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Abstract

Although many structural bioinformatics tools have been using neural network

models for a long time, deep neural network (DNN) models have attracted consid-

erable interest in recent years. Methods employing DNNs have had a significant

impact in recent CASP experiments, notably in CASP12 and especially CASP13. In

this article, we offer a brief introduction to some of the key principles and proper-

ties of DNN models and discuss why they are naturally suited to certain problems

in structural bioinformatics. We also briefly discuss methodological improvements

that have enabled these successes. Using the contact prediction task as an example,

we also speculate why DNN models are able to produce reasonably accurate pre-

dictions even in the absence of many homologues for a given target sequence, a

result that can at first glance appear surprising given the lack of input information.

We end on some thoughts about how and why these types of models can be so

effective, as well as a discussion on potential pitfalls.
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1 | INTRODUCTION

The field of structural bioinformatics has been using machine

learning methods, and specifically artificial neural network

(NN) models, for a long time. Prominent examples of early NN

methods that are still widely used today are PHD,1,2 PSIPRED,3

and JPred.4 The field has recently seen a surge of interest relating

to the use of deep neural network (DNN) models. DNN models

have shown excellent performance in image and language based

problems, to name a few.5 Very recently, this excellent perfor-

mance has been seen to extend to some specific CASP areas. The

first application area where DNNs have had a major impact on

CASP was arguably residue-residue contact prediction, which saw

a particularly marked improvement in accuracy in CASP12 and 13.

In CASP13, a few groups extended these techniques further to the

prediction of interatomic distances, which in some cases could

then be used directly for accurate tertiary structure generation.6-10

Although not currently an area of direct interest in CASP, deep

learning is also starting to show a lot of promise in the area of pro-

tein design.11,12

This article is not intended to be a detailed exposition of every

key deep learning concept; our aim is instead to provide CASP

participants and observers with a working understanding of the

most important DNN architectures that have been successfully

applied to the core problem areas in recent CASP experiments.

We will then discuss what advantages such models may have over

those more traditionally used in various areas. We will then end

on some thoughts on why and how these models work, their limi-

tations, potential pitfalls, and their correct application. All discus-

sion will be limited to supervised learning models,13 as the most

performant DNN models used in CASP so far have been of

this type.
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2 | DEEP NEURAL NETWORKS

Artificial neural networks have proven to be valuable in data modeling

as they are known to be universal function approximators. This means

that when configured and trained correctly, they can approximate any

arbitrary continuous function to any desired approximation accu-

racy.14,15 In fact, the first universal approximation theorems were

proved for NN comprised of just a single hidden layer (although the

theory allowed for arbitrarily many hidden units in that layer). The

theorems say nothing, however, about how one might discover the

network parameters that achieve a particular level of approximation,

and finding good parameters for a given model architecture is

achieved by the process of training. To train a NN in a supervised

fashion, besides the model itself, one requires a set of training exam-

ples (a paired collection of inputs and corresponding outputs), and a

cost or loss function that measures how far away from the “correct”

answer a given model is. Training a NN is achieved by random initiali-

zation of the network parameters, followed by an iterative process

comprising: (a) a forward pass of the NN with the current parameters

to arrive at its predicted output for a training example; (b) calculation

of the loss or cost for the example in question; (c) backpropagation of

the loss to determine its gradient with respect to each network

parameter; and (d) updating of the network parameters in proportion

to the gradients. The backpropagation algorithm was popularized by a

seminal paper by Rumelhart et al16 although the underlying ideas are

much older.17

In general, having more artificial neurons in a model, organized in

multiple layers, provides a model with a large number of adjustable

parameters, and allows the model to express ever more complex func-

tions. DNNs are, as the name suggests, composed of many layers of

artificial neurons. There appears to be no consensus for how many

hidden layers a network needs to have before it can be termed

“deep”;17 a rule of thumb is that two or more hidden layers is suffi-

cient. Of course, practical DNN models usually have many more than

two hidden layers. Although an effective procedure for training these

multilayer networks was developed quite early on,18 DNNs were

rarely used in practice due to difficulties in training them; training a

network of more than two hidden layers with the conventional sig-

moid activation function frequently suffers from the so-called

vanishing gradient problem. Hochreiter et al19 describe this problem

in the context of recurrent architectures, but the underlying problem

is the same for deep feedforward architectures: as training the net-

work parameters depends on the gradient of the loss function with

respect to these parameters, the gradients in the earlier (nearer to the

input) layers is the product of the gradients of all intermediate activa-

tions leading up to the output. This means that for small or large inter-

mediate activation values, the resultant gradient in early layers can

vanish (approach zero) or even sometimes explode (approach infinity) if

the network weights are not properly tuned.

