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Abstract

Background—Hypoxia is an important disease mechanism in prematurity, childhood asthma 

and obesity. In children, hypoxia results in chronic inflammation.

Methods—We investigated the effects of hypoxia (Hx) (12% O2) during postnatal day 2 to 20 in 

rats. Control groups were normoxic (Nc), and normoxic growth restricted (14 pup liters) (Gr).

Results—Hypoxia decreased growth similar Gr. Hx increased plasma TNFα and IL-6 and 

decreased IGF-I and VEGF. Hypoxia resulted in right ventricular (RV) hypertrophy but 

disproportionate decrements in limb skeletal muscle (SM) growth. miR206 was depressed in the 

hypertrophied RV of Hx rats while increased in growth retarded SM. Hx resulted in a decreased 

RV mRNA for myostatin but had no effect on SM myostatin. The mRNA for hypoxia sensitive 

factors such as HIFα was depressed in the RV of Hx rats suggesting negative feedback.

Conclusion—The results indicate that Hx induces a proinflammatory state that depresses growth 

regulating mechanisms and that tissues critical for survival, such as the heart, can escape from this 

general regulatory program to sustain life. This study identifies accessible biomarkers for 

evaluating the impact of interventions designed to mitigate the long-term deleterious consequences 

of hypoxia that all too often occur in babies born prematurely.

INTRODUCTION

There are emerging data supporting the concept of critical periods of growth when relatively 

brief physiologic perturbations can lead to detrimental functional, genomic, and even 

epigenetic changes in affected tissues (1). In this context, prematurely born newborns are 

particularly vulnerable because they are developing rapidly and because many premature 

newborns are exposed to profound environmental stresses such as hypoxia (2). Not 
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surprisingly, premature babies are at high risk of developing growth and body composition 

abnormalities later in life that include failure-to-thrive, obesity, and osteopenia (3, 4).

A remarkable feature of hypoxia associated growth retardation early in life is that certain 

tissues such as the heart, actually increase in size relative to body mass even in the context 

of overall reductions in somatic growth (5). This seeming disparity in individual tissue 

responses provides an opportunity to examine key regulatory mediators of simultaneous 

growth inhibition and compensation. By understanding the mechanisms through which 

hypoxia early in life alter growth, we might identify potential targets that could improve 

outcomes at critical periods of growth and development in premature babies.

The goal of this study was to test the hypotheses that a) exposure to hypoxia early in life will 

alter the expression level of selected genes that are involved in growth and inflammatory 

processes in heart and skeletal muscles of neonatal rats, and b) the altered expression pattern 

will differ between heart and skeletal muscle. As shown in the Results, we focused on 

selected genes as well as growth and inflammatory mediators known to play a role in the 

regulation of heart and skeletal muscle as well as on key microRNAs, the latter increasingly 

demonstrated to play a role in gene regulation in muscle (6). We measured key anabolic 

mediators and inflammatory cytokines since there is evidence from this and other 

laboratories that growth in early life is regulated in part through the balance of growth and 

inflammatory mediators, the latter known to be stimulated by hypoxia (7, 8). Finally, given 

the increasing data that gender influences gene expression responses to physiological 

perturbations very early in life, we hypothesized that the phenotypic, genomic, and mediator 

response to hypoxia would be modified by gender in the neonatal rats.

METHODS

Pregnant Sprague-Dawley (SD) rats were purchased from Charles River (Wilmington, Ma.). 

Immediately post partum, the litters were randomly cross fostered and gender balanced. At 

post-partum day 3, four litters were randomized to the hypoxia treatment group (Hypoxia-

exposed), were culled to four pups per litter (total 8 male, 8 female) and housed, with the 

dam, in standard cages placed in a normobaric chamber Biospherix ProOx 360 (Lacona, 

NY). The small litter size was adopted to ensure adequate nutrition and minimize the 

maternal stress associated with full litter size in the hypoxic environment (9). The 4 litters 

randomized to the normoxic control (Nc) groups were also culled to four pups (total 8 male, 

8 female) and housed in standard cages in the same room as the chamber. The protocols 

used in this study were approved by the University of California-Irvine Institutional Animal 

Care and Use Committee.

