables. Since the VIF values are low (VIF < 10) (Supplementary Table S1), there is not 
any multicollinearity among the predictor variables59,79.

Feature selection using the recursive feature elimination (RFE).  The RFE procedure is generally 
a recursive process that ranks features based on the value of their importance. The method tends to eliminate 
weak features that are not important when synthesized with other features, and therefore, leads to a considerable 
decrease in the redundant variables80. The RFE method repeated many times and, in each time, the important 
features remained and the less important features are eliminated. The recursion is required because the relative 
significance of each feature can be essentially changed when assessing with a different subset of features in step-
wise exclusion81,82. In this study, the RFE method was implemented using the k-fold (tenfold) cross-validation 
methodology by the Caret R package83.

Susceptibility modeling of snow avalanche debris.  Four machine learning (ML) models, including 
generalized additive model (GAM), multivariate adaptive regression spline (MARS), boosted regression trees 
(BRT), and support vector machine (SVM), were used to model the snow avalanche debris. Dependent data were 
the location of the snow avalanche debris (Fig. 1) and the independent data were the effective environmental 
factors identified by the RFE method. Locations of 98 snow avalanche debris, as well as the equal number of 
non-occurrence points, are converted to a binary scale (respectively 1 and 0) and considered as dependent data. 
The k-fold cross-validation methodology (k = 10) was used to model calibration in the R software environment 
using the ‘sdm’ package84. A ratio of 70% to 30% was considered respectively for calibrating and testing phases. 
Description of the applied ML models as follows:

The GAM model, developed by Hastie and Tibshirani85, blends the properties of the generalized linear model 
(GLM) with additive models. Indeed, this model is a statistical model in which the linear relationships between 
the dependent variable and independent variables are replaced by non-linear smooths86. On the contrary of the 
GLM, which the researcher needs to have proper knowledge of the correct functional form before the modeling, 
the GAM uses the additive approach in which the suitable functional form is selected based on the data87. To spa-
tial modeling with the GAM model, as well as the ‘sdm’ package, the ‘mgcv’88 and ‘gam’89 R packages are required.

The MARS model, introduced by Friedman90, is a non-parametric statistical method which acts based on 
the divide and conquers strategy. This means that the calibration datasets are partitioned into separate splines 
(piecewise linear segments) of differing slopes (gradient)91. Indeed, it is known as an extension of linear models 
which automatically explores and models nonlinearities between the dependent and independent variables, 
without considering any assumptions about their relationships92. In this study, the ‘earth’93 package, as well as 
the ‘sdm’ package, was used to spatial modeling of snow avalanche debris by the MARS model.

The BRT model is a combination of boosting and decision tree methods. It frequently fits many decision 
trees to increase the model’s accuracy, like the random forest (RF) model94,95. The model takes the random 
subsets, from the complete dataset with the same number of data points, for new trees that are built. According 
to the boosting method used in this model, the model continuously tries to improve its accuracy in each new 
tree which is built96,97. In this study, in addition to the ‘sdm’ package, the ‘gbm’98 package is required for spatial 
modeling using the BRT model.

The SVM model, introduced by Cortes and Vapnik99, is a non-parametric statistical monitoring method, 
which, to solve problems it uses the structural-risk minimization principle along with the dimension theory of 
Vapnik Chervonenk100–102. The mathematical function (kernel) transforms the data (inputs) into the required 
form and maps into a high dimensional feature space. The model creates a line (or a hyperplane) that splits the 
data into classes of 0 (non-occurrence) and 1 (occurrence). The SVM model with the kernel of radial basis func-
tion (RBF) was implemented using the ‘kernlab’82 R package, which is a dependent package in spatial modeling 
by the ‘sdm’ package.

Modeling evaluation.  Modeling results were evaluated using the several metrics which are used for evalua-
tion of the dichotomous forecasts. These metrics are including the area under the curve (AUC) of receiver opera-
tor characteristic (ROC) plot, Accuracy (Eq. 1103), Kappa (Eq. 2104), Precision (Eq. 4105), and Recall (Eq. 5105) 
metrics which are calculated by the contingency table106:

(1)Accuracy =
H+ CN

H+CN+M+CN

(2)Kappa =
Acc − Pe

1 − Pe

https://vertex.daac.asf.alaska.edu/
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where H, FA, M, and CN are respectively the number of hits, false alarms, misses, and correct negatives63,106. Pe 
represents the expected agreement between the modeled and forecasted values104. Variations of the evaluation 
metrics are between 0 and 1 which 1 indicates perfect perdition107.

