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Abstract: A cell should deal with the changing external environment or the neighboring cells.
Inevitably, the cell surface receives and transduces a number of signals to produce apt responses.
Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin
cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels
are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of
the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we
reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme
and ion channel activities in various cell types including the cells of immune response, neurons,
oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway
that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly
found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the
activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to
inhibit or enhance the function of these signaling proteins.

Keywords: actin cytoskeleton; phospholipase C; Src family kinase; Ca2+ signaling; PIP2; actin-
binding protein; immune response; oocytes; epithelial cells; neurons

1. Introduction

The dense network of the actin cytoskeleton intimately associated with the plasma
membrane plays both structural and functional roles in animal cells. As the name ‘cytoskele-
ton’ implies, it confers rigidity to the cell membrane for mechanical protection. However,
the actin cytoskeleton is not a static structure but undergoes constant remodeling in a living
cell. The latter process is accelerated upon the arrival of cell signaling cues. The dynamic
self-reorganizing nature of the actin cytoskeleton not only provides cell motility in certain
cases, but also enables the cell to swiftly change its morphology to adapt to the fleeting
physiological needs [1–4]. For example, platelets take the form of a biconvex discoid when
circulating inside blood vessels, but when they are activated to make blood clots, drastic
membrane projections take place due to actin polymerization and bundling on the cell
surface [5]. On the other hand, in neuronal growth cones, polymerization dynamics of actin
filaments underneath the plasma membrane contributes to the neurite’s pathfinding [6].
The enormous plasticity of cell surface topography due to the actin-mediated membrane
protrusion and retraction is also manifested by phagocytic immune cells and fertilized
eggs [7,8]. The rapid reorganization of the subplasmalemmal actin cytoskeleton in these
cells assists in engulfing the foreign objects and fertilizing sperm, respectively. Thus, for a
variety of cell types, remodeling the subplasmalemmal actin cytoskeleton is a fundamental
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part of the cell’s repertoire in dealing with diverse biological events taking place on the cell
surface.

In a living cell, the actin cytoskeleton is carved by a host of actin-binding proteins
(ABPs) that bind, twist, sever, branch, or cap actin filaments (e.g., cofilin, gelsolin, villin, and
so on). The activities of ABPs are modulated by various cell signals that trigger changes in
their phosphorylation status, cytosolic pH, and intracellular Ca2+ concentration [9–11].
Moreover, ABPs are also regulated by phosphoinositide, a minor component of the
plasma membrane that serves as a signaling molecule. For example, phosphatidylinositol
4,5-bisphosphate (PIP2), which is enriched in the inner leaflet of the plasma membrane
lipid bilayer, interacts with most ABPs and thereby controls their activities and subcellular
localization. Thus, a swift increase or decrease in PIP2 concentration in the specific places
of the plasma membrane can serve as a second messenger signal that shifts the balance of
the ABPs pools to activate or inhibit certain ABPs. This results in remodeling of the actin
cytoskeleton [12–14].

A growing body of evidence suggests that the subplasmalemmal actin cytoskeleton
affects chemical and mechanical signal transduction by casting a unique microenvironment
in which the activities of certain signaling molecules are modulated by their relationship
with the actin filaments undergoing dynamic changes [15,16]. While transmembrane
proteins such as ion channels reside in the plasma membrane, some intracellular signaling
enzymes can translocate and adhere to the plasma membrane by forming covalent bonds
with lipid anchors such as myristic acid, palmate, and farnesoic acid. This is the strategy
taken by some signaling molecules such as members of Src family kinases and Ras family
GTPase [17–19]. It is also known that Src can bind to actin filaments due to its Src homology
2 (SH2) domain [20–22]. Thus, signaling enzymes such as Src can translocate themselves
from cytosol to the plasma membrane or to the actin cytoskeleton. On the other hand, in the
tight space around the plasma membrane–cytoskeleton interface, ion channels and pumps
are often in contact with or in the vicinity of actin filaments, raising the possibility that their
distribution and activity can be modulated by the actin cytoskeleton [23–28]. In line with
the earlier findings that enzymes such as phospholipase, lipid kinases, and phosphatases
are linked to the cytoskeleton [15], these observations suggest that actin cytoskeleton may
serve as a signaling platform on which various external signals are transduced to the
downstream effectors. Hence, subtle changes in the actin cytoskeleton are expected to
affect the activities of these signaling molecules.

As mentioned earlier for the immune cells, neurons, and fertilized eggs, certain cell
signals induce rapid reorganization of the actin cytoskeleton. Obviously, in this case, the
actin cytoskeleton is a target of the signal transduction. Conversely, subtle specific changes
in the actin cytoskeleton may also facilitate or impede transduction of the signals because
a number of signaling molecules are physically associated with the actin cytoskeleton.
For example, the universal second messenger Ca2+ can reorganize the actin cytoskele-
ton in a number of different pathways including the ones that involve Ca2+-dependent
ABPs [29–32]. On the other hand, the actin cytoskeleton can affect mobilization of Ca2+ in
several different ways. To begin with, actin has a strong affinity to Ca2+ and thereby serves
as a Ca2+ buffer or a barrier to the diffusion of Ca2+ ions [33–35]. The actin cytoskeleton
may also affect the activities of the enzymes synthesizing the Ca2+-mobilizing second
messengers such as inositol 1,4,5-trisphosphate (InsP3), or modulate the activities of some
ion channels and pumps that transport Ca2+ across the membrane [24,26,36–38]. Indeed,
studies in the eggs of echinoderm such as starfish and sea urchin have demonstrated
that alteration of the egg cortical actin cytoskeleton profoundly affects the intensity and
spatiotemporal pattern of the intracellular Ca2+ signals that are produced in the maturing
oocytes and fertilized eggs [39–44]. This phenomenon of actin-dependent modulation of
Ca2+ signaling is not restricted to oocytes and eggs. It has been intermittently reported that
the activities of the signaling enzymes and ion channels involved in Ca2+ signaling and
other ion flux are closely linked to the actin cytoskeleton in a variety of cell types. In this
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communication, we have reviewed some of the key findings on the topic in an attempt to
understand its significance and the molecular mechanisms underlying the phenomenon.

