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Identifying the pulsed neuron networks’ 
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Abstract 

Background:  It is a crucial task of brain science researches to explore functional connective maps of Biological 
Neural Networks (BNN). The maps help to deeply study the dominant relationship between the structures of the BNNs 
and their network functions.

Results:  In this study, the ideas of linear Granger causality modeling and causality identification are extended to 
those of nonlinear Granger causality modeling and network structure identification. We employed Radial Basis 
Functions to fit the nonlinear multivariate dynamical responses of BNNs with neuronal pulse firing. By introducing 
the contributions from presynaptic neurons and detecting whether the predictions for postsynaptic neurons’ pulse 
firing signals are improved or not, we can reveal the information flows distribution of BNNs. Thus, the functional 
connections from presynaptic neurons can be identified from the obtained network information flows. To verify the 
effectiveness of the proposed method, the Nonlinear Granger Causality Identification Method (NGCIM) is applied to 
the network structure discovery processes of Spiking Neural Networks (SNN). SNN is a simulation model based on an 
Integrate-and-Fire mechanism. By network simulations, the multi-channel neuronal pulse sequence data of the SNNs 
can be used to reversely identify the synaptic connections and strengths of the SNNs.

Conclusions:  The identification results show: for 2–6 nodes small-scale neural networks, 20 nodes medium-scale 
neural networks, and 100 nodes large-scale neural networks, the identification accuracy of NGCIM with the Gauss‑
ian kernel function was 100%, 99.64%, 98.64%, 98.37%, 98.31%, 84.87% and 80.56%, respectively. The identification 
accuracies were significantly higher than those of a traditional Linear Granger Causality Identification Method with the 
same network sizes. Thus, with an accumulation of the data obtained by the existing measurement methods, such 
as Electroencephalography, functional Magnetic Resonance Imaging, and Multi-Electrode Array, the NGCIM can be a 
promising network modeling method to infer the functional connective maps of BNNs.
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Background
It is well known that large number of neurons interacted 
with specific and efficient connections compose of com-
plex Biological Neural Networks (BNN) [1], which are 
controlling and coordinating a series of life activities of 
the human bodies. The major characteristics of BNNs, 
for example, Integrate-and-Fire (IF) mechanism, plastic-
ity of synapses, and the complexity of network structure, 
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enable them to have adaptability and learning ability, 
which are significantly different from general artificial 
networks. These unique characteristics of the BNNs con-
stitute the internal regulatory mechanism and substantial 
basis of various life functions. Therefore, it is of great sig-
nificance to explore the connection mode and connec-
tion characteristics of BNNs for studying the information 
processing and transmission mechanism of BNNs. At 
present, this research objective is still restricted by two 
factors: (1) Accurate identification of network structure 
requires a large amount of multi-channel neuronal pulse 
response data with a high temporal and spatial resolu-
tion. However, the data quality obtained by the existing 
measurement methods, such as Electroencephalogra-
phy (EEG), Magnetoencephalography (MEG), functional 
Near-infrared Spectroscopy (fNIRS), functional Mag-
netic Resonance Imaging (fMRI), and Invasive Electrode 
Implantation (IEI), are usually limited because of a low 
temporal and spatial resolution. (2) Because biologi-
cal neurons have strong nonlinear dynamic characteris-
tics, currently, there are few effective network structure 
reverse identification methods, which can accurately 
model and adapt this nonlinear dynamic relationship.

In recent years, Multi-Electrode Array (MEA) technol-
ogy has developed rapidly [2] and gradually become an 
efficient method that can simultaneously measure the 
electrical activity of multiple neurons in in-vitro cul-
tured BNNs. The data obtain by MEAs has a high tem-
poral resolution and spatial resolution, compared to the 
afore-mentioned invasive or noninvasive measurement 
methods. The MEAs allow synchronous recording the 
electrical activities of multiple neurons in million sec-
ond level, and the relationship between neuron activi-
ties in different channels is obtained through correlation 
analysis of the potential sequences of each channel. The 
development of this new technologies greatly promotes 
the research on the identification of the functional con-
nection structures of BNNs. Many researchers apply lin-
ear dynamics, informatics, probability statistics and other 
theories to propose various algorithms to identify the 
structures of BNN, such as Mutual Information (MI) [3], 
Direction Transfer Function (DTF) [4], Dynamic Bayes-
ian Network (DBN) [5], Evolutionary Mapping Approach 
(EMA) [6], Dynamical Causal Modeling (DCM) [7]. 
Although these methods can solve the identification 
problem of network information flow to a certain extent, 
they still have some limitations in practical applications. 
For example, DTF is a hypothesis testing process based 
on parameters in a linear Auto-regression (AR) model, 
which is not suitable for data processing of essentially 
nonlinear networks. EMA under an assumption of weak 
coupling between different channels, extract the phase 
information of the data to discern the coupling strength 