Results and discussion
Feature selection results.  Results of the recursive feature elimination (RFE) method indicated that the 
contribution of eight features, among 16, in snow avalanche debris modeling has better results (Accuracy = 0.963; 
Kappa = 0.926), according to the resampling performance using tenfold cross-validation method (Table 1). Vari-
ations of the accuracy with the different numbers of the features during the model runs are presented in Sup-
plementary Figure S1. As can be seen, the mean accuracy (red plus in Supplementary Figure S1) with eight 
features is higher than the other number of the features. Therefore, based on the occurrence frequency of the 
features in the model (RFE) runs through the resampling process with a tenfold cross-validation method, eight 
variables with a higher occurrence frequency than others are selected as key features (Supplementary Figure S2). 
A higher occurrence frequency of a variable indicates its higher importance because the RFE is a backward select 
method108, which the lower important variables are removed from modeling and higher important variables are 
reminded109. Accordingly, variables of TPI, DTS, SPI, lithology, precipitation, TWI, DTR, and VRM with the 
contribution of 100%, 93%, 86%, 80%, 72%, 68%, 55%, and 53% in the model runs are selected as key features 
and used to snow avalanche debris modeling (Supplementary Figure S2).

Unlike the results of Mosavi et al.64 in snow avalanche susceptibility mapping, variables of slope and aspect 
in this study were eliminated during the feature selection. The reason is that, unlike the snow avalanche which 
consists of three zones63, the avalanche debris is located at the end of the snow avalanche passage. So, they mostly 
have a low slope and no aspect (i.e., flat) which cannot produce sufficient variance to be selected as important 
variables in snow avalanche debris modeling.

Snow avalanche debris modeling.  Model calibration and validation were conducted using the key fea-
tures identified by the RFE method. The AUC of ROC plots is presented in Fig. 4. As can be seen, according to 
the mean AUC across tenfold cross-validation methodology, the BRT and SVM models have close AUC val-
ues (respectively 0.970 and 0.964) and higher than the MARS (AUC = 0.935) and GAM (AUC = 0.892) models 
(Fig. 4).

For further understanding of the models’ performance, the Accuracy, Kappa, Precision, and Recall values for 
the testing dataset are calculated (Table 2). Results of the model evaluation indicated that the SVM model had 
a higher Accuracy, Kappa, Precision, and Recall values (respectively equal to 0.91, 0.83, 0.90, and 0.93) rather 
than other models (Table 2). Other models (i.e., BRT, MARS, and GAM) had the same performance given the 
Accuracy and Kappa values (respectively equal to 0.88 and 0.76), while the MARS model in view of Precision 

(3)Pe =
(H + FA)(H + M)+ (M + CN)(FA + CN)

(H+ FA+M+ CN)2

(4)Precision =
H

H + FA

(5)Recall =
H

H + M

Table 1.   Resampling performance for different number of variables using the tenfold cross-validation method.

Variable Accuracy Kappa

1 0.867 0.737

2 0.928 0.856

3 0.942 0.883

4 0.956 0.912

5 0.949 0.898

6 0.956 0.912

7 0.956 0.912

8 0.963 0.926

9 0.956 0.912

10 0.942 0.883

11 0.953 0.916

12 0.956 0.912

13 0.956 0.912

14 0.949 0.898

15 0.956 0.912
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(equal to 0.89) and the BRT model in view of Recall were the best ones, after the SVM model (Table 2). However, 
the SVM model has different characteristics that make it successful in classification studies such as (i) applying 
kernel functions to solve the problems of linear separating classes resulting from multiple independent input 
variables110,111, (ii) maximizing the boundaries between classes for achieving an optimal separating hyperplane110, 
and (iii) excluding the outliers to avoid over-fitting of the model111,112.

Spatial prediction of the snow avalanche debris susceptibility.  After model calibration and evalu-
ation, the spatial perdition of the snow avalanche debris susceptibility was done using the calibrated models and 
the pixels’ value of the predictors for the whole region. A natural break (Jenks) classification method was used 
to classify the predicted values into three low, moderate, and high classes. This method is based on the inherent 
classification in data which distinguishes classes based on the minimum difference within groups and the maxi-
mum difference between groups. Also, in other related studies such as snow avalanche hazard mapping (e.g., 
Choubin et al.63; Mosavi et al.64) this method has been used.

Figure 4.   The area under curve (AUC) values: (a) GAM, (b) MARS, (c) BRT, and (d) SVM. Presented AUCs 
are mean AUC across tenfold cross-validation methodology.

Table 2.   Snow avalanche debris modeling performance. A higher value of the statistics indicates a higher 
performance of the modeling.