2. Modulation of the Ca2+ Signal Transduction by the Actin Cytoskeleton in the Cells
of Immune Response

2.1. T-Lymphocytes

Fine regulation of actin dynamics in the cell cortex is of great importance during
the immune response of T cells. Signal transduction in T lymphocytes is often studied
in Jurkat cells, which is an immortalized cell line derived from human T lymphocyte
leukemia. These cells can be effectively activated to evoke Ca2+ signals and produce in-
terleukin 2 (IL-2) by ligating its T cell co-receptor CD3 (cluster of differentiation 3) with
the specific antibody [45]. Interestingly, when normal actin dynamics in Jurkat cells were
disturbed by overexpressing the constitutively active or dominant negative form of small
GTPase Rac, the cells often failed to respond correctly to the stimulation by the anti-CD3
antibody [46]. In this work, the cells transfected with Rac mutants produced a much
reduced Ca2+ increase in response to the same activation. In addition, the stimulation by
the anti-CD3 antibody did not significantly increase actin polymerization which is nor-
mally observed in the control cells. Remarkably, overexpression of the constitutively active
Rac mutant (V12) led to a significant decrease in the enzyme activity of phospholipase C
(PLC), as judged by PIP2 and InsP3 assays. According to the specific immunoprecipitation
experiments followed by western blot analysis with anti-phosphotyrosine antibody, the
extent of tyrosine-phosphorylation of PLC-γ1 and some other key proteins involved in
signal transduction was significantly reduced by the expression of the Rac mutants. Since
the PLC/InsP3 pathway is an important constituent of Ca2+ mobilizing machinery in T
cells [45,47,48], the altered phosphorylation of PLC-γ1 is in part accountable for the allevi-
ated intracellular Ca2+ response upon antigenic stimulation. In support of the idea that
the compromised Ca2+ response in these Rac-transfected cells arise from the altered actin
dynamics per se, and not from some unknown parallel effect of Rac mutants, it was demon-
strated that a potent drug promoting actin depolymerization, Latrunculin-A (LAT-A), had
a similar inhibitory effect on anti-CD3-induced Ca2+ response (Figure 1A). As intracellular
Ca2+ signals in lymphocytes play an important role in the expression and secretion of
cytokine, such changes might lead to compromised immune response [46,48–50].

2.2. Mast Cells

The aforementioned findings in Jurkat T cells suggest that the cellular mechanism
transducing the signals from the T cell receptor to intracellular Ca2+ increase may involve
adaptive reorganization (polymerization) of the cortical actin cytoskeleton, and any in-
terference with the latter process results in the reduction in the Ca2+ response. In other
words, fine-tuning of the actin cytoskeleton beneath the plasma membrane is important
for the generation of Ca2+ signals. This phenomenon is not restricted to T lymphocytes,
although the exact mode in which the actin dynamics affects the intracellular Ca2+ signaling
may vary from one cell type to another. For example, in Rat Basophilic Leukemia 2H3
(RBL-2H3) cells, which are often utilized as a model system for mast cells, filamentous actin
(F-actin) has been shown to be implicated in intracellular signaling. Being a part of the
immune system, mast cells are best known for allergic responses. The surface of mast cells
is covered with immunoglobulin E (IgE) receptors (FcεRI), which have high affinity to the
Fc region of IgE. Presenting allergens to the IgE-bound mast cells then leads to exocytosis
of histamine and other contents (degranulation), which is dependent on both Ca2+ and the
actin cytoskeleton [51,52]. Stimulating IgE-sensitized RBL-2H3 cells with an antigen causes
an increase in F-actin assembly, InsP3 formation, and oscillatory Ca2+ increase in the cell.
All these changes are considered to be essential for degranulation [53]. Interestingly, in the
presence of Cytochalasin-D (CYT-D), another agent promoting actin depolymerization, the
IgE-sensitized RBL-2H3 cells displayed a much reduced F-actin formation upon antigenic
stimulation, but this cytoskeletal change paradoxically enhanced the response of the cells
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to the antigen by showing increased levels of InsP3 production and Ca2+ signals, which in
turn led to increased degranulation [53]. Thus, actin depolymerization appears to have the
opposite effects on T-cells (Jurkat) and mast cells (RBL-2H3) in terms of InsP3 production
and Ca2+ signaling. The InsP3-boosting effect of CYT-D in stimulated RBL-2H3 cells was
negated by the actin-stabilizing drug Jasplakinolide, suggesting that the enhancement
of InsP3 and Ca2+ responses was the result of nothing but actin depolymerization. How
does the actin cytoskeleton modulate the levels of InsP3 and Ca2+? Since U73122 (an
inhibitor of PLC) also abolished the Ca2+-enhancing effects of CYT-D in the stimulated
RBL-2H3 cells, it was proposed that PLC activation depends on the actin cytoskeleton, the
reorganization of which accompanies FcεRI-induced tyrosine kinase activation. Now that
the actin meshwork is loosened, PLC may be hyper-activated by antigenic stimulation
(Figure 1B). Indeed, when actin polymerization was inhibited by LAT-A, the stimulated
RBL-2H3 cells exhibited enhanced degranulation with higher PLC activity. In these cells,
the extent of tyrosine-phosphorylation was also increased on the FcεRI receptor itself by
the action of non-receptor type protein tyrosine kinases such as Lyn and Syk (Figure 1,
see mast cells) [54]. As the augmented degranulation induced by LAT-A was nullified
when the cells were stimulated by a potent inhibitor of protein tyrosine phosphatase per-
vanadate [54,55], the effect of the actin depolymerization appears to be directed to protein
tyrosine kinases, PLC, and other molecules involved in the downstream pathway of FcεRI
receptor. Interestingly, these actin drugs did not directly affect the store-operated Ca2+

entry or thapsigargin-induced Ca2+ release from the intracellular stores, suggesting that the
effect of the actin cytoskeleton on the Ca2+ toolkits in this particular cell type is specifically
on the PLC pathway. Hence, depolymerization of F-actin in the antigen-stimulated FcεRI
in RBL-2H3 cells appears to promote PLC activation, whereas its excessive polymerization
inhibits degranulation [53,56]. In support of the idea, another example can be taken. De-
granulation in RBL-2H3 cells, to a lesser extent, can be initiated through antibody-mediated
aggregation of the cell surface glycoprotein Thy-1 within the lipid rafts [57]. Interestingly,
the presence of LAT-A again elicited more potent degranulation, following quicker and
larger Ca2+ response. It is noteworthy that LAT-A treatment alone slightly increased the
phosphorylation level of Syk and the enzymatic activity of phosphatidylinositol 3-kinase
(PI3K), albeit without initiating degranulation [58]. Thus, the polymerization status of
the actin meshwork near the plasma membrane appears to set the tone to degranulation
in mast cells [58] and lymphocytes [46] by modulating the activities of the key signaling
enzymes that promote Ca2+ increase and secretory response.