and the directions between two channel data. Therefore, 
EMA is difficult to be extended to multichannel analysis. 
DBN can be used to process short-term bioinformatics 
data with noise, however, its application to the identifica-
tion of BNNs is rarely reported. In contrast with the pre-
vious methods, the DCM methods have two remarkable 
advantages: they extract more useful network connec-
tive information only from the available multi-channel 
data by computing two correlation matrices; they effec-
tively resist noise contamination with unknown statistics 
of noises. However, the DCMs are mainly based on lin-
earized ODE models, which usually require the dynami-
cal functions are differentiable at steady states. That is 
not the case for the Integrate and Fire dynamics of BNNs, 
which are commonly considered as nondifferentiable and 
nonlinear [7, 8]. In this article, a Nonlinear Granger Cau-
sality Identification Method (NGCIM) is used to identify 
the structure of BNN with multiple neurons [9]. Consid-
ering a significant nonlinear dynamical property of bio-
logical neurons, we use a Radial Basis Functions (RBF) 
to fit neuron’s IF dynamics of Spiking Neural Networks 
(SNN). Thus, the functional connections can be iden-
tified by investigating the nonlinear Granger causality 
between the neurons in the SNNs.

Results
To verify the effectiveness of the proposed method in 
multi-channel BNN analysis, the NGCIM based on the 
RBF is applied to the network structure identifications. 
The SNNs can simulate the dynamic process of biological 
neurons’ discharge to mimic the dynamic behavior and 
physiological mechanism of BNNs in a certain accuracy 
[10]. The IF model of one neuron can be expressed by the 
following first-order differential equation:

It can be transformed to:

where τm = RmCm is the time constant for the estab-
lishing process of membrane voltage, Cm is the mem-
brane capacitance, Rm is the membrane resistance, Em is 
the resting potential, and I(t) is the sum of the synaptic 
currents generated by the firing pulses of the pre-syn-
aptic neurons. The sum of the synaptic currents can be 
expressed as:

(1)I(t) =
V (t)− Em

Rm
+ Cm

dV

dt

(2)τm
dV

dt
= Em − V (t)+ RmI(t)

(3)I(t) =
∑

j

ωij

∑

f

α(t − t
(f )
j )
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where α(t − t
(f )
j ) represents the effect function of presyn-

aptic neurons’ firing on postsynaptic neurons, in a form 
of negative exponential decay. The notation t(f )j  repre-
sents the moment when a presynaptic neuron j emits its 
behavioral potential. The multi-channel neuronal firing 
sequence, generated by SNN network simulations [11], is 
used to reversely identify the causal synaptic connections 
and action strength existing in the network [12, 13].

A single biological neuron is regarded as a node, and 
multiple interactions between biological neurons, such 
as electrical and chemical signal transmission, are repre-
sented by the directed edges with arrows. To simulate the 
real BNNs, where synaptic connections are highly sparse, 
the connection ratio of the network is set at 0.2, i.e., each 
neuron is only connected to 20% of other neurons in the 
networks [14]. Firstly, the network connection matrix B 
is generated randomly, where "1" means there is a direct 