Statistic GAM MARS BRT SVM

Accuracy 0.88 0.88 0.88 0.91

Kappa 0.76 0.76 0.76 0.83

Precision 0.87 0.89 0.84 0.90

Recall 0.90 0.86 0.93 0.93
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The predicted susceptibility maps by the models with a pixel size of 12.5 m × 12.5 m are shown in Fig. 5. The 
susceptibility classes area (%) predicted by the models are presented in Table 3. The GAM and MARS models 
have the most area of the region in the moderate class (respectively 48.6% and 44.6% of the study area), while 
the most area of the region in the BRT and SVM models are related to the high susceptibility class (respectively 
36.6% and 58.5% of the study area).

The results of susceptibility maps are different in each model (Fig. 5). The main reason refers to the different 
structures of the models which result in different outputs107. Also, this can be more clarified by the importance 
analysis of the variables according to the decrease in AUC (DAUC) values after excluding the parameters from the 
modeling process (Fig. 6). For the GAM model, variables of TPI (DAUC = 51.7%), DTS (DAUC = 30.5%), and SPI 
(DAUC = 29.9%) have more contribution to the modeling (Fig. 6) and the predicted map (Fig. 5a) is more match 
with them. In the MARS model, three main factors are respectively DTS (DAUC = 41.9%), TPI (DAUC = 30.7%), 
and SPI (DAUC = 12.8%). In this model, since the DTS is more important than the other variables, the sus-
ceptibility map (Fig. 5b) is more line with the DTS. Regarding the BRT model, the TPI (DAUC = 55.9%) is the 
main factor (Fig. 6). So, the high susceptible areas in this model (Fig. 5c) are matched with high values of TPI 
(i.e., heights) (Fig. 3). According to the SVM result, TPI and DTS are the most important variables with close 
importance (respectively DAUC equal to 17.1% and 18.1%) (Fig. 6). In this model, the high susceptibility areas 
are situated in mountainous regions of the northeast with high TPIs, that some glaciers of the Alam Kuh area 
are located in these areas. Also, the areas near to streams show a high susceptibility that this decreases from east 
to west (Fig. 5d). The reason for this can be because of decreasing the elevation and precipitation towards the 
west (Fig. 3).

Generally, the sensitivity analysis indicated that the most important variables were TPI and DTS with different 
importance in different models. Also, SPI was another variable that had a significant role in the GAM and MARS 
models (Fig. 6). Although limited attention has been devoted to the hazard susceptibility of the mass wasting 
induced by snow avalanche, in other nearby fields such as snow avalanche modeling, the importance of the TPI 
variable has been proved by Choubin et al.63 and Mosavi et al.64.

Figure 5.   Snow avalanche debris susceptibility maps predicted by the GAM (a), MARS (b), BRT (c), and SVM 
(d). Low, moderate, and high susceptibility areas are shown in green, yellow, and red colors, respectively. The 
maps were generated using ArcGIS Desktop 10.3, https​://deskt​op.arcgi​s.com/en.

Table 3.   The susceptibility classes area (%) predicted by the models.

Class GAM MARS BRT SVM

Low 16.5 25.5 35.7 12.1

Moderate 48.6 44.6 27.7 29.4

High 34.9 29.9 36.6 58.5

https://desktop.arcgis.com/en
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Conclusions
Mass wasting induced by snow avalanche is among the major natural hazards in the cold and mountainous 
regions. Current research tried to model this natural hazard, for the first time, by considering the related envi-
ronmental factors. Key features in this study were TPI, DTS, SPI, lithology, precipitation, TWI, DTR, and VRM 
which were identified by the recursive feature elimination (RFE) method (with an Accuracy equal to 0.963 
and Kappa equal to 0.926). Modeling results with key predictors produced good results (Accuracy > 0.88 and 
AUC > 0.89). However, model comparison highlighted a superior performance of the SVM model (i.e., Accu-
racy = 0.91, Kappa = 0.83, Precision = 0.90, and Recall = 0.93) rather than the BRT, MARS, and GAM models. 
Results from the sensitivity analysis indicated that TPI and DTS variables were the most important factors that 
had more contribution in producing the susceptibility maps. Lack of the soil (or near-surface) temperature data 
in the study area was the main limitation of the research. Near-surface temperature can affect the avalanche 
movement which stimulates depleting the snow from hillsides and bringing the rock materials by itself into the 
runout zones (down the hillsides). Although this data is not available in the watershed area, its existence can help 
future studies in modeling the snow avalanche debris on the hillside scale. However, the maps produced by this 
study can help the watershed managers and land use policymakers to identify and protect the vulnerable areas.
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