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Non-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases

such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum

disorders (ASD) is rationally challenging due to the limitations of publicly available

datasets. For diagnostic or prognostic tools, functional Magnetic Resonance Imaging

(fMRI) exposed affirmation to the biomarkers in neuroimaging research because of fMRI

pickup inherent connectivity between the brain and regions. There are profound studies

in ASD with introducing machine learning or deep learning methods that have manifested

advanced steps for ASD predictions based on fMRI data. However, utmost antecedent

models have an inadequacy in their capacity to manipulate performance metrics such as

accuracy, precision, recall, and F1-score. To overcome these problems, we proposed

an avant-garde DarkASDNet, which has the competence to extract features from a

lower level to a higher level and bring out promising results. In this work, we considered

3D fMRI data to predict binary classification between ASD and typical control (TC).

Firstly, we pre-processed the 3D fMRI data by adopting proper slice time correction

and normalization. Then, we introduced a novel DarkASDNet which surpassed the

benchmark accuracy for the classification of ASD. Our model’s outcomes unveil that

our proposed method established state-of-the-art accuracy of 94.70% to classify ASD

vs. TC in ABIDE-I, NYU dataset. Finally, we contemplated our model by performing

evaluation metrics including precision, recall, F1-score, ROC curve, and AUC score, and

legitimize by distinguishing with recent literature descriptions to vindicate our outcomes.

The proposed DarkASDNet architecture provides a novel benchmark approach for ASD

classification using fMRI processed data.

Keywords: autism spectrum disorder, fMRI, neuroimaging, image processing, deep learning, DarkASDNet, ABIDE

1. INTRODUCTION

Autism spectrum disorder (ASD) is also familiar as a “spectrum” disorder that can cause different
abnormalities such as social deficits, repetitive behaviors, speech, and nonverbal communication
(Baio et al., 2018; Noriega, 2019). The fact-finding for the frequency of ASD is estimated at about 1%
or higher (1 subject in 54, Figure 1) by the Center for Disease Control and Prevention in the United
States (Senn, 2020). Previous treatments are based on the behavior observations of the patients,
and the doctor asks a lot of psychological questions to the patient or their parents or guardians
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FIGURE 1 | Estimated ASD prevalence of 2020 by CDC.

(Höfer et al., 2017; Hyman et al., 2020). These questionnaires
often produce a false positive rate. The principal goal of
neuroscience research is to sort out brain disorder treatment
in an effective way (Yahata et al., 2016; Ahmed et al., 2018).
Nevertheless, when patients seek a doctor for their treatment,
sometimes the diagnosis of ASD is burdensome due to a lack
of proper symptoms and the process requiring too much time
(Mandell et al., 2007; Nylander et al., 2013). In consequence,
it is indispensable to come up with conscientious techniques
that can easily get make the diagnosis ASD more meticulous
and efficient in an assessable way beyond depending utterly on
behavioral questions.

The increasing investigation of neuroimaging research using
up-to-date technologies in the last few years led to the
classification of ASD, resulting in more effective performance
in treatment (Bi et al., 2018). With the help of fMRIs,
we can inspect the abnormalities between ASD vs. TC by
analyzing functional connectivity (Kaiser et al., 2010; Lee
et al., 2018). After introducing machine learning (ML) in
neuroimaging, it becomes a legitimate means to obtain
information from the raw data to illustrate the pattern of the
disease (Klöppel et al., 2012). Amongst the ML approaches, in
the area of neuroimaging research, support vector machines
(SVM) is a powerful classifier to classify the problems
(Sundermann et al., 2014; Chen et al., 2016).

Region of interest (ROI) bestows the structural medium,
quantifying connectivities within the individual brain’s
active functional patterns. Many researchers investigate ASD
individuals based on data-driven strategies or brain parcelation,
such as independent component analysis (ICA), clustering,
and dictionary learning by adopting ROI techniques (Cociu
et al., 2018; Bi et al., 2019). Although the ROI strategy has some
limitations regarding the arbitrary decision and standardization,
considering the special regions can be biased for the subjects
(Thirion et al., 2014). To overcome these challenges, support
vector machines (SVM) have been extensively utilized to
manipulate individual brain functional connectivity variation
and classify ASD (Yao et al., 2016; Wang et al., 2019). Recently,

DL (Deep Learning) approaches have been successfully deployed
in neuroimaging research to identify ASD disorder (Li et al.,
2018b). Although most of the DL methods used functional
connectivity, time-series data analysis, ROI analysis, and spatial
or temporal information of fMRI data (Iidaka, 2015; Zhao et al.,
2018a), some have issues such as clinical application, lack of
model comprehensibility.