Stimulating IgE-sensitized mast cells (RBL-2H3) with antigens causes tyrosine-
phosphorylation of the cytoplasmic tails of the FcεRI β and γ subunits by Lyn. This,
in turn, leads to the phosphorylation of several downstream effectors including PLC-γ
(Figure 1B), which results in PLC activation, InsP3 formation, and oscillatory Ca2+ increase
in the cytoplasm [59–61]. In stimulated RBL-2H3 cells, FcεRI is colocalized with Lyn and
F-actin. Curiously enough, inhibiting actin polymerization with CYT-D sustained FcεRI
in the phosphorylated state much longer, which is in part accountable for the enhanced
degranulation [62]. Furthermore, enhanced phosphorylation was also found in the down-
stream effector Syk, which is in line with the substantial augmentation of the intracellular
Ca2+ level [54,55,63]. One possible explanation for all of these observations may be that
some unknown phosphatases are also part of the FcεRI/F-actin complex, and that these
enzymes lose their access to FcεRI once F-actin is depolymerized.
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Figure 1. Modulation of the Ca2+ signal transduction by the actin cytoskeleton in the cells of immune response. Artificially 
altered actin dynamics during cell activation either enhances or represses Ca2+ signaling through the PLC/InsP3 pathway. 
(A) Exposure of T-lymphocytes to anti-CD3 antibody triggers T-Cell Receptor activation that leads to a cascade of down-
stream phosphorylation reactions that activates enzymes like PLC-γ1, ZAP-70 (Zeta-chain-associated protein kinase 70), 
PTKs as well as adaptor proteins such as LAT, Slp76, and Gads. Interference with the actin dynamics by use of Rac over-
expression or Latrunculin-A (LAT-A) reduces phosphorylation of these enzymes, and thereby inhibits the PLC-γ1 activity 
and cytokine secretion. (B) Upon binding to antigen-IgE, the FcεRI receptor on the surface of a mast cell is phosphorylated 
and recruits more Lyn kinase to activate Syk kinase, which in turn stimulates PLC-γ to produce InsP3 and thereby release 
intracellular Ca2+ and trigger degranulation. If the concomitantly occurring actin polymerization is prevented by actin 
drugs LAT-A or Cytochalasin-D (CYT-D), the activation of PLCγ is even more enhanced. (C) Binding of thrombin to the 
integrin receptor (αIIbβ3) on the plasma membrane leads to enhanced polymerization of actin, which is accompanied by 
the translocation of PLCβ3 and other proteins. The resulting Ca2+ signal induces platelet aggregation. When the responsive 
actin polymerization is inhibited by CYT-D or fibrinogen antagonist tetra-peptide (RGDS), the extent of PLCγ activation 
and platelet aggregation is severely compromised. Note: The T-shaped red bars near the curved arrows denote inhibition. 
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Figure 1. Modulation of the Ca2+ signal transduction by the actin cytoskeleton in the cells of immune response. Artifi-
cially altered actin dynamics during cell activation either enhances or represses Ca2+ signaling through the PLC/InsP3

pathway. (A) Exposure of T-lymphocytes to anti-CD3 antibody triggers T-Cell Receptor activation that leads to a cascade
of downstream phosphorylation reactions that activates enzymes like PLC-γ1, ZAP-70 (Zeta-chain-associated protein
kinase 70), PTKs as well as adaptor proteins such as LAT, Slp76, and Gads. Interference with the actin dynamics by use
of Rac overexpression or Latrunculin-A (LAT-A) reduces phosphorylation of these enzymes, and thereby inhibits the
PLC-γ1 activity and cytokine secretion. (B) Upon binding to antigen-IgE, the FcεRI receptor on the surface of a mast cell
is phosphorylated and recruits more Lyn kinase to activate Syk kinase, which in turn stimulates PLC-γ to produce InsP3

and thereby release intracellular Ca2+ and trigger degranulation. If the concomitantly occurring actin polymerization is
prevented by actin drugs LAT-A or Cytochalasin-D (CYT-D), the activation of PLCγ is even more enhanced. (C) Binding of
thrombin to the integrin receptor (αIIbβ3) on the plasma membrane leads to enhanced polymerization of actin, which is
accompanied by the translocation of PLCβ3 and other proteins. The resulting Ca2+ signal induces platelet aggregation.
When the responsive actin polymerization is inhibited by CYT-D or fibrinogen antagonist tetra-peptide (RGDS), the extent
of PLCγ activation and platelet aggregation is severely compromised. Note: The T-shaped red bars near the curved arrows
denote inhibition.