connection between the two nodes, and "0" means there 
is no direct connection between the two nodes. The 
interaction between neurons in the networks is deter-
mined according to the principle of "column acts row". 
As shown in Fig.  1a, there are five direct connections 
among the six nodes of the pulse neuron network. The 
pulse sequences of the neurons were sampled at an inter-
val of 10 ms (only the first 5 s were shown). See Fig. 1b for 
the multivariate response data. The proposed NGCIM 
is applied to detect 30 conditional nonlinear Granger 
causality between 6 neurons listed in Table 1, where the 
notation “→” represents the direct effect of presynaptic 
neurons on postsynaptic neurons, and the notation "/" 
indicates “under the condition of the neurons of”. For 
example, “1→ 2/3, 4, 5, 6” represents that under the con-
dition of the set of neuron 3, 4, 5, and 6, neuron 1 has an 
effect on neuron 2. A Linear Granger Causality Identifi-
cation Method (LGCIM) and a NGCIM with a Gaussian 
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Fig. 1  A 6-mode SNN simulation (a) 6-node SNN’s structure (b) multivariate response data generated by the network simulation (after sampling the 
pulse sequences of the neurons)

Table 1  The conditional nonlinear Granger causality in the 6 neuron network

Notation relation Notation relation Notation relation Notation relation

1 (1 → 2/3,4,5,6) 2 (1 → 3/2,4,5,6) 3 (1 → 4/2,3,5,6) 4 (1 → 5/2,3,4,6)

5 (1 → 6/2,3,4,5) 6 (2 → 1/3,4,5,6) 7 (2 → 3/1,4,5,6) 8 (2 → 4/1,3,5,6)

9 (2 → 5/1,3,4,6) 10 (2 → 6/1,3,4,5) 11 (3 → 1/2,4,5,6) 12 (3 → 2/1,4,5,6)

13 (3 → 4/1,2,5,6) 14 (3 → 5/1,2,4,6) 15 (3 → 6/1,2,4,5) 16 (4 → 1/2,3,5,6)

17 (4 → 2/1,3,5,6) 18 (4 → 3/1,2,5,6) 19 (4 → 5/1,2,3,6) 20 (4 → 6/1,2,3,5)

21 (5 → 1/2,3,4,6) 22 (5 → 2/1,3,4,6) 23 (5 → 3/1,2,4,6) 24 (5 → 4/1,2,3,6)

25 (5 → 6/1,2,3,4) 26 (6 → 1/2,3,4,5) 27 (6 → 2/1,3,4,5) 28 (6 → 3/1,2,4,5)

29 (6 → 4/1,2,3,5) 30 (6 → 5/1,2,3,4)
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kernel function are respectively used to detect the condi-
tional Granger causality of the 30 directed connections. 
The identification results are shown in Fig. 2.

It can be found that the NGCIM can identify all the 
interactions between all nodes correctly, however, 
LGCIM fails to identify the connection from node 1 to 
node 4. Thus, the accuracy of identification of LGCIM is 
97.22%. To more effectively validate the two methods, ten 
rounds of simulation and identification are carried out 
for small-scale networks with 2–6 nodes. In each round, 
100 randomly connected network are established with 
a sparse connective ratio. Finally, the average identifica-
tion accuracies of the 10-round simulations are shown in 
Table 2. The network structure identifications are further 
extended to the SNNs’ structures of 20 and 100 nodes, 
and the identification accuracies of 10 rounds of identifi-
cations are shown in Tables 3 and 4 respectively.

It can be summarized from Tables  2, 3, 4: 1. As the 
scale of the SNNs increases, the identification accura-
cies of both linear and nonlinear methods decrease, but 
the declining trend gradually becomes stable and goes 
into a plateau. 2. The identification accuracies of NGCIM 
based on the Gaussian kernel function for the small-
scale networks with 2–6 nodes are achieved respectively 
100%, 99.64%, 98.64%, 98.37%, and 98.31%, which are sig-
nificantly higher than those of LGCIM, which are 100%, 
99.53%, 98.03%, 97.60%, and 97.26%. For the medium-
scale networks with 20 nodes and the large-scale net-
works with 100 nodes, the identification accuracies of 
the NGCIM is 84.87% and 80.56%, which are still sig-
nificantly higher than 82.54% and 80.21% of the LGCIM 
for the same scale networks. The fact reflects that the 
accuracies of the NGCIM based on the Gaussian func-
tion is significantly higher than those of the LGCIM dur-
ing identifying SNNs’ connected structures. In addition, 
the NGCIM is also used to identify SNNs’ connection 
structures when the RBF select the different kernel func-
tions: Gauss Function (GF), Reflected Sigmoidal Func-
tion (RSF), IMQF (Inverse Multi-quadrics Function). The 
identification results with different kernel functions is 
shown in Table 5.