As we observed from the recent findings, there are still some
drawbacks to overcome in ASD classification using deep learning
knowledge, such as lack of data mining techniques from the
heterogeneous, complex fMRI data and model interpretation to
classify ASD. Besides, a large group of scientists adopted ROIs,
or functional connectivity (FC) features to classify ASD. As
ASD is heterogeneous, a more pertinent approach is required to
classify ASD patients from a typical control. In this paper, we
consider a novel DL algorithm for ASD classification to overcome
these challenges. The pivotal contributions in this experiment are
as follows:

• We preprocessed 3D fMRI data according to the model
input requirement through slice-time correction and min-
max normalization. We preferred min-max scaling so that
data variables can contribute equally and overcome the model
biases during training of the classification model.

• We improved the original DarkNet and proposed a novel
framework named DarkASDNet for ASD classification. Our
proposed framework’s main advantage is that it has a fast
operating speed and is easily interpretable to weigh against
other state-of-the-art methods.

• Finally, to evaluate DarkASDNet performances using the
preprocessed fMRI data, we contemplated metrics functioning
such as recall, precision, F1-score, and accuracy with ROC
curve and AUC score and legitimized our outcomes by
distinguishing with recent literature descriptions.

The designed DarkASDNet framework with fMRI processing
steps provides a novel benchmark approach for ASD
classification on the Autism Brain Imaging Data Exchange
(ABIDE) dataset.
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2. RELATED WORK

The coalescence of brain imaging andmachine learning approach
concession of ASD classification can alleviate the critical affliction
and give precautions to the patient’s day-by-day prosperity.
Research for brain networks using functional connectivity is
a robust method for understanding the neurological bases of
various brain disorders, for example, autism (Pascual-Belda et al.,
2018). Abraham et al. used a support vector classifier (SVC) in
871 resting-state fMRI data to classify ASD vs. TC and got an
accuracy of about 67% (Abraham et al., 2017). According to work
in Jin et al. (2015), they proposed the SVM to classify ASD and
got the highest accuracy of 76% during testing results with the
original multi-kernel.

In Parikh et al. (2019), k-fold cross-validation was
promulgated to measure classification performance using
specificity, sensitivity, accuracy, and area under the curve (AUC).
In Yu et al. (2020), a reverse mapping system was anticipated to
further learn reversemapping to assist mining and representation
of task dependencies. Then, an adversarial assumption training
approach combined a multi-tasking learning network with a
reverse mapping network. Finally, an MRI of the two network
parameters learned from the source was shared with target
imaging CT (computed tomography). In Zhang et al. (2018),
their method treated data at various points in time as different
perspectives and built an overarching representation to collect
complementary data from the entire time period. The potential
representation investigates the complementarity between various
time points in order to increase prediction accuracy. The
problem is solved using the Alternate Direction Method of
Multiplier (ADMM).

For the classification and identification of the regions of
interest (ROIs) of functional connectivity magnetic resonance
imaging (FC-MRI), Yang et al. (2019) deal with different ML
algorithms, including SVM, ridge, and logistic regression where
the highest accuracy of 71.98% obtained by ridge classifier.
Multiple stacked auto-encoder (SAE) was considered by Guo
et al. (2017) as a feature selection technique by ROIs from whole-
brain FC. They obtained a classification accuracy of 86.36%
utilizing only one data site named UM (University of Michigan)
fromABIDE.However, ROIs for the time series data can illustrate
and classify ASD from the whole brain. Usually, ROI figures out
the functional connectivity pattern and activation of the brain
(Eickhoff et al., 2015; Cociu et al., 2018). Dvornek et al. integrated
rs-fMRI phenotypic data and obtained an accuracy of 70.1% by
deploying LSTM (Long short-term memory) (Dvornek et al.,
2018). Without the cross-validation and global signal regression
system, they used CCS pipeline data.