2.3. Platelets

The third example where the actin cytoskeleton is intimately involved in signal trans-
duction across the plasma membrane is found in the thrombin-stimulated aggregation of
platelets, the anucleated blood cells derived from megakaryocytes [64–66]. Upon binding
to the agonist such as collagen at the site of disrupted endothelium, the platelet-specific
integrin (αIIbβ3) activates a variety of downstream enzymes to initiate Ca2+ and phosphory-
lation signaling pathways that will change cell shape and consolidate platelet aggregation
to promote blood clotting [67–69]. Curiously, some of these enzymes translocate to the actin
cytoskeleton near the plasma membrane to remain active and regulate the metabolism of
phosphoinositide. For example, the activities of the actin cytoskeleton-bound PI3K, phos-
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phatidylinositol 4-kinase (PI4K), diacylglycerol (DAG) kinase, and PLC were significantly
increased upon platelet activation [21]. Likewise, translocation to the actin signaling plat-
form significantly increases the activity of the phosphatidylinositol 4-phosphate 5 kinase C
(Ptdins 4-P 5-kinase C) to enhance the synthesis of PIP2. The consequent shift of the balance
in PIP2 level, in turn, is likely to induce remodeling of the actin cytoskeleton by way of the
ABPs that have affinity to PIP2 [13,70]. Similarly, inositol polyphosphate 4-phosphatase
is also translocated to the actin cytoskeleton following platelet activation [71,72]. Thus,
the metabolism of phosphoinositide appears to be closely linked to the subplasmalemmal
actin cytoskeleton to have a mutual influence on each other. On the other hand, acti-
vated integrins induce translocation of PLCβ3 to the actin cytoskeleton, which appears
to require not only actin polymerization, but also phosphorylation of certain proteins,
as judged by the fact that CYT-D or genistein (an inhibitor of tyrosine kinases) prevents
the translocation [73]. In addition, blocking integrin by applying fibrinogen antagonist
tetra-peptide (RGDS) or the inhibitory monoclonal anti-integrin β3 antibody prevents the
thrombin-mediated enhancement of actin polymerization, which leads to failed translo-
cation of PLCβ3 to the actin-rich region. As a result of deregulated actin polymerization,
thrombin-induced platelet aggregation is considerably inhibited (Figure 1C) [73]. While
PLCβ3 plays decisive roles in mobilizing intracellular Ca2+ (via InsP3) and in remodeling
F-actin to induce platelet aggregation [74], its spatial dispatching in association with F-actin
may signify another layer of control for the enzyme activity.

3. Modulation of Cytokine or Trophic Factor Signaling Pathways by the Cortical Actin
Cytoskeleton

Constituting about 80% of the liver mass, hepatocytes are known to regenerate actively
in a growth factor and cytokine-dependent manner [75]. When these cells are stimulated
by epidermal growth factor (EGF), which binds to its receptor (EGFR) on the cell sur-
face, an intracellular Ca2+ increase is induced in a pathway involving phosphorylation
of PLC-γ1. However, primary cultures of hepatocytes with prolonged exposure to EGF
(1–24 h) enter a refractory phase, during which the activation of PLC by EGF shows a
rapid decline. Interestingly, this reduced effect of EGF on PLC was not attributable to
decreased number of EGFR and PLC-γ1 per se, nor to reduced phosphorylation of EGFR
and PLC-γ1 tyrosine phosphorylation, which did not change much during this period [76].
This apparent downregulation of PLC activity arose rather from the reduced localization
of PLC-γ1 in association with the cortical actin cytoskeleton. Indeed, loosening up the
actin meshwork with CYT-D not only restored InsP3 formation and Ca2+ mobilization
back to the levels in the freshly isolated cells being exposed to EGF, but also increased
colocalization of PLC-γ1 with the actin cytoskeleton. Thus, for the enzyme activity, its
cytoskeletal context matters profoundly. In this case, it is quite remarkable that the rates
of cytoskeletal reorganization and the consequent redistribution of PLC-γ1 can highly
influence PLC-γ1 activity regardless of its phosphorylation status [76].

A similar phenomenon was observed when bone marrow-derived macrophage precur-
sors were stimulated by macrophage colony stimulated factor (M-CSF) in a physiological
model of macrophage differentiation [77]. Upon the cell’s exposure to M-CSF, PLC-γ2 in
these cells readily translocates from the perinuclear zone to the cell periphery (plasma
membrane) in a cytoskeleton-dependent manner. The translocated PLC-γ2 molecules
tend to be tyrosine phosphorylated. As PLC-γ2 phosphorylation mainly depends on non-
receptor type protein-tyrosine kinase Src, it is presumed that the receptor for M-CSF, which
is a tyrosine kinase, phosphorylates Src and other downstream effectors. On the other
hand, PLC-γ2 binds directly to actin through its SH2 domain, which is facilitated by the
polymerization of actin in response to M-CSF [77]. However, it is not known whether the
tyrosine-phosphorylation and translocation of PLC-γ2 in this process actually leads to the
activation of the enzyme to induce InsP3 production and intracellular Ca2+ signals.

Furthermore, activity of Src itself appears to be modulated by the actin cytoskeleton.
The growth cone of a neuron is filled with dynamically remodeling actin filaments that are
searching for the right direction for axonal growth, following the guidance cues such as
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Netrin-1 (attractant) and Slit-2 (repulsive) [78–81]. Binding of these guidance cue molecules
to the local cell surface receptors evokes a cascade of downstream pathway that involves
tyrosine-protein kinases. Studies in neurons of sea slug Aplysia californica have shown
that Src plays an important role in the growth cone dynamics by acting on cortactin and
other substrates [82,83]. In the growth cone of developing rat brain, it has been shown that
Src associated with the cytoskeleton has an intriguingly higher enzyme activity than the
soluble ones [22]. When Src is phosphorylated on tyrosine-527, this negatively charged
residue binds to the SH2 domain of Src itself, which induces conformational change of
the enzyme so that it falls off from the cytoskeleton, thereby causing a decline in the
enzymatic activity [22]. Therefore, association with the cytoskeleton in the cell cortex may
serve as a platform modulating the activity of signaling enzymes. While Src in the growth
cone of the Aplysia neuron colocalizes with both F-actin and microtubules, it is an open
question whether Src binds to F-actin directly as its related protein Shc (Src homologous and
collagen) does, or indirectly through other actin-binding proteins such as cortactin [84–86].