Because a large amount of computation costs, espe-
cially for 100-node networks, the NGCIM is coded and 
assigned to an AMAX GPU server with a Nvidia Tesla 
K40 card. The time consumed by the NGCIM with three 
different kernel functions are shown in the Table  6, 
for the 10 rounds of the different scales of network 
simulations.

It can be found that IMQF ranks as the highest aver-
age accuracies of 10-round identifications by NGCIM, 
then GF as the second highest and RSF as the lowest. 
However, for computational speeds, GF is the fastest 
among the three kernels. IMQF consumes the largest 
amount of time because of its relatively higher compu-
tational complexity.
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Fig. 2  Identification results of 6 node network structure by the 
LGCIM and the NGCIM. a The network connection structure identified 
by the NGCIM with the Gaussian kernel function. b The network 
connection structure identified by the LGCIM

Table 2  The average identification accuracy of  10-round 
simulations of small-scale networks with 2–6 nodes

Number 
of nodes

2 nodes 
(%)

3 nodes 
(%)

4 nodes 
(%)

5 nodes 
(%)

6 nodes 
(%)

LGCIM 100 99.53 98.03 97.60 97.26

NGCIM 100 99.64 98.64 98.37 98.31

Table 3  The average identification accuracies of the 20-nodes SNNs

Rounds 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%)

LGCIM 82.88 82.05 82.58 82.90 82.39 82.64 82.49 82.04 82.53 82.92

NGCIM 84.84 84.42 85.03 84.64 84.89 85.36 84.99 84.77 84.82 84.95

Table 4  The average identification accuracies of 100-node SNNs

Rounds 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%)

LGCIM 80.20 80.23 80.18 80.19 80.26 80.18 80.17 80.21 80.22 80.25

NGCIM 80.54 80.45 80.75 80.23 80.44 80.73 80.71 80.75 80.32 80.66
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Discussion
In the process of identifying the structures of BNNs, 
the traditional LGCIM has some limitations due to the 
essential non-linearity of biological neurons. It is neces-
sary to extend the network model to the nonlinear model 
and establish the conditional nonlinear Granger causality 
detection method, i.e., NGCIM.

In the NGCIM, the nonlinear dynamic effects between 
neurons were fitted by the RBFs, which commonly con-
sist of three types of nonlinear kernel functions. For test-
ing the proposed NGCIM, neuron firing behaviors were 
simulated by artificial SNN model based on the IF mech-
anism, and both LGCIM and NGCIM are applied to the 
multi-channel neuronal pulse sequence data generated 
by network simulations. For the 2–6 nodes (small-scale) 
SNNs, the 20 nodes (the middle-scale) SNNs, the 100 
nodes (large-scale) SNNs, the 10 rounds of 100 randomly 
connected network structures were formed and simu-
lated. Then, the causal synaptic connections and strength 
in the network are identified reversely.

Conclusions
BNN is one of the most complex nonlinear systems ever 
discovered by human till the present time. Drawing the 
connection structure maps of brain networks has more 
crucial theoretical significance for the researches of neu-
rophysiology and pathology, and even helps to create 
more higher-level artificial intelligent systems.

The NGCIM is applied to the network structure dis-
covery process of the SNN simulation models based on 
IF mechanism. The multi-channel spike sequence data 
are generated by the network simulations. The method 
can use the simulated data to reversely identify the syn-
aptic connections and their strengths existing in the 

networks. The identification results show that the aver-
age identification accuracy of the NGCIM based on RBF 
is significantly higher than that of the LGCIM, which 
verifies the effectiveness of the proposed method in the 
task of BNNs structure identification. The comparisons 
between three different kernel functions show IMQF 
has the highest identification accuracy but consume the 
longest computational time, especially for the 100-node 
SNNs. Such a relatively heavy burden of computational 
task can be assigned to the GPU server for parallel dis-
tributed computations.