In particular, maintaining the 3D and 2D data with the
Convolutional Neural Network (CNN) from the DL methods,
opens a new era for the classification and segmentation tasks
(Parisot et al., 2017; Li et al., 2018a). In order to classify and
distinguish ASD from healthy controls, Zhao et al. (2018b)
assessed a satisfactory 3D CNN to unite the distinctiveness
of functional and spatial brain networks. They integrated
only two hundred rs-fMRI (ASD-100, HC-100) data. For the
neuropathological biomarker, another way to recognize the

brain’s patterns is graph convolutional neural networks (G-
CNN). Ktena et al. (2017) introduced the connectome-based
classification model by applying CNN. Anirudh and Thiagarajan
(2019) investigated ensemble learning and G-CNN to classify the
problems and achieved 70.86% testing accuracy. Khosla et al.
(2018) employed the connectivity fingerprint as a voxel input for
the 3D convolutional neural network (CNN) with an accuracy of
73.3% and with ensemble CNN of 75.8%. Wutao et al. learned
the features from the raw features by using an autoencoder (AE;
Yin et al., 2020). Finally, they amalgamated the pretrained AE
and DNN, which leads to an AUC of 82.4% and an accuracy of
79.2%. According to Ahmed et al. (2020), this was performed per
site classification to see the data variability. The ABIDE-NYU
dataset achieved the highest accuracy of 86 and 88% for stat
map and glass brain images, using improved CNN architecture.
On the other hand, in Kong et al. (2019), the authors extracted
the ROI connectivity features for ASD classification using deep
neural network (DNN). They used ABIDE-I, NYU dataset with
10-fold cross-validation. Using the softmax classifier and the
stacked autoencoder (SAE) to get the most promising results
for the ABIDE-NYU site of 90.39% accuracy according to our
best knowledge.

The contemporary scientific knowledge for ASD classification
is summarized in Table 1. According to Table 1, it is evident that
most of the researcher goes through for classification purposes
with functional connectivity (FC) or ROIs data for their work.
We noticed there had been an inclination to use machine or
deep learning approaches to solve classification problems. In
the meantime, with the ABIDE dataset, a preponderance of
works focused on a particular atlas, site, or pipeline image to
overcome the classification problems. Medical image data are
practically preferable to convalesce concrete contributions in
the field of brain disorder research like ASD for treatment
and reliability (Ravì et al., 2016; Phinyomark et al., 2017). To
overcome these challenges, we preprocess every single slice from
the whole brain images for each ABIDE-NYU dataset subject.
We build DarkASDNet to extract features for the classification
problems and check the stability of our model. We executed
confusion metrics for precision, recall, F1-score, ROC curve, and
AUC value.

3. MATERIALS AND METHODOLOGY

3.1. Dataset
In our experiments, we used ABIDE-I data processed through
the Connectome Computation System (CCS) (Craddock et al.,
2013). The raw 3D NIFTI fMRI data has been downloaded
from ABIDE-I through the CCS pipeline, a publicly available
dataset for ASD and TC. Among the 17 sites, we endeavor with
the CCS-NYU (New York University Langone Medical Center)
site. The publicly available CCS was preprocessed, including a
register of the anatomical brain mask to functional image: FLIRT,
slice time correction: 3dTshift, Skull-strip: AFNI’s 3dAutomask,
motion correction: 3dvolreg, voxel intensity normalization,
nuisance signal removal, band-pass filtering (0.01–0.1 Hz)
[http://preprocessed-connectomes-project.org/abide/ccs.html].
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TABLE 1 | A concise representation of the erstwhile deep learning algorithms in autism classification.

References Method Pattern Purpose Accuracy (%)

Leming et al. (2020) Ensemble learning FC and structural Classification 67

Lu et al. (2020) Auto-encoder Atlases Classification 61(ABIDE)

Niu et al. (2020) DANN FC/ROI Classification 73.2

Byeon et al. (2020) RNN FC Classification 74.54

Thomas et al. (2020) 3DCNN, SVM FC Classification 66

Jiao et al. (2020) CapsNets FC Classification 71

Yin et al. (2020) DNN, AE ROI Classification 79.2

Anirudh and Thiagarajan (2019) GCNN ROI Classification 70.86

Zhao et al. (2018b) 3D CNN ICN Differentiation 70.5

Zhao et al. (2018a) 3D CNN ROI Classification 70.1

Guo et al. (2017) DNN FC Classification 86.36

Dvornek et al. (2017) LSTMs ROI Identification 68.5

Ktena et al. (2017) GCNN ROI Classification 62.9

Abraham et al. (2017) SVM ROI Prediction 67

TABLE 2 | NYU phenotypic data information for ABIDE-I database.

Total subjects ASD TC Female Male
Age range (Years)

Average age (SD) ADOS score (SD)

ASD TC

184 79 105 35 149 7.1–39.1 6.5–31.8 15.25 (6.58) 11.30 (4.08)

TABLE 3 | Overview of the basic parameters and steps of used by CCS.