To induce hypoxia, a feedback controller senses O2 levels in the chamber and feeds N2 into 

the chamber to maintain the preset level of O2 (12%). We have modeled hypoxia at an FiO2 

of 12% that represents moderate hypoxic exposure, equivalent to the ambient FiO2 found at 

4000 m and quite compatible with life. In humans, inhalation of 12.5% O2 has been reported 

to decrease systemic PO2 to below 50 Torr (10). Using the alveolar gas equation this 

exposure should produce approximately 80–85% oxygen saturation of hemoglobin in the rat. 

We and others have found that this level of hypoxia is “tolerated” by the young rats (i.e., the 
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vast majority survive) (9). The chamber used in this study allows exchange with the 

environment so that pressure remains unchanged. Humidity and CO2 were monitored and 

regulated.

To provide a comparison group that experienced growth restriction without hypoxia, three 

additional litters were created consisting of fourteen pups per dam (total 21 male, 21 

female). This treatment is known to result in significant growth impairment (11). The diet-

restricted groups were also housed in standard cages in the same room as the chamber. 

Previous studies indicated that hypoxia exposure is associated with some degree of reduced 

food intake, but not of sufficient magnitude to account for the decrements in growth seen 

with hypoxia (9).

Tissue Collection & Analysis—The study was terminated on day 21 postpartum. The 

rats were euthanized using Pentosol solution. After the induction of deep anesthesia, but 

prior to the cessation of breathing, blood was collected from the left ventricle via the 

diaphragm using a heparinized syringe. The ventricles were removed and weighed. The 

soleus, plantaris, medial gastrocnemius (MG) muscles of both legs were dissected free of 

connective tissue, weighed. All tissues were snap frozen and stored at −80°C for later 

analysis.

Heart and Skeletal Muscle Protein, Myofibrillar Protein and DNA—Tissue 

samples were homogenized in 20 ml of buffer per gram tissue. The homogenization buffer 

contained 250 mM sucrose, 100 mM KCl, 5 mM EDTA, and 10 mM Tris HCl, pH 7.0. 

Myofibrillar proteins were quantitatively extracted from a known volume of the total 

homogenate suspended into a known volume of 100 mM KCl, 10 mM Tris, and 1 mM 

EDTA, pH 7.4. Protein concentration in the homogenate and myofibril suspension was 

determined using the Biorad Protein assay with gamma globulin as a standard. Muscle 

protein and myofibril content were calculated based on the homogenized muscle piece 

weight and total muscle weight. Muscle total DNA concentration calculation was based on 

total DNA concentration in the total homogenate and was determined by a fluorometric 

assay using the DNA-specific fluorescent Hoechst 33258 dye (12).

In each case the data provided includes both the content and concentration for the protein, 

myofibrillar protein, RNA and DNA of the tissues examined. This was done to provide an 

appreciation of both the changes in size that occurred in response to the treatment (content 

values) and relevant concentrations so that the reader can determine if these values remained 

in a normal physiological range.

Complete Blood Count—Complete blood count with differential for hemoglobin and 

white blood cell analysis were obtained using Hemavet 950 (Drew Scientific Waterbury, 

CT).

Plasma Analysis—Circulating cytokines (TNF-α and IL-6), growth factors (IGF-I, 

Growth Hormone (GH), and VEGF) and sex hormones (testosterone and estradiol) levels 

were measured using commercially available ELISA kits manufactured by R&D Systems 

(Minneapolis, MN).
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RNA Analysis

Total RNA—Total RNA was extracted from pre-weighed frozen tissue samples using the 

TRI Reagent according to the manufacturer’s protocol (Molecular Research Center, 

Cincinnati, OH). Total RNA concentration was determined by optical density at 260nm. The 

tissue total RNA concentration was calculated based on total RNA yield and the weight of 

the analyzed sample.

mRNA analysis—One microgram of total RNA was reverse transcribed into cDNA using 

the SuperScript II RT from Invitrogen (Grand Island, NY) and a mix of oligo dT and 

random primers.

Cardiac MHC mRNA (myosin heavy chain), IGF-I, IGFBP4, IGF BP5, Myostatin, MURF1, 

Atrogin, Cyclin D1, and Nos3 mRNA expression were analyzed using an end point RT-PCR 

approach as described previously (12). For all these mRNAs, except for Nos3, PCR primers 

sequence is as reported previously (12–14). Nos3 primers were designed using Primer Select 

software (DNAStar Madison, WI) and NM_021838 reference sequence in NCBI. Nos3 

mRNA primers seq was 5′>3′: Fwd: GATTCTGGCAAGACCGATTACACGAC : Rev: 

CCGCGGCCAGCTCTGTCC to amplify a 228 bp. In addition to the above mRNA markers, 

HIF1α, HYOU1, VEGF mRNA were analyzed using Taqman Real-Time PCR assays 

(Applied Biosystems, Carlsbad, Ca.) and was normalized to endogenous control beta actin 

(ACTB).