An early solution to this problem was proposed by Hinton,20

where deep networks were trained layer-by-layer using a mixture of

supervised and unsupervised learning. Ultimately, this difficulty was

addressed more easily by a series of seminal works that introduced

new activation functions such as rectified linear units (ReLU),21,22 new

weight initialization schemes,23 and other innovations such as batch

normalization24 and residual architectures25 to better enable the

training and use of increasingly DNN models. These advances

occurred side-by-side with advances in computing hardware, specifi-

cally the availability of affordable, fast graphics processing units

(GPUs), which can also perform the mathematical operations used by

NN in a massively parallel fashion.26-28 Many if not all of these

advances are accessible via a number of freely available programming

frameworks and libraries, which greatly accelerate and streamline

deep learning application development. Prominent examples are

Theano,29 mxNet,30 Caffe,31 TensorFlow,32 Keras,33 Lasagne,34

Torch,35 and PyTorch.36 Most of these frameworks also implement

reverse-mode automatic differentiation,37 a feature that hugely accel-

erates the application development cycle. The training of NN models

by the backpropagation algorithm requires the calculation of the

derivative of the loss function with respect to each parameter in each

layer, and this is managed automatically by the automatic differentia-

tion framework, using the same declarations used to build the NN

model in a program. Thus, there is no need to rewrite the expressions

for both the forward and reverse pass of the network, as the latter is

computed from the former. This allows one to quickly experiment

with different architectures for a model. It has reached the point

where, within reason, as long as the NN architecture can be expressed

in code (Python most usually), the network can be simulated and

trained.

3 | CONVOLUTIONAL NEURAL NETWORK
(CNN) MODELS

In the most basic implementation of a NN, all layers of artificial neu-

rons are fully connected, that is, the output of any neuron in a prior

layer is fed to the input of every neuron in the next layer. Con-

volutional nets act on 2D image-like inputs (but can also be applied to

1D and 3D data) by applying small filters or kernels to colocated

groups of pixels in the image (see Figure 1). Each filter can actually be

thought of as a small single-layer NN (perceptron), where the values

in the filter are trainable weights. Although the filter is applied to

every pixel in the input, the weights are shared across the whole

image, and so it is equivalent to defining one single NN and applying it

at every row and column position. Functionally, there is no difference

between doing this and using a single sliding-window approach, but

there are clear efficiency gains from the use of convolution as it

allows massive parallelism. In CASP11 and CASP12, for example,

MetaPSICOV38,39 made use of two NNs, each of which used a shal-

low fully connected NN and a traditional sliding-window approach to

produce competitive performance in contact prediction. With the

exception that convolutional filters typically use just a single hidden

layer, algorithmically the sliding window approach in MetaPSICOV is

equivalent to a convolutional operation, just far less computationally

efficient.
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After training, the outputs from a convolutional layer operating on

image-like inputs are also image-like, but now convey extra informa-

tion, for example, the presence of an edge between two objects in the

image. Convolutional architectures are suited to data that exhibit

some form of spatial structure, such as images or covariance matrices.

The filter weights are the same for each output pixel, meaning the

network can recognize local features regardless of their spatial loca-

tion in the input. As the same filter is moved across the input image to

generate the output, fewer adjustable parameters are needed

(as compared to a fully connected layer). Multiple filters (channels) can

be learned in a single convolutional layer, each recognizing a different

pattern within the data.

An important parameter of CNNs is the receptive field. This simply

refers to the area of the input image (or more generally, the input fea-

ture set) that can be “seen” at any one time. Concretely, the receptive

field is the spatial extent of the inputs that are used in the calculation

of a single output value, and is typically calculated for a single neuron

in a given convolutional layer in the network (most commonly the

last). Output neurons in a network comprising a single layer of 3 × 3

filters would have a 3 × 3 receptive field, as the final calculation car-

ried out by the network for each output pixel only considers a central

pixel and its immediate neighbors in the input (Figure 1). Composing a

model with successive convolutional layers, however, can grow the

receptive field, that is, the area around each input pixel that can be

included in calculating an output in the final layer (see Figure 2A). A

caveat is that the size of the receptive field is bounded by the size of

the input; a CNN can be configured to have a large receptive field by

adding more convolutional layers, but if it only ever operates on

inputs with spatial dimensions of, say 32 × 32, then the receptive field

can only grow to a maximum size of 32 × 32, regardless of the num-

ber of layers, even though its “theoretical” receptive field may be

much larger. In practice, the maximum receptive field needs to be

large enough to capture the relevant structures in the input data.

Dilated convolutions40 can also be used to increase the receptive field

with far fewer layers. In a dilated convolution, each filter is “stretched”

by including spaces between each pixel (Figure 2B). A 3 × 3 filter with

a dilation rate of 2 would actually cover the same area as a 5 × 5 filter,

but with only nine learnable parameters rather than 25 (Figure 2B).