Basic processing Nuisance Signal Regressor Removal

Steps

Slice timing correction

(Yes) Motion (24 param)

Tissue signals (mean

WM and CSF)

Motion realignment

(Yes)

Motion realignment

(Yes)

Intensity normalization

(Yes)

Low frequency drifts

The phenotypic information of the CCS-NYU dataset is shown
in Table 2.

3.2. Data Preprocessing
The CCS ABIDE data preprocessing pipelines are analogous
due to the parameters and software used for each of the steps.
The CCS parameters and steps are presented in Table 3. In
this work, data are selected from the filt_global preprocessing
stratagem, which is band-pass filtered (0.01–0.1Hz) and spatially
registered using a nonlinear method to MNI152 template space
for each of four pipelines. The overall 3D fMRI data processing
procedure is shown in Figure 2. For data processing, firstly, we
loaded the 3D fMRI data and saved it as 2D images. To pursue
this process, we proceeded with the slice time corrections and
normalizations. The whole steps are explained briefly in the
following section.

3.2.1. Slice-Time Correction

The original 3D fMRI data has 73 slices per volume according to
the data description of ABIDE-I. In our experiments, from the 73
slices, we contemplated the last 50 slices because of the precise
sketches of the brain images.

3.2.2. Normalization

Normalization is a process wherein the database is reoriented
in such a way that users can suitably handle that for further
interrogation and analysis. We used the Min-Max normalization
technique to overcome the image inappropriateness, which
transformed the images into numerical values from 0 to 1.

Yi = [Xi −min(X)]/[max(X)−min(X)] (1)

Where Xi is the ith data point, min and max stands for minimum
and maximum, and Yi is the converted output.

3.3. Proposed DarkASDNet Model
The appositeness of the deep learning approach has
to be remolded in artificial intelligence, helping to find
neuropsychiatric brain disorders such as ASD. Deep learning
is designated with the increasing number of layers as well as
the network. An exemplary CNN performed for the feature
extraction by the convolution layer, and reduced the size of
the computational operation and a fully connected layer before
the classification. The overall demonstration of our conceptual
DarkASDNet architecture is presented in Figure 3. Here,
DN represents the set-up for the convolutional layer, batch
normalization layer, and max-pooling layer in sequential order.
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FIGURE 2 | The overview of the 3D fMRI data processing for both ASD and TC.

FIGURE 3 | The proposed DarkASDNet framework for ASD classification.

For the time being, 3∗DN is betoken for the three times of DN
ensuing one after another DN block. There are a considerable
number of deep learning algorithms. In this work, we have
followed the Darknet-19 model (Redmon and Farhadi, 2017)
for our experiment and updated this model to get the utmost
accuracy. The Darknet-19 preeminently builds for classifier
object detection where they used 19 convolutional layers, 5
Maxpooling layers, and disparate stride values, sizes, and filter
numbers. In this work, we proposed DarkASDNet for classifying
the autism brain images between ASD vs. TC. For this reason,
we have originated 20 Convolutional layers and six Max pooling
layers.

Where Convol represents the 2D Convolution, and MP stand
for Max pooling layers. Each Convolutional layer come out with
Batch Normalization (BN) and LeakyReLU operations. There has
been the same set-up when we are using three Convolutional
layers in successive order. For the two-dimensional convolution
operation, kernel is epitomized as K and input images as X, while

∗ is symbolized as discrete convolution operation, as given in the
following Equation (2).

(X ∗ K)(i,j) =
∑

m

∑

n

K(m,n)X(i−m,j−n) (2)

The superiority of adopting batch normalization is increased
learning rate, improved gradient flow, reduced dependency on
initialization, standardized inputs, and reduced training time
to overcome the overfitting problem. Although ReLu (Rectified
Linear Unit) or Sigmoid activation functions are prominent
in deep learning, we used LeakyReLU as our activation
function. Unlike ReLu, LeakyReLU has the biggest advantages in
calculating the negative part which forestalls dying neurons. The
mathematical formula for LeakyRelu is shown in Equation (3).

f (x) =

{

0.01x, for x < 0

x, forx > 0
(3)

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2021 | Volume 15 | Article 635657

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ahammed et al. DarkASDNet for ASD Classification

TABLE 4 | The number of layers and layer parameters of the proposed

DarkASDNet model.