4. Actin-Binding-Proteins in Controlling Enzyme Activity

If the actin cytoskeleton modulates signal transduction in the subplasmalemmal
region, ABPs may well play crucial roles behind the scenes. As its name implies, ABP
binds to actin monomer (G-actin) or F-actin and influences the polymerization dynamics to
remodel the actin cytoskeleton, often in an accelerated manner. Importantly, most ABPs
have a stretch of basic amino acid residues that are thought to enable ABPs to anchor to
PIP2 on the inner leaflet of the plasma membrane [13]. Their competitive binding to both
actin and PIP2, or even directly to enzymes, would have a profound impact not only on
the actin cytoskeleton dynamics, but also on signal transmission [87,88]. According to an
in vitro study with purified proteins and synthetic membranes, when profilin (an actin
monomer-sequestering protein) is bound to PIP2, it prevents PIP2 from being cleaved
by non-phosphorylated quiescent PLC-γ1. However, upon activation of EGFR and the
subsequent tyrosine phosphorylation of PLC-γ1, the inhibitory binding of profilin to PIP2 is
overcome by the phosphorylated PLC-γ1, and PIP2 is cleaved (Figure 2A). Profilin binding
to PIP2 not only inhibits its own interaction with actin [70,89], but may also prevent non-
phosphorylated PLC-γ1 from binding its substrate PIP2 and thereby impede the formation
of the second messengers InsP3 and DAG. Thus, binding or displacement of profilin on
PIP2 may be a critical factor controlling the activity of certain enzymes that interact with
PIP2 [89]. In this case, what influences the enzyme activity of PLC-γ1 is not the actin
filaments per se, but the accessary protein that binds to actin.

ABP can also act as a converging point for the transduced signals. A multifunctional
ABP villin, which severs, caps, nucleates, and bundles F-actin, can directly bind to PLC-γ1
and thereby affect the enzyme activity in the subplasmalemmal cell compartments [90].
In vitro studies using recombinant and native villin purified from the brush borders of
chicken intestinal epithelial cells demonstrated its interaction with PLC-γ1 and its substrate
PIP2. Villin’s binding to PIP2 inhibits PLC-γ1, but villin’s tyrosine-phosphorylation by Src
reverses this inhibition because phosphorylated villin no longer binds to PIP2 (Figure 2B).
As villin is tyrosine phosphorylated in vivo in response to receptor activation and also
binds to the membrane-bound PLC-γ1 and Ca2+ [91,92], the multifunctional ABP villin
is likely to regulate the actin cytoskeleton dynamics and converge signal transduction
pathways. Since PIP2 is predominantly located in the plasma membrane [93,94], all these
interactions among PIP2, actin, and ABPs are the molecular events taking place in the
tight junction between plasma membrane (i.e., PIP2) and the subplasmalemmal actin
cytoskeleton.

Besides interacting with PIP2, ABPs are often found as a component of a receptor
complex. In human mammary epithelial (HME) cells, immunoprecipitation of EGFR-bound
proteins detected α-actinin (a Ca2+-dependent F-actin bundling protein) together with PLC-
γ, actin, and integrin β1 in the adhesion complex even before the EGF stimulation [95].
When the cells are treated with CYT-D, they retract and change their shapes. Even so,
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the interaction in the adhesion complex between the EGFR and PLC-γ was not affected,
implying a direct interaction between the two. Upon EGF stimulation, however, CYT-D
inhibited PIP2 hydrolysis, and decreased the level of EGF-induced α-actinin binding to
PIP2. Thus, the polymerization status of the actin cytoskeleton appears to affect the EGFR
complex only when it is in the stimulated state. The diminished PLC activity following
artificial depolymerization of F-actin by CYT-D might be attributable to the changed
subcellular location of α-actinin departing from the PIP2-bound pool. Interestingly, in
concert with other ABPs such as myosin, α-actinin seems to have an opposite effect on
the PLC activity. While PIP2-bound profilin and villin inhibit PIP2 hydrolysis, α-actinin
bound to PIP2 in the EGF-stimulated HME cells facilitates hydrolysis of PIP2 by PLC-γ
(Figure 2C) [95,96].
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Figure 2. Actin-binding proteins modulate PLC activities with or without actin filaments. (A) A model based on in vitro
reaction mixture containing phospholipid bilayer with PIP2, purified EGFR, PLC-γ1, ATP, and profilin. Profilin binds to
PIP2, and thereby prevents PLC-γ1 from accessing its substrate PIP2. When PLC-γ1 is phosphorylated by the activation of
EGFR, the inhibition by profilin is overcome and PIP2 is hydrolyzed to produce InsP3 and DAG (not shown). (B) Likewise,
villin masks PIP2 from PLC-γ, but phosphorylated villin (by Src) loses its binding affinity to PIP2. Then, PLC has access
to PIP2 to produce InsP3. (C) The focal adhesion complex in human mammary epithelial (HME) cells comprises PLC-γ,
integrin β1, α-actinin, F-actin, and EGFR. Binding of EGF to EGFR induces EGF receptor dimerization, phosphorylation
of PLC-γ, and increased α-actinin loading on PIP2. Here, α-actinin’s binding to PIP2 facilitates its hydrolysis by PLC-γ,
and consequently the production of InsP3 doubles. Disruption of the actin cytoskeleton with Cytochalasin-D (CYT-D)
dissociates α-actinin from PIP2, and the EGFR-associated PLC-γ is unable to cleave the PIP2 not bound to α-actinin.
(D) Actin filament-associated protein (AFAP) in rat fetal lung cells presents Src to PLC-γ1 via actin filaments so as to activate
the enzyme. As a result, InsP3 production is increased, but the effect is inhibited by CYT-D.

An example of how ABP binding to F-actin mediates cell signaling is found during
the stretch-induced proliferation of rat fetal lung cells [97]. Mechanical stretch induces
cytoskeletal deformation, which evokes signal transduction by translocating Src from
cytosol to the actin cytoskeleton. This process is mediated by the binding of Src to actin
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filament-associated protein (AFAP) adaptors that localize on and cross-link the actin fibers.
This binding promotes Src activation and tyrosine phosphorylation of AFAP and other
target proteins of Src (e.g., phospholipase C-γ, Figure 2D) [97]. Hence, the actin cytoskeleton
in the cell cortex takes part in transducing not only extracellular chemical cues, but also the
external physical forces into intracellular biochemical signals by activating a non-receptor
tyrosine-protein kinase Src.