The development of Electroencephalography, func-
tional Magnetic Resonance Imaging, and Multi-Electrode 
Array greatly promoted the research on the identifica-
tion of the functional connection structures of BNNs. 
NGCIM is compatible to the nonlinear essences of BNN 
spike firings than the other previous methods are. There-
fore, with an accumulation of the data obtained by the 
existing measurement methods, the NGCIM can be a 
promising network modeling method to infer the func-
tional connective maps of BNNs.

Methods
Liner Granger causality
Granger first proposed the concept of causality in 1969 
to detect causality relationships between two simultane-
ously recorded signals [15]. The processes become one of 
the most attracting scientific investigations in time series 
analysis. Thereafter, a variety of applications arose in dif-
ferent fields, such as economics, physiology, neurosci-
ence, and many others [16]. If the prediction of one time 
series can be improved by incorporating measurements 
from the second time series in a regression model, then 
the second time series is said to have a “Granger causal-
ity” on the first time series.

Table 5  The average accuracies of 10-round identifications with three different kernel functions

2 nodes (%) 3 nodes (%) 4 nodes (%) 5 nodes (%) 6 nodes (%) 20 nodes (%) 100 nodes (%)

GF 100 99.64 98.64 98.37 98.37 84.87 80.56

RSF 100 99.63 98.34 98.23 98.31 84.85 80.49

IMQF 100 99.67 98.76 98.53 98.47 85.11 80.88

Table 6  The time consumed by 10-round identifications with three different kernel functions

In each round of simulations, 100 randomly connected networks are established and identified

2 nodes (s) 3 nodes (s) 4 nodes (s) 5 nodes (s) 6 nodes (s) 20 nodes (s) 100 nodes (s)

GF 298 472 625 792 972 3597 49,234

RSF 300 483 657 793 994 3615 53,647

IMQF 308 494 640 806 1015 3633 54,266
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The nonlinear multivariate Granger causality analysis 
is originally derived from a definition and test of lin-
ear Granger causality in a two-variate system, which 
is commonly based on a Vector AutoRegressive (VAR) 
model [17]. Take an example of two stationary time 
series of N simultaneously measured quantities { xk }, 
k = 1, 2, …, N and { yk }, k = 1, 2, …, N. A VAR model can 
be constructed as:

where ( xk , yk ,Xk ,Y k ) are realizations of the stochas-
tic variates (x, y, X, Y) and xk = xk+m+τ , yk = yk+m+τ , 
X
k = (xk+m−1, xk+m−2,…,xk)T, Y

k = (yk+m−1, yk+m−2

,…,yk)T. The notation m denotes an order of the model 
and τ is a step of a pure delay. V11, V12, V21, and V22 are 
m-dimensional row vectors, which represent the weights 
of individual components in Xk and Y k contributing to 
a prediction of xk and yk . The prediction errors of the 
two variates are ε1 and η1 and their variances can be rep-
resented as Σ1 and H1 . For simplicity, a shorthand of the 
two-variate VAR model in a form of random variates is 
described as:

Without any interactions between the two variates, 
the VAR model is then deduced to:

where W1,W2 are m-dimensional weight vectors and 
ε2 , η2 are the prediction errors of each variate by its past 
values.

According to the thought of Granger causality, if the 
prediction of x is improved by incorporating the past 
values of y, then y has a causal influence on x. Thus, a 
Granger causality of y on x can be evaluated as:

If x and y are independent of each other, then V12 and 
V21 are both zero vector. Models (6) and (7) become 
models (8) and (9). Thus, Σ2 = Σ1, and Fy→x = 0 . 

(4)
x
k − V11X

k − V12Y
k = ε1, var[ε1] = Σ1,

(k = 1, 2, . . .N −m− τ )

(5)
yk − V21X

k − V22Y
k = η1, var[η1] = H1,

(k = 1, 2, . . .N −m− τ )

(6)x − V11X − V12Y = ε1, var[ε1] = Σ1

(7)y− V21X − V22Y = η1, var[η1] = H1

(8)x −W1X = ε2, var[ε2] = Σ2

(9)y−W2Y = η2, var[η2] = H2

(10)Fy→x = ln
Σ2

Σ1

In another case that y has a causal effect on x, then 
Σ2 > Σ1 , so that Fy→x > 0 . Similarly, we can define the 
measure of the Granger causality of x on y:

If Fx→y = 0, then x has no causal effect on y. While 
Fx→y > 0, x has a causal effect on y.