Layer

(type) Output shape Parameters

Convol2d [8, 256, 256] 216

Convol2d [16, 128, 128] 1,152

Convol2d [32, 64, 64] 4,608

Convol2d [16, 66, 66] 512

Convol2d [32, 66, 66] 4,608

Convol2d [64, 33, 33] 18,432

Convol2d [32, 35, 35] 2,048

Convol2d [64, 35, 35] 18,432

Convol2d [128, 17, 17] 73,728

Convol2d [64, 19, 19] 8,192

Convol2d [128, 19, 19] 73,728

Convol2d [256, 9, 9] 294,912

Convol2d [128, 11, 11] 32,768

Convol2d [256, 11, 11] 294,912

Convol2d [512, 5, 5] 1,179,648

Convol2d [256, 7, 7] 131,072

Convol2d [512, 7, 7] 1,179,648

Convol2d [256, 9, 9] 131,072

Convol2d [512, 9, 9] 1,179,648

Convol2d [2, 9, 9] 9,216

Flatten [162] 0

Linear [2] 326

Resembling the DarkNet-19, Maxpool has the same operation
in our model. It has several advantages, such as reducing the
number of parameters to get prime information, diminishing
the computational cost, and preventing over-fitting by fixing
up with an abstracted form of the depiction. To classify the
binary classification problem, we inked the loss function called
Cross-Entropy Loss, and for the optimization, we set the Adam
optimizer. The main ascendancy of using the Cross-Entropy loss
function in binary classification problems is that it can reduce
the distance between predicted and actual. The equation for
the binary classification of the Cross-Entropy Loss function as
follows.

CE = −

C′
=2

∑

i=1

tilog(si) = −t1log(s1)− (1− t1)log(1− s1) (4)

where C′
= 2 (for two classes C1 and C2), t1[0, 1] and s1 are the

ground truth and score for C1, s2 = 1− s1 and t2 = 1− t1 for C2.
Finally, the layers and layers parameter are described in Table 4.

We utilized the Cross-Entropy loss function with the Linear
classifier because they are best fitted to our proposed binary
ASD classification instead of preserving the original DarkNet’s
loss calculation strategy. In the meantime, we change the
average pooling layer to maxpooling layer and add one more
convolutional layer than DarkNet. Moreover, the trainable

FIGURE 4 | The visualization of single sliced ASD and TC images.

parameters of the proposed DarkASDNet model are about 4.5
million compared to the underlying DarkNet model, which
contains around 25 million. Therefore, our model is six
times lighter than the original DarkNet, ensuring our model’s
computational efficiency.

4. DATA VISUALIZATION AND
PERFORMANCE METRICS

4.1. Visualization of the Sliced fMRI Data
For the outrun treatment, reinforcement with prior diagnosis is
important for ASD patients in order to delay deterioration and
retain quality of life The visualization of the neuroimaging data
can outrun perceptible biomarkers to illustrate prognosis and
particular pathology for ASD patients. In our proposed work,
we preprocess the 3D fMRI data into 2D images with slice time
correction and normalization. Figure 4 represents the perfect
visualization of our preprocessed images, and the manifestation
of our per slice images are easily depicted for both ASD and TC.
In the meantime, we disclosed only the first eight images for ASD
and TC.

4.2. Evaluation Metrics
To ensure the performance of our proposed model, we
consummate an in-depth search to learn hyperparameters and
investigate the average accuracy, f1-score, precision, and recall.
True positive (TP) can correctly predict the ASD class and true
negative (TN) for TC. False positive (FP) is the outcome of
incorrect prediction of ASD and false negative (FN) for TC. The
corresponding formula for the evaluation metrics is given below.

Accuracy =
Total correct prediction

Total number of labels
× 100 (5)

Precision =
True Positive

True Positive+ False Positive
(6)

Recall =
True Positive

True Positive+ False Negative
(7)

F1−score = 2×
(Precision ∗ Recall)

(Precision+ Recall)
(8)

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2021 | Volume 15 | Article 635657

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ahammed et al. DarkASDNet for ASD Classification

FIGURE 5 | Training loss vs. accuracy curve for DarkASDNet.