Rationale—Analysis of MHC phenotype provides important insights on the adaptation of 

striated muscle tissue relative to contractile characteristics and economy. IGF-I is a powerful 

regulator of tissue growth. Modulation of this system is accomplished both via changes in 

IGF-I expression and it’s bioavailability as determined, in part, by the IGF binding protein 

family. Myostatin is a powerful, negative, regulator of muscle growth. MURF1 and Atrogin 

are muscle specific E3 ligases that can modulate muscle size and adaptation via the targeting 

of proteins for proteolysis. Cyclin D1 is a key regulator of entry into the cell cycle. Nos3 is 

important for the generation of NO. In muscle NO signaling is implicated in a number of 

processes such as angiogenesis. VEGF is also a critical regulator of angiogenesis that 

functions in conjunction with hypoxia sensitive proteins such as HIF1α and HYOU1.

MicroRNA Analysis—TaqMan assays were carried out on miR-1, miR-133a and miR206. 

Reverse transcriptase (RT) reactions were carried out using the TaqMan microRNA Reverse 

Transcription Kit (Applied Biosystems) according to manufacturer’s instructions. Real-Time 

PCR analysis was performed with the Applied Biosystems 7900HT Sequence Detection 

System by using TaqMan Universal PCR Master Mix and Assays-on-Demand microRNA 

probes (Applied Biosystems). All reactions were run in duplicate. The cycle threshold for 

each sample was determined using SDS software version 2.3 (Applied Biosystems) and was 

normalized to endogenous control U6 snRNA.

Statistical Analysis

Between groups analysis was conducted using a One-Way ANOVA with Bonferroni’s 

multiple comparisons test post test using PRISM software (Graphpad, La Jolla, CA). 
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Graphical representations of the data include 95% confidence limits. Tabular data includes 

Mean ± Standard Error. For all statistical tests the significance level was set at 0.05.

RESULTS

Body Weight, Muscle Mass and Phenotype, and Organ Mass

Total Body Mass—At 21 days of age, the body mass of hypoxia exposed pups was 

significantly smaller than the control animals and similar to that of the Gr group (Figure 1a). 

The growth deficits imposed either by hypoxia or large litter size appeared to be more 

pronounced in the male pups (Figure 1a).

Skeletal Muscle—The relative mass of mixed fiber type locomotor skeletal muscles such 

as the plantaris and MG were significantly depressed to a similar extent in both male and 

female Hx rats (Figure 1b and data not shown).

Right Ventricle (RV)—Hx but not Gr rats experienced a remarkable adaptation in the 

heart in which the relative (mg/g body) mass of right ventricles were increased ~5x fold 

(Figure 2a.) The DNA content of the RV was increased ~2 fold in the Hx rats (Figure 2b.) 

while the DNA concentration was not different from the Nc group (Table 1). In Gr rats, the 

DNA concentration of the RV was elevated ~30% relative to that of the control and hypoxia 

exposed animals (Table 1). The total- and myofibrillar-protein content of the right ventricles 

of Hx rats was increased ~2 fold (Figure 2c & Table 1). However, the concentration of total 

protein in the RV was similar in all groups (Supplementary Table 1 (online)). In contrast to 

content, the myofibrillar protein concentration in the RV from female Hx rats was 14% 

lower (P<0.05) than in the Nc group (Table 1).

As part of the adaptation to hypoxia, the RV myosin heavy chain (MHC) phenotype of the 

hypoxia-exposed rats was shifted toward substantial expression of the β-MHC isoform 

(Figure 2d) reflecting a shift to a metabolically more economical phenotype (15). There 

were concomitant decreases (P<0.05) in the expression of the α-MHC isoform (Table 1).

Left Ventricle (LV)—As with the RV, relative LV mass was significantly increased (~2 

fold) in Hx rats relative to Nc or Gr (Table 2). The LV mass of the Gr rats was appropriate 

to the size of the animal, i.e., relative mass was not different from that of Nc. The much 

smaller absolute size of the Gr LV was reflected in the lower protein and DNA contents 

(Table 2).