5. Modulation of the Ion Channels Activity by the Actin Cytoskeleton

As the actin cytoskeleton is in vicinity to the plasma membrane and organelles, the ion
channels residing on the cell membranes are surrounded by a meshwork of actin filaments.
More often than not, some of the ion channels are physically in contact with actin. Given
that the actin cytoskeleton is constantly reorganizing itself and rapidly changes its spatial
arrangement following the cell signaling cues, it is conceivable that certain configurations
of actin cytoskeleton near the ion channels may either favor or inhibit opening of the
channel [98]. For example, studies on mouse mammary adenocarcinoma cells expressing
human cystic fibrosis transmembrane conductance regulator (CFTR, a phosphorylation and
ATP-gated anion channel) have shown that brief exposure to CYT-D significantly enhances
the channel conductance for Cl- in the current–voltage curve to the extent that is compa-
rable to the time when the channel is activated by adenosine 3’,5’-cyclic monophosphate
(cAMP), the second messenger activating protein kinase A (PKA) [99]. On the other hand,
a more extensive disassembling of the actin filaments by longer exposure to CYT-D (6 to
9 h) completely abolished the channel activity including the cAMP-induced currents. In the
same condition, addition of PKA to the cytoplasmic side of the excised cell patches did not
restore the channel activity either. Remarkably, however, addition of exogenous actin and
ATP (to stimulate de novo polymerization) restored it [99]. Thus, while moderate short-
ening of long actin filaments activates the channel, excessive depolymerization actually
antagonizes the channel activity in this particular case. Furthermore, CFTR activity was
inhibited either by disturbing polymerization/depolymerization balance by preventing
polymerization with deoxyribonuclease I (DNase I, also an ABP) [100,101] or by inducing
actin bundling with filamin [99].

Modulation of ion flux by the actin cytoskeleton is not restricted to anion channels.
Indeed, the polymerization status of cortical actin also affects Na+ channel activity in
epithelial cells. In the Xenopus kidney A6 cell line, Na+ channels are co-localized with
F-actin [102]. Moreover, addition of CYT-D to the excised patch showing no spontaneous
channel activity suddenly induced the Na+ current within 1–2 minutes. Similarly, addition
of G-actin at a concentration that stimulates the formation of short actin filaments activated
the Na+ channel within five minutes. In contrast, adding long actin filaments preassembled
in vitro did not have such an effect, suggesting that the length of the actin filaments is
critical for the Na+ channel activation. In the given experimental system, it thus appears
that F-actin of an intermediate length is favorable in promoting the activity of CFTR and
Na+ channel activities.

The actin cytoskeleton also affects the activity of voltage-gated ion channels in ex-
citable cells. Disruption of the actin cytoskeleton in salamander retinal ganglion cells can
alter the activity of both L-type Ca2+channels and K+ channels [103]. Measurements of the
whole-cell currents demonstrated that the addition of actin-depolymerizing drugs (LAT
and CYT) substantially reduced the peak of the Ca2+ current, whereas the same treatment
inhibited the sustained outward K+ currents elicited by depolarizing pulses. The effect
was attributed to the changes in the actin cytoskeleton per se because it was all nullified
by adding phalloidin (a drug stabilizing F-actin) in the patch pipette. Consistently, LAT-A
inhibited the Ca2+ current produced by elevated KCl concentration, a less-invasive method
to depolarize the membrane, and the potency of inhibition was proportional to the length
of LAT-A exposure [103]. These observations imply that excessive actin depolymerization
interferes with the normal ion channel function and thereby inhibits ion fluxes across
the plasma membrane. Furthermore, neurons of rat dorsal root ganglion (DRG) exposed
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to LAT-A during the patch-clamp recordings exhibited multiple action potential firings
with increased duration, drawing a drastic contrast with the control cells that showed
only one action potential in response to the same depolarizing current [104]. Under the
voltage-clamp condition, LAT-A inhibited K+ current in a dose-dependent manner. This
finding implies that LAT-A-induced actin depolymerization may impede repolarization of
the membrane potential so that triggering multiple action potentials is facilitated. Again,
phalloidin alleviated both the LAT-A-induced inhibition of K+ current and the frequency-
modulating effect on the action potentials, corroborating that the effects were because
of the alteration of F-actin [104]. In this experiment, actin drug inducing depolymeriza-
tion altered neither the resting potential nor the amplitude of the action potentials, but
specifically inhibited the voltage-activated Ca2+ current. Hence, actin depolymerization
dramatically increases the electrophysiological excitability of DRG neurons, whereas the
similar condition in salamander retinal ganglion cells appears to have an inhibitory effect
on the activities of voltage-gated Ca2+ channels.

It is noteworthy that the actin cytoskeleton also interacts with Ca2+ pumps and thereby
modulates their activities. For example, Ca2+ pumps at the plasma membrane (plasma
membrane Ca2+ ATPase, PMCA) extrude Ca2+ ions to the extracellular space against
the concentration gradient by spending ATP energy. Interestingly, the activity of PMCA
is modulated by the actin filaments that interact with the pumps [24,26,105]. A similar
modulation by the actin cytoskeleton has also been observed with other Ca2+ pumps
present in the endoplasmic reticulum or secretary vesicles [106,107]. Since actin has strong
affinity to both Ca2+ and ATP, a shift in F-actin’s polymerization dynamics is expected
to interfere with the activity of the Ca2+ pumps. Nonetheless, the precise mechanism by
which the actin cytoskeleton modulates the activity of Ca2+ channels and pumps is largely
unknown.