FIGURE 6 | Accuracy comparison of DarkASDNet with state-of-the-art methods used in ASD classification.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

Deep learning approaches have been successfully employed in
ASD classification using ABIDE data based on fMRI images.
In this work, we have proposed DarkASDNet to classify ASD
showing different measurement metrics in the same manner
with recall, precision, F1-score, and accuracy with ROC curve
and AUC score to legitimize the performance of the proposed
method. The training loss and accuracy comparison curve of the
proposed DarkASDNet is shown in Figure 5. From Figure 5, it is
depicting that the training accuracy is increasing with decreasing
the training loss. The highest accuracy of 94.7% we have obtained
while testing the DarkASDNet model. Figure 6 shows the
performance values for different evaluation metrics, including
precision, recall, f1-score, and AUC for ASD classification

using proposed DarkASDNet. After testing our model for ASD
classification, we have achieved the highest accuracy of 94.7%, the
precision of 94.5%, recall of 92.5%, f1-score of 95%, and the AUC
score 94.703%.

Furthermore, to evaluate our proposed DarkASDNet, we
have implemented the VGG16 (Simonyan and Zisserman, 2015),
MobileNetV2 (Sandler et al., 2018), and SVM (Jebapriya et al.,
2019) algorithms as competence methods to classify ASD using
the same dataset. We have also implemented two most recent
works preferably using CNN in Ahmed et al. (2020), and
2CC3D in Li et al. (2018a). Figure 6 represents the performance
comparison for the competence method with our proposed
DarkASDNet model. Using SVM, MobileNetV2, and VGG16
models for ASD classification, we get an accuracy of 72.6, 76.5,
and 78.43%, respectively. Comparing with the performance of
competitive methods, in DarkASDNet, we get state-of-the-art
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FIGURE 7 | The evaluation performances of confusion metrics.

FIGURE 8 | Receiver operating characteristic curve for ASD.

accuracy during classification. As we know, deep learning
techniques are nowadays performing very satisfactorily in ASD
classification using ABIDE data. For example, in Ahmed et al.
(2020), authors adopted the CNN model for single site (NYU)
classification, where they got the highest accuracy of 88% for
glass brain images. On the other hand, using extracted ROIs
connectivity features and NYU dataset with 10-fold cross-
validation, Kong et al. (2019) achieved the highest accuracy of
90.39% by considering stacked autoencoder (SAE) and softmax
as a classifier. Furthermore, Auto-ASD-Network proposed by
Eslami and Saeed (2019) based on the multilayer perceptron
(MLP) with two hidden layers, and SVM got the highest accuracy
of 80% for ASD classification using the NYU dataset. The
accuracy comparison curve of our proposed DarkASDNet and
other state-of-the-art methods for ASD classification using the
ABIDE-NYU dataset is shown in Figure 6. From the bar diagram
in Figure 6, the nearest model has a mean accuracy difference of
about 3.4% with our method (Kong et al., 2019). Therefore, based
on the results, our proposed DarkASDNet method outperforms
other methods on average for classifying ASD.

Besides the matrices explained above, we have also described
the confusion matrix table for DarkASDNet in Figure 7. It is
clear from Figure 7 that there are two predicted classes: ASD and
TC, a binary classification problem. The proposed DarkASDNet
classifier made 472 subjective predictions, and out of these
subjects, the classifier predicts 243 times as ASD patients and 229
times as the TC subjects. However, in the original dataset, there
were 236 subjects for ASD patients and 236 subjects as TC. From
the confusionmatrix, we see that the overall misclassification rate
is ∼5.3%, with a true positive and false positive rate of 0.96 and
0.93, respectively, which is comparatively highly acceptable. The
corresponding ROC curve is shown in Figure 8.

6. CONCLUSION AND FUTURE WORK

It is challenging to find the proficient classifier for ASD,
while most of the classifier depends on functional connectivity
and brain ROIs analysis. In this work, we proposed a novel
DarkASDNet model for ASD classification using 3D fMRI data.
Different from the conventional machine learning method in
which the extraction of the image features for the training set is
done manually, our method handles the extraction of the image
features automatically during the computation. We processed
the fMRI data according to the DarkASDNet requirement
through proper slice-time correction and normalization. We
assessed the DarkASDNet performances using the generated
fMRI data and utilized metrics functioning as recall, precision,
F1-score, and accuracy with ROC curve and AUC value. Finally,
we validated our outcomes by comparing with five other
recent competency methods, including three leading benchmark
approaches showing state-of-the-art results. To the end, the
proposed framework provides a new benchmarkmethod for ASD
classification.

Future work will increase the number of subjects, such as the
whole ABIDE database, considering each subject’s phenotypic
information. Although our model has presented outstanding
results for ASD classification, improvements still need to bemade
to the model to handle the 3D fMRI data directly. We will
solve these issues in our future work by employing the sample
demographic information.
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