Relative to controls, the total protein, myofibrillar protein and DNA content of the LV was 

elevated in the female Hx rats but not the males (Table 2). In both genders, the protein and 

DNA contents of the Hx LV were greater than that of the diet-restricted rats reflecting the 

increased size of this organ.

In contrast to the content values, the concentrations of protein and myofibrillar protein were 

similar across groups and genders in the LV (Supplementary Table 2 (online)). Similar to 

the RV, the concentration of DNA in the LV was slightly greater with Gr (Supplementary 
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Table 2 (online)). However, in the LV, significant differences were only seen in the female 

Gr rats.

The LV of the Hx rats experienced a shift in β-MHC phenotype that was qualitatively 

similar to that seen in the RV (Table 2). There was a complimentary decrease (P<0.05) in 

the expression of the α-MHC isoform in the LV (Table 2)

Growth Factors, Inflammatory Mediators, and Leukocytes

Plasma estradiol was lower in the Nc males relative to Nc females (e.g., Nc: 30±3 vs. 40±4 

pg•ml−1; P=0.04, Student’s t-test). Estradiol appeared to be or was significantly elevated in 

the Hx and Gr males (Table 3). There were no differences in plasma testosterone between 

the Nc male and female animals (Table 3). Plasma testosterone was significantly depressed 

in the female Hx rats relative to Nc females (Table 3) .

Circulating levels of IGF-I were lower than control in both Hx and Gr animals (Figure 3a). 

Further, IGF-I in Hx rats was significantly lower than in Gr animals (Figure 3a). VEGF and 

GH were reduced in the hypoxia-exposed but not diet-restricted pups (Figure 3b&c).

In Hx rats, the concentrations of monocytes and neutrophils were elevated in the male but 

not the female (Table 3). TNF-α and IL-6 were significantly elevated in the hypoxia 

exposed pups (Table 3). Hemoglobin concentrations were elevated in both the hypoxia-

exposed and diet-restricted pups with greater changes seen in the hypoxia group (Table 3).

Gene Expression

Heart—In the RV, the levels of several hypoxia sensitive mRNAs were significantly 

altered. The Hx animals experienced decreases in Hypoxia Inducible Factor 1α (HIF1α) and 

Hypoxia Up-Regulated-1 (HYOU1) in both genders (Figure 4a & b) and decreased VEGF in 

the females (Figure 4c). However, the mRNA for the Platelet Derived Growth Factor 

Receptor-β (PDGFRβ), known to be critical for angiogenic adaptation in overloaded hearts, 

was increased in the RV of the Hx animals (Figure 4d).

Hypoxia also impacted the mRNA levels of several growth related factors in the heart. The 

levels of mRNA for myostatin, a powerful negative regulator of muscle growth, and IGF-I 

binding protein-5 (IGFBP-5), a binding protein sensitive to IGF-I levels, were depressed in 

both the RV (Figure 5a&b) and LV (Table 2) of Hx animals. No differences were observed 

in the levels of mRNA for IGFBP4, Cyclin D1 and Nos3 (Supplementary Table 1 (online)).

In the LV, the levels of several hypoxia sensitive mRNAs were significantly altered 

primarily in female rats. The female Hx animals experienced decreases in HIF1α and VEGF 

mRNA while that of HYOU1 was decreased ~26% in both genders (Table 2). The mRNA 

for the PDGFRβ was not different across treatments (Supplementary Table 2 (online)).

Skeletal Muscle—The mRNA concentration for Nos3, a pro-angiogenic regulator (16) 

and IGFBP4 were significantly depressed in the MG muscles from Hx rats of both genders 

(Figure 5c&d). In male Hx rats the mRNA levels for IGFBP5 were also significantly lower 

than that found in the Nc and Gr animals (Table 4). The mRNA of muscle ring finger-1 
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(MURF-1) and Atrogin-1, muscle specific E3 ligases often associated with muscle atrophy 

(17), were not significantly different between groups (Supplementary Table 3 (online)). 

Interestingly, the mRNA for myostatin was not different across groups (Table 4). No 

treatment associated changes were seen in MHC isoform expression (Not shown). In the 

MG muscle, the mRNA concentrations for HIF1α, VEGF, HYOU1 and PDGFRβ were 

similar across groups (Supplementary Table 3 (online)).