6. F-Actin Depolymerization Is Often Sufficient to Trigger Cell Signaling

It is noteworthy that, in the aforementioned study on DRG neurons, treatment of the
cells with LAT-A alone produced intracellular Ca2+ increase in 65% of the cases [104]. It
now merits reviewing some examples where cells exhibit spontaneous Ca2+ signals or
activate certain signaling enzymes merely by the changes in the cortical actin cytoskeleton
without the aid of physiological cues or trophic factors. The dense meshwork of F-actin
in the crowded subplasmalemmal space could serve as an anchoring point or a platform
on which certain signaling proteins can carry out their functions. On the other hand,
the same cytoskeletal structure may instead act as a physical barrier for the signaling
molecules [108,109]. When F-actin in the zone depolymerizes, PIP2 in plasma membrane
is expected to become more accessible to ABPs and enzymes like PLC. According to this
model, in certain cases, depolymerization of the actin cytoskeleton itself can trigger PLC-
mediated PIP2 hydrolysis to generate InsP3 and intracellular Ca2+ signals even in the
absence of physiological stimuli. One such example is B lymphocytes (B cells) where
exposure to cytochalasins (A, B, D, and E) induces rapid and sustained increment of
intracellular Ca2+ [110]. Although the Ca2+ derives largely from the extracellular medium,
a small transient Ca2+ elevation is consistently observed when cells were kept in a Ca2+-free
medium, indicating that some contribution is also made by Ca2+ mobilization from the
internal stores [110]. In line with the latter finding, CYT-D elicits a more than twofold
increase in intracellular InsP3 level in B cells within 5 minutes of incubation [111]. The
same effect appears to be due to CYT-D’s specific action on actin because a similar molecule,
chaetoglobosins C, which does not bind to actin, failed to do so. Hence, depolymerization
of F-actin itself is likely to be the cause of InsP3 increase in B cells. Given that the artificial
actin depolymerization triggering cellular responses (e.g. Ca2+ increase) is reminiscent of
the antigen-induced B cell activation, rapid changes in actin dynamics by the external cues
may launch multiple signaling pathways during B cell receptor activation and thereby play
more important roles than was previously appreciated [112]. While the precise molecular
mechanism underlying the Ca2+ increase evoked by actin depolymerization is not known,
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it has been shown that B cells obtained from the transgenic mice lacking stimulatory co-
receptor CD19 (cluster of differentiation 19) do not respond to LAT-A with intracellular
Ca2+ increase. This observation suggests that the Ca2+-mobilizing effect exerted by actin
depolymerization is mediated by CD19. In support of the idea, the responsiveness to
LAT-A was restored in the bone marrow chimera cells obtained by injecting exogenous
bone marrow cells expressing some mutant forms of CD19. However, the cells expressing
specific CD19 mutants unable to bind PLC or Fyn failed to respond to LAT-A with the
expected Ca2+ increases [112]. These findings are compatible with the idea that F-actin not
only regulates the location of B cell receptors and CD19 [113], but may also play a role in
restraining spontaneous signaling in the resting B cells.

A similar phenomenon has also been reported in starfish eggs in which depolymer-
ization of subplasmalemmal F-actin itself is sufficient to activate a signaling pathway to
trigger intracellular Ca2+ increase and egg activation [38,114]. During meiotic maturation,
the cortex and cell surface of starfish eggs are drastically reorganized in terms of vesicu-
lar structure and the subplasmalemmal actin network. These eggs readily respond to a
fertilizing sperm with a sharp rise of InsP3 and intracellular Ca2+ increase. However, the
Ca2+-mobilizing machinery of the egg is under tight control until the due signal (fertiliza-
tion) arrives. This prohibitive mechanism preventing erratic triggering of Ca2+ signaling
in unfertilized eggs is dependent upon the subplasmalemmal actin cytoskeleton. Indeed,
when exposed to the drugs promoting actin depolymerization, eggs of certain starfish
species (Astropecten aranciacus) ‘spontaneously’ exhibit intracellular Ca2+ increases in the
absence of sperm (Figure 3). The initial finding with mature eggs of Astropecten aranciacus
featured several interesting points: (i) LAT-A generates a Ca2+ wave that resembles the one
elicited by the fertilizing sperm; (ii) the Ca2+ wave is often accompanied by Ca2+ influx
forming cortical flash; (iii) the Ca2+ wave and influx recur for hours; (iv) the Ca2+ wave is
blocked by heparin, the conventional inhibitor of InsP3 receptor; and (v) the ‘spontaneous’
sperm-free Ca2+ increase induced by LAT-A requires maturation of oocytes, which renders
the cells more sensitive to InsP3 by an order of magnitude [114]. Thus, it appears that
depolymerization of F-actin in these eggs generated Ca2+ waves in a pathway involving
InsP3 receptor. However, this conclusion was obscured by the later finding that heparin
drastically hyperpolymerizes actin in the subplasmalemmal region [40,115], and by the
intriguing possibility that polymerization and depolymerization of actin could respectively
serve as mechanisms by which to sequester and release intracellular Ca2+ inside cells due
to actin’s strong affinity to Ca2+ [116]. If the latter scenario holds, LAT-A might have
increased Ca2+ in a direct pathway independent of the InsP3 receptor. This very idea was
put to the test in a recent study [38]. First of all, the LAT-A-induced Ca2+ wave and flux
in A. aranciacus eggs was not due to some unknown side effects of the actin drug, but
was a bona fide consequence of actin depolymerization. The Ca2+ waves triggered by
LAT-A were replicated by other drugs similarly promoting actin depolymerization (i.e.,
cytochalasin B and mycalolide B), but inhibited by jasplakinolide and phalloidin, which
stabilize actin filaments. The cytoskeletal changes induced by LAT-A did not make the
eggs more sensitive to InsP3, but instead increased the rate of InsP3 synthesis as judged by
the ELISA assay and the decrease of PIP2 on the plasma membrane. In agreement with
this finding, the LAT-A-induced Ca2+ waves were severely suppressed by inhibitors of
PLC (U73122, neomycin) and by the dominant negative recombinant protein containing
the tandem SH2 domains of PLC-γ [38]. Interestingly, exposure of sea urchin (Paracentrotus
lividus) eggs to LAT-A also led to a significant increase in InsP3. Taken together with the
findings in the immune cells of mammals, these results suggest that subplasmalemmal
region of animal cells manifesting enormous reactivity toward sperm or immunogenic
elements are equipped with potent signaling toolkits such as components of the PLC/InsP3
signaling pathway that are under the tight controls of the actin cytoskeleton on the cell
surface.
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Figure 3. Disassembly of actin filaments can spontaneously activate PLC in certain cells: a model involving SFK.
(A) Src family kinases (SFK) can be recruited to the plasma membrane due to their myristoylation, but the enzymes
hardly have access to its substrate PLC-γ because of the actin cytoskeleton to which SFK is often associated. (B) When the
actin cytoskeleton is disassembled, the physical barrier is essentially removed. SFK now gains access to PLC-γ and activates
it. The phosphorylated PLC-γ now hydrolyzes the plasma membrane PIP2 to produce InsP3, a Ca2+-mobilizing second
messenger acting on the receptor ion channel on the endoplasmic reticulum (ER). In the case of starfish egg (Astropecten
aranciacus), disassembly of subplasmalemmal F-actin with Latrunculin-A and other drugs leads to increased production of
InsP3 and the consequent rise of intracellular Ca2+ levels in the form of repetitive waves.