RBFs for nonlinear modeling
Currently, BNN is one of the most complex nonlinear 
network systems as human knows [18]. In the process of 
identification of BNN structures, how to conduct a non-
linear network analysis in a framework of linear Granger 
causality still has a crucial theoretical value and practi-
cal significance. RBFs, whose linear combinations can 
approximate any nonlinear function, are commonly 
employed to fit the dynamic causal relationship among 
nonlinear network variates [19]. A RBF is defined as a 
real valued function of a vector X that depends on the 
distance from the origin: �(X) = �(‖X‖ ) or depending on 
an distance to any center c, �(X − c) = �(�X − c� ). The 
notation r = �X − c� represents a modulus, or the norm 
of 2, of the difference vector. Usually, �(r ) can takes the 
following forms:

1) GF: �(r) = exp ( −r2/2σ 2).
2) RSF: �(r) = 1/

(

1+ exp(r2/σ 2)
)

3) IMQF: �(r) =1/
√
r2 + σ 2

Any variate y can by predicted by a linear combination 
of a series of RBFs with respect to its past value vector Y 
and other past value vector X:

where n is the total number of RBFs involved. For fit-
ting a nonlinear dynamical relation between different 
variates, three parameters need to be solved: the center 
vector c, the width σ , and the output layer weight ωi . A 
parameter learning is designed to obtain the optimal 
parameters with a high prediction accuracy. See Fig.  3 
for a structure of the RBF where includes an input layer, 
a hidden layer (nonlinear mapping), and an output layer 
(linear). The whole process of learning algorithm is sum-
marized as shown in Fig. 4. In Fig. 4, a k-means cluster-
ing algorithm is used to find p center vector c [20]. Then, 
a k-Nearest Neighbor (kNN) rule is applied to calculate 
σ [21]. Finally, the weight ωi is obtained by a Minimum 
Square Error (MSE) method [22].

(11)Fx→y = ln
H2

H1

(12)y =
n

∑

i=1

ωi�(·) i = 1, 2, . . . , n
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Two‑variate nonlinear Granger causality
Similar to the idea of linear Granger causality, a non-
linear Granger causality based on RBFs can also be 
defined in the framework of VAR model. The dynamic 
dependence between time series x and y is expressed as 
the following nonlinear autoregressive model:

where {V} are fitting parameters for RBF �(X) or�(Y ) , 
estimated by the MSE criterion. For example, function 
vector � = (ϕ1, . . . ,ϕp1) are p1 given nonlinear real func-
tions of m variates and � = (ψ1, . . . ,ψp2) are p2 other 
real functions of m variates. The number pi (i = 1, 2) is 
determined by how many clustering centers are obtained 
after using the k-means method. The notation ε1 and η1 
denote the prediction error, and the covariance matrix of 
them is:

(13)
x − V11 ·�(X)+ V12 ·�(Y ) = ε1, var(ε1) = Σ1

(14)
y−V21 ·�(X)+ V22 ·�(Y ) = η1, var(η1) = H1

(15)� =
(

Σ1 Λ1

Λ1 H1

)

where Σ1 = var(ε1),H1 = var(η1),Λ1 = cov(ε1, η1) . As 
shown in (13), time series xk of variate x in the present 
moment k can be predicted using the sum of the non-
linear function of time series vector Xk (before the k 
moment), the nonlinear function of time series Y k(before 
the k moment) and the forecast error ε1.