MicroRNAs

Levels of microRNAs known to be important regulators of gene expression in the heart were 

affected by exposure to hypoxia. In the RV, miR206 was depressed in both genders as was 

that of miR1 in male Hx rats (Figure 6a&b). The expression of miR133a was increased in 

the RV of female Gr rats relative to the Hx group (not shown), no other differences were 

observed in the RV. Only one significant change in miR abundance was observed in the LV. 

The expression of miR1 was decreased 27% in the LV of male but not female Hx rats (Table 

2).

Analysis of candidate microRNAs commonly reported to be important in skeletal muscle 

demonstrated various responses that were often gender specific. MG muscle miR1 was 

significantly elevated in male Hx rats while miR1 was repressed in females in the Hx and Gr 

groups (Figure 6c). The expression of miR206 was elevated in the MG muscles of Hx rats in 

both genders (Figure 6b). The miR133a was repressed in female Gr rats (Table 4).

DISCUSSION

In this study, we succeeded in comparing two types of somatic growth inhibition, one with 

hypoxia and one with large litter size, in neonatal rats. The comparison permitted us to shed 

new light on molecular mechanisms of both growth stimulation, in the hearts of hypoxia-

exposed rats, and growth inhibition in the skeletal muscles. We identified, for the first time, 

potential hypoxia specific gene mediators of growth such as decreased cardiac myostatin 

and IGFBP5 expression in hypoxia-exposed neonatal rats. We identified the potential 

pivotal role played by the microRNA miR-206 as a hypoxia sensitive regulator of growth in 

cardiac muscle in neonatal rats. Our studies further elucidated the unique role that hypoxia 

plays in promoting inflammatory mediators, a phenomenon that is potentially linked to the 

long term consequences of hypoxia early in life. Finally, our studies suggest that the impact 

of moderate hypoxia early in life may alter growth to a greater extent through secondary 

mediators, such as inflammatory cytokines, than through direct effects of hypoxia on known 

regulatory genes such as HYOU1, HIF1α, and VEGF. These results are encouraging as we 

have previously found evidence that such secondary effects (such as inflammation) can be 

attenuated by physical activity (13, 18).

It is conceivable that the paradoxical growth effects that we observed, namely, a robust 

increase in relative heart muscle size in the hypoxia exposed rats despite their smaller size, 

resulted from somewhat antagonistic simultaneous effects of hypoxia exposure and 

increased muscle work. Even under the conditions of moderate hypoxia imposed in the 

current study, cardiac work would be increased: in the right heart likely caused by hypoxia-

induced pulmonary vasoconstriction (19); in the left heart through the adaptive response of 
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increasing systemic cardiac output to maintain tissue oxygen delivery in light of reduced 

arterial blood oxygenation. Skeletal muscle, in contrast, would not be similarly stimulated 

by hypoxia.

In the heart, an important finding was the decreased expression of VEGF, either as protein 

present (circulation) or message (tissues), associated specifically with the hypoxia exposure. 

VEGF plays a key role in the angiogenesis that occurs in skeletal muscle in response to 

exercise training (20) and heart muscle in response to loading and hypoxia (21). VEGF gene 

expression is sensitive to hypoxia through mediators such as HIF1α (20). In the current 

study, both the circulating and tissue levels of message for VEGF and/or VEGF regulatory 

mediators (e.g., HIF1α and IGF-I (22) were actually depressed indicating that these 

regulatory feedback pathways may have been invoked during hypoxia exposure. These data 

strongly suggest that in future studies functional indices of angionesis, such as capillary 

density, should be examined.

This potential differential mechanism is highlighted in the comparison of skeletal and 

cardiac muscle. In contrast to the heart, the changes in VEGF or its regulatory genes were 

not influenced by hypoxia in skeletal muscle. This result is similar to that reported by He et 

al. (23) in adult rats where hypoxia per se had no effect in muscle expression of HIF1α and 

VEGF. Interestingly, these authors found increased expression of the mRNA for these 

mediators in adult animals that were exposed to hypoxia in combination with exercise 

suggesting that an additional stressor is necessary to induce adaptations in this tissue (23).

Developmental growth of the heart is modulated both by mechanical factors and mediators 

such as IGF-I (24). In the case of the IGF-I system, the results seen in the current study 

(Figure 3) are consistent with observations that a decrease in IGFBP5 expression may 

promote growth/hypertrophy (25). However, in contrast to hypoxia imposed in adult rats 

(26), the RV hypertrophy seen in the current study did not appear to be driven by an increase 

in the mRNA for IGF-I itself.