7. Concluding Remarks

In this study, we reviewed some of the experimental evidence that artificial modifi-
cation of the actin cytoskeleton results in significant changes in the activities of certain
enzymes and ion channels. The Ca2+ signaling pathway made of a cascade of steps involv-
ing cell surface receptors, Src family protein kinases, PLC, InsP3, and InsP3 receptor is one
of the most extensively studied signal transduction mechanisms [117–120]. Not surpris-
ingly, the findings in this topic have largely centered on the actin-dependent modulation of
the enzymes or channel activities related to intracellular Ca2+ signaling via the PLC/InsP3
pathway. Nonetheless, it is noteworthy that such a phenomenon has been observed in a
variety of cell types from diverse phyla (Table 1), which suggests that the physical and
functional association of the enzymes and ion channels with the actin cytoskeleton is a
physiologically and evolutionally significant strategy of cells. On the other hand, relatively
less is known about similar physical and functional links to other forms of cytoskeleton,
although it has been intermittently reported that some metabolic and signaling enzymes
are associated with microtubules and intermediate filaments [121–123].
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Table 1. Effects of interference with actin dynamics on cell signaling.

Cell Type Actin Modifier Effect Reference

Jurkat cell
(T-lymphocyte) Active Rac mutant Reduces PLC-γ1 activity and Ca2+

responses to anti-CD3.
[46]

Latrunculin-A Reduces Ca2+ responses to anti-CD3.

RBL-2H3 (mast cell) Cytochalasin-D Enhances InsP3 production and Ca2+

response via FcεRI pathway.
[53]

Latrunculin-A Increases PLC activity, FcεRI
phosphorylation, and degranulation. [54,62]

Platelets Cytochalasin-D
Reduces PLCβ3 translocation to the actin

cytoskeleton; inhibits platelets
aggregation.

[73]

Hepatocytes Cytochalasin-D
Increases colocalization of PLC-γ1 with

the actin cytoskeleton; restores InsP3
production and Ca2+ response to EGF.

[76]

Human mammary epithelial
cell Cytochalasin-D

Decreases α-actinin’s binding to PIP2;
inhibits PIP2 hydrolysis after EGF

receptor activation.
[95]

Rat fetal lung cells Mechanical force Stimulates Src activity and its
translocation to the actin cytoskeleton. [97]

Mouse mammary
adenocarcinoma cells

(transfected)
Cytochalasin-D

Enhances human CFTR activity
conducting Cl- (10 min), abolishes CFTR

activity (>6 h);
[99]

DNase I Inhibits actin-induced CFTR activity. [99]
Filamin Inhibits actin-induced CFTR activity.

Xenopus laevis A6 cells Cytochalasin-D Stimulates Na+ channel activity. [102]

Salamander retinal ganglion
cells

Cytochalasin-D,
Latrunculin-A

Reduces L-type Ca2+ channel activity;
Inhibits voltage-gated K+ channel

activities.
[103]

Rat dorsal root ganglion Latrunculin-A Inhibits K+ current; increases frequency
of action potential. [104]

B lymphocytes Cytochalasin-A,B,D,E Induces Ca2+ influx and release from
internal stores.

[110]

Cytochalasin-D Increases the intracellular InsP3 level. [111]
Starfish egg (Astropecten

aranciacus) Latrunculin-A Increases PLC-γ activity, InsP3
production, and intracellular Ca2+. [38]

Latrunculin-A,
Cytochalasin-B,
Mycalolide-B

Triggers intracellular Ca2+ releases and
influx.

[38]

Sea urchin egg (Paracentrotus
lividus) Latrunculin-A Increases InsP3 production. [38]

The ability to bind to cytoskeletal filaments provides the enzymes and ion channels
with an advantage in trafficking and precise subcellular positioning. The enzymes’ binding
to actin results in mutual influence, as exemplified by DNase I; actin suppresses DNase
I activity, while DNase I in turn inhibits actin polymerization [100,101]. Furthermore,
polymerization and depolymerization kinetics add nuance to the relationship between the
enzymes and its substrates or binding partners comprising the enzyme complex. With the
change in the cytoskeleton, the distance between them may increase or decrease. Thus,
the actin cytoskeleton may facilitate interactions between the signaling molecules that are
attached to it. Conversely, it may also assist in preventing unintended contacts between
signaling molecules by sequestering them. Spontaneous generation of Ca2+ signals by
the disruption of the actin filaments supports the latter idea. Hence, the concept that
the actin cytoskeleton modulates the activities of enzymes and ion channels might have
physiological significance from several perspectives. If signaling molecules like PLC are
linked to the actin cytoskeleton and their activities are modulated by polymerization
and depolymerization status of actin in a variety of cell types and in a wide spectrum of
animal species, would the phenomenon have physiological relevance that has not been
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appreciated much to date? Furthermore, it bears an emphasis that the cytoskeleton also
contributes to a cell’s sensing and conduction of the mechanical signals. In theory, it
is conceivable that contact or collision between cells in a situation like fertilization may
transmit a mechanical signal that induces local rearrangement of actin filaments, which
in turn generates a chemical signal to activate certain enzymes and channels. Such a cell
signaling mechanism has not been much explored, but may merit formal investigations in
the future.
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Abbreviations

CD3 Cluster of differentiation 3
PLC Phospholipase C
PIP2 Phosphatidylinositol 4,5-bisphosphate
RBL-2H3 Rat Basophilic Leukemia 2H3
αIIbβ3 Platelet-specific integrin receptor
DAG Diacylglycerol
EGF Epidermal growth factor
M-CSF Macrophage colony stimulated factor
HME Human mammary epithelial
AFAP Actin-filament associated protein
CFTR Human cystic fibrosis transmembrane conductance regulator
PKA Protein kinase A
CYT-D Cytochalasin D
LAT-A Latrunculin A
cAMP adenosine 3’,5’-cyclic monophosphate
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