We proposed a strategy to choose the functions � 
and � , in the framework of RBF methods. For example, 
functions � are selected in the following three forms:

where {
∼
X

ρ

}
p1

ρ=1 are the centers of the data X clustered 
by the k-means algorithm. The notation σx denotes the 
width of the RBF, which controls the radial range of the 
function. It is calculated using KNN rule. When the 
effects of other variate y (or x) are eliminated both in (13) 
and (14), the aforementioned nonlinear mutual regres-
sion model can be deduced to the form:

where ε2, η2 denote the estimated errors, W1, W2 are the 
parameter vectors of the fitting model. If the prediction 
variance Σ1 < Σ2 , the prediction of x is improved after 
adding the nonlinear effects of y. Then it is believed that y 
has a nonlinear Granger causality on x, and the nonlinear 
causal measurement of y on x can be expressed as:

Similar to the case of linear Granger causality, if y has 
a nonlinear causal effect on x , then Σ2 > Σ1, Fy→x > 0.

Conditional nonlinear Granger causality
In the cases of biological network analysis, the prob-
lem usually becomes how to infer functional connections 
among multivariate network data. At that time, it is unrea-
sonable to only focus on the causal effects between two 
variates and ignore the effects from other network nodes, 
such as genes, proteins, metabolites, and neurons. In one 
BNN, there is often many indirect causalities between 
two network nodes. Therefore, a test for whether there 
is a direct drive-response relationship between the two 

(16)
ϕρ(X) = exp(−�X −

∼
X

ρ

�
2

/2σ 2
x), ρ = 1, . . . , p1

(17)
ϕρ(X) = 1/(1+ exp(�X −

∼
X

ρ

�
2

/σ 2
x )), ρ = 1, . . . , p1

(18)
ϕρ(X) = 1/

√

�X −
∼
X

ρ

�
2

+ 2σ 2
x, ρ = 1, . . . , p1

(19)x −W1�(X) = ε2, var(ε2) = Σ2

(20)y−W2�(Y ) = η2, var(η2) = H2

(21)Fy→x = ln
Σ2

Σ1

Fig. 3  A structure of an RBF network

k-means

k-Nearest
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Fig. 4  A schematic drawing of the RBF learning process
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network variates, needs the information from other vari-
ates as a condition, known as the "conditional causality" 
[23] (see Fig. 5 for an illustration).

As shown in Fig. 5, y has a direct effect on z, and z has a 
direct effect on x. The influence of y on x includes not only 
the direct influence from y to x but also the indirect influ-
ence through the third variate z. The conditional Granger 
causality test can distinguish between direct and indirect 
directional effects. Considering the causal effect of y on x 
under the condition of the indirect variate z, this nonlinear 
model can be described as:

where ε1 η1 , and υ1 represent the prediction errors, and 
� = (π1, . . . ,πp3) are p3 given nonlinear RBFs of m vari-
ates. The kernel function can also take the forms of (16–
18). To test the direct nonlinear Granger causality from 
y to x, there is a need to eliminate the effects of y and 
remodeling the network only using z and x.

Under the condition of variate z, the measurement of the 
nonlinear causal effect of y on x is:

If there is no direct interaction from y to x on the condi-
tion of z, V12 is a 0 vector, Σ1 = Σ2, and Fy→x/z = 0. Oth-
erwise, y has a conditional nonlinear Granger causality on x 

(22)

x − V 11 ·�(X)− V12 ·�(Y )− V13 ·�(Z) = ε1,

var(ε1) = Σ1

(23)

y− V 21 ·�(X)− V22 ·�(Y )− V23 ·�(Z) = η1,

var(η1) = H1

(24)

z − V 31 ·�(X)− V32 ·�(Y )− V33 ·�(Z) = υ1,

var(υ1) = Υ1

(25)
x −W11 ·�(X)−W13 ·�(Z) = ε2, var(ε2) = Σ2

(26)
z −W31 ·�(X)−W33 ·�(Z) = υ2, var(υ2) = Υ2

(27)Fy→x/z =
Σ2

Σ1

based on the knowledge of z, i.e., Σ2 > Σ1and Fy→x/z > 0. 
In this way, when making direct causal judgment between 
variates through conditional causality tests, the possibility 
of indirect causal influences should be excluded to ensure 
the reliability of direct causality tests. It is worthwhile 
noted that in the process of causal test of conditions with 
more than 3 variates, variates z often need to be extended 
to all sets of variates except for the current studied variates 
y and x.
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