Similar to the heart, skeletal muscle developmental growth is coordinated, in part, by 

circulating mediators such as IGF-I (27). In that context, the restrained growth of the leg 

skeletal muscles investigated was consistent with the depressed circulating levels of growth 

factors (Figure 3). In the current study, the mRNA for IGFPB4 was depressed by hypoxia in 

both genders. This IGF binding protein is commonly considered to function as a negative 

regulator of IGF-I. However, IGFBP4 gene knockout has been reported to decrease prenatal 

growth (28) suggesting that the decrease observed in the current study may be consonant 

with the observed growth inhibition.

In contrast to studies imposing hypoxia on adult rats (29), the limb skeletal muscles of 

neonates in this study did not demonstrate enhanced levels of myostatin mRNA suggesting 

that this mediator did not participate in the hypoxia induced growth retardation. 

Interestingly, the enhanced growth seen in the heart of hypoxia treated rats did appear to be 

a function, at least in part, of a decrease in myostatin mRNA (Figure 5, Table 2).

An additional mechanistic contrast between the response of the neonatal heart and skeletal 

muscles to hypoxia is seen in the levels of mRNA for angiogenic regulators. As noted 
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above, in the heart, VEGF mRNA levels were depressed in the Hx females (Figure 4, Table 

2) while Nos3 mRNA was unchanged (Supplementary Table 1 (online)). In skeletal muscle, 

VEGF mRNA was unaffected by hypoxia (Supplementary Table 3 (online)) while Nos3 

mRNA levels were depressed in both females and males (Figure 5).

With regard to miR expression, the most interesting and clear cut result was seen for 

miR206. Hypoxia but not growth restriction uniformly increased the expression of this miR 

in skeletal muscle, a tissue that experienced a profound decrement in growth. In contrast, the 

RV, which escaped the somatic anti-growth signaling program, had decreased miR206 

expression. This result suggests that, in a developmental setting, miR206 may be a critical 

regulator in striated muscle.

In skeletal muscle, the up regulation of miR206 is consistent with a decrease in satellite cell 

proliferation and indications of increased differentiation (30). This response would be 

expected to strongly limit total muscle size during development, i.e., fewer myofibers. The 

role of miR-206 in the development of the heart is less clear. In mature animals, miR-206 

expression is increased in response to injury and appears to contribute to the proliferation of 

progenitor cells.

In both skeletal and cardiac muscle miR-206 appears to function via the down regulation of 

tissue inhibitor of metalloproteinases-3 (TIMP3) (31). TIMP3 in turn, appears to be a critical 

regulator of muscle regeneration(31). In the present study, the Hx RV demonstrated a 

marked decrease in miR206 expression, while the concentration of DNA was similar to that 

in RV of the Nc animals. This suggests that the down regulation of miR206 biased cardiac 

adaptation towards hypertrophy and away from myogenesis possibly as a strategy to match 

cardiomyocyte growth with vascularization (32).

The results from a number of studies have indicated that early in life hypoxia results in 

lasting changes in the cardiovascular system and metabolism(5, 9, 33). For example, Del 

Duca et al reported that, in rats, 10 days of neonatal exposure to hypoxia resulted in 

differential gene expression in the left ventricle in adulthood (9). In that study, genes 

regulating a range of functions such as apoptosis, metabolism and vascular remodeling were 

affected by neonatal hypoxia. This research group found that the brief period of hypoxia 

exposure during this critical period of development had lasting effects on cardiomyocyte 

function, morphology and viability (9, 33).

In the current study, exposure to hypoxia resulted in increased levels of circulating 

inflammatory mediators (Table 3) and, in male rats, an elevation the number of monocytes 

and neutrophils in the circulation (Table 3). The activation of inflammatory processes by 

hypoxia has been reported in a number of previous studies (34). In an interesting study using 

intravital microscopy, Dix et al. reported that inflammation in microcirculatory beds was 

increased in response to systemic but not local hypoxia (35). Subsequent studies reported 

that alveolar macrophages mediate inflammatory responses in tissues remote from the lung 

(36). These results demonstrate that inflammatory responses to hypoxia are regulated via 

global mechanisms with the potential to affect all of the somatic systems.
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In general, proinflammatory cytokines entrain a number of intracellular processes that would 

be anti-anabolic in muscle (37). TNFα is thought to exert negative effects on cardiac muscle 

growth and function (37). However, some studies suggest a more complex relationship in 

which TNFα may play a role in myogenesis following muscle injury (32).

Similar to TNFα, IL-6 has been reported to play a variety of roles, both positive and 

negative, in cardiac pathology (32, 38). However, in the heart, the pathological effects of 

IL-6 expression are generally associated with hypertrophy.

It is well established that physiological insults, such as malnutrition or inflammation, during 

fetal life can adversely and profoundly affect subsequent growth and development (1). As 

noted above, it is also well established that exposure to hypoxia induces systemic 

inflammation (39, 40). There is some evidence that early in life hypoxia results in lasting 

changes in the cardiovascular system and metabolism (5, 9, 33). However, little is known 

about the long-term effects of hypoxia and attendant inflammation experienced during 

critical periods of postnatal life. This is a critical gap in our knowledgebase since chronic 

diseases of childhood like asthma and obesity may not only impair day-to-day health in 

affected individuals but may adversely impact health throughout the lifespan (41). The 

results from the current study point to mechanisms that may mediate lifelong changes 

resulting from a hypoxic episode experienced during a critical period of development. Such 

knowledge can be used to identify accessible biomarkers for evaluating the impact of 

interventions designed to mitigate the long-term deleterious consequences of hypoxia that all 

too often occur in babies born prematurely.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effects of Hypoxia and Litter Size on Body and Muscle Mass
a) Both large litter size in normoxia (Gr – Grey Column) and exposure to hypoxia (Hx – 

Hatched Column) (litter size 4) resulted in depressed body mass relative to pups maintained 

in normoxia (Nc - White Column) (litter size 4) at 21 days postpartum in rats. b) The 

relative mass of the leg muscle Medial Gastrocnemius and the concentration of RNA in that 

muscle were depressed at 21 days post partum in the Hx neonates. The left three columns 

are data from female rats, the right 3 columns are data from the male rats. N ≥ 7 *, P<0.05 

vs. Nc; §, P<0.05 vs. Gr.
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Figure 2. Effects of Hypoxia and Litter Size on the Right Ventricle
The right ventricular a) mass, b) DNA content, c) myofibrillar protein content and d) β-

myosin heavy chain percent were dramatically altered to support the increased demands of 

the hypoxic treatment at 21 days post partum. N ≥ 7. *, P<0.05 vs. Nc; §, P<0.05 vs. Gr.
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Figure 3. Effects of Hypoxia and Litter Size on Circulating Growth Mediators
At 21 days post partum, plasma concentrations of a) IGF-I were depressed in both the Gr 

and Hx neonates. Plasma concentrations of b) VEGF and c) GH were depressed only in the 

Hx groups. n ≥ 7, *, P<0.05 vs. Nc; §, P<0.05 vs. Gr.
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Figure 4. Effects of Hypoxia and Litter Size on Hypoxia Sensitive mRNA in the Right Ventricle
The Abundance of mRNA for a) HIF1α, b) HYOU1, c) VEGF and d) PDGFRβ was altered 

in the in the right ventricle at 21 days post partum. An exception to this was seen for VEGF 

in the Hx male neonates. n ≥ 7, *, P<0.05 vs. Nc; §, P<0.05 vs. Gr. AU; arbitrary units.
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Figure 5. Effects of Hypoxia and Litter Size on Growth Related mRNA in the Right Ventricle 
and Skeletal Muscle
The abundance of mRNA for a) Myostatin and b) IGFBP5 was significantly depressed in the 

right ventricles of the Hx neonates at 21 days post partum. The abundance of mRNA for c) 

Nos3 and d) IGFBP4 was depressed in the MG muscle. n ≥ 7, *, P<0.05 vs. Nc; §, P<0.05 

vs. Gr.
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Figure 6. Effects of Hypoxia and Litter Size on microRNA Expression in Heart and Skeletal 
Muscle
At 21 days post partum, the abundance of a) miR1 was depressed in the RV of male 

neonates. At this time point, the abundance of b) miR206 was depressed in the RV of both 

genders. In MG muscle miR1 (c) was depressed in both the Gr and Hx female neonates. In 

contrast, the miR206 (d) was increased in both genders of Hx neonates. n ≥ 7, *, P<0.05 vs. 

Nc; §, P<0.05 vs. Gr. AU: arbitrary units.
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