The downside would be that the dilated filter will only be able to sam-

ple nine out of the 25 pixels and so will have “gaps.” However, these

gaps can be filled by later dilated layers, so a network built with a mix-

ture of dilated filters can cover an arbitrarily large receptive field with-

out requiring an exponentially growing number of learnable

parameters. In CASP13, dilated convolutions were used in a number

of the top-performing CNN models.7,41,42

Typical CNN models (eg, for image classification) take the output

of one or more convolutional layers and usually downscale them with

a “max pooling” operation. Max pooling simply looks for the maximum

F IGURE 1 A 2D convolutional filter (orange) is applied to an input
layer (blue) to obtain the values for an output layer (green). The
output value (−8 in this example) is the sum of the pointwise products
of the filter weights and the corresponding elements in the input (the
bias is zero in this example and no nonlinear activation function is
used). The same set of filter weights is used to generate the output
values at every placement of the filter on the input F IGURE 2 A, Illustration of the growth of the receptive field of a

2D CNN as convolutional layers are added. The 6 × 6 grids represent
the output from three consecutive convolutional layers with filter
sizes of 3 × 3, and information flows from layer 1 to layer 3. A single
output at layer 3 (yellow cell) is obtained using a 3 × 3 window of
inputs from layer 2. Each of these nine cells in layer 2 uses a 3 × 3
window of values from layer 1. These windows overlap, and the set
union of the cells used by the highlighted cells in layer 2 is marked on
layer 1 (5 × 5 grid). Thus, from the point of view of each output cell in
layer 3, the receptive field is 5 × 5 cells in layer 1. B, A single dilated
convolutional filter is shown, with a 3 × 3 filter and a dilation rate of
2. This layer has a receptive field of 5 × 5 despite having only nine
adjustable weights. Stacking dilated convolutional layers allows the
receptive field to grow exponentially using a linearly increasing
number of parameters. In contrast, both the receptive field and the
number of adjustable parameters grow linearly when using regular
convolutional layers, as shown in A
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value within an area, but this operation reduces the size/resolution of

the image. Ultimately, the final max pooling output is used as input to

one or more fully connected layers. The output (using a softmax func-

tion usually) of the last fully connected layer will represent the output

of the network, which is typically a classification of the input image

into a fixed number of predefined categories (“cat” or “tree” for exam-

ple). It is, however, also possible to have CNN models that take in

image-like inputs and produce image-like outputs. This is achieved

using fully convolutional networks (FCNs; not to be confused with

fully connected networks),43 which are simply composed of a stack of

convolutional layers all the way up to the output, omitting max

pooling or fully connected layers that either change the image resolu-

tion or lose the image structure. Thus, an attractive property of FCNs

is that they can be configured to produce output images of the exact

same dimensions as the input. An example application of such a setup

is to take in an image and produce an identically sized output image

that highlights particular objects in the input image, which is known as

image segmentation. In structural bioinformatics, this type of architec-

ture has been used to great effect in contact prediction by a number

of groups,42,44-48 where the inputs to the network are one or more

features dependent on the (squared) length of the target sequence

(eg, amino acid covariance matrices), and produce outputs (contact

maps) of the same shape.

As already mentioned, training very deep CNNs can be difficult

due to vanishing gradients. Although the solutions already discussed

allow fairly deep nets to be trained (up to say 20 layers), for really

deep networks, the gradients still end up getting lost and so such nets

are very hard to train. To train very deep CNNs, therefore, a further

trick has proven useful. To train a very deep FCN, skip-connections or

short-cuts can be used that can bypass some layers and provide infor-

mation from earlier layers directly to later layers25 (see Figure 3).

These so-called residual NNs (ResNets) are becoming the standard

architecture for training very deep CNNs, and have been used in the

best-performing methods for contact and distance prediction in

CASP,9,10,41,42,47,48 including those by the Zhang and A7D groups in

CASP13.

As we briefly mentioned earlier, CNNs are not just limited to 2D

problems. Also of use recently have been 3D CNNs, where the input

is generally a representation of the protein tertiary structure and the

output is a measure such as an estimation of model accuracy50 or a

binding site prediction.51 In this case the filters learn favorable residue

orientation patterns, analogous to energy calculations using force

fields in molecular mechanics. Although 3D CNNs often have large

memory requirements, recent technical developments in this area

indicate that it could well increase in importance in future CASP

experiments.52

3.1 | CNNs in contact prediction

In contact prediction, CNNs have proven themselves to be signifi-

cantly more effective at the problem than the global statistical models

that created a lot of excitement in the field just a few years ago.

Examples of such global models include direct-coupling analysis

(DCA),53-55 pseudolikelihood maximization,56-60 and sparse inverse

covariance estimation (SICE).61 As mentioned previously, given the

correspondence between residue covariance matrices and contact

maps, it is natural to treat these as image-like inputs in order to derive

a mapping. CNNs are ideally suited to such prediction problems, as

the key idea in convolutional layers is to recognize local patterns

regardless of their spatial position in the input. Taking this idea into

the realm of contact prediction, applying convolutional filters to an

amino acid covariance matrix, say, allows the model to detect interac-

tions between local sequence motifs that are separated by an arbi-

trary number of residues,45 which corresponds nicely to observed

structural patterns (eg, variable length loops or even entire domain

insertions can be accommodated with no changes needed to the

model).

The fact that CNN models, in which the key functional units are

designed to only use local subsets of the data, can outperform global

models in which all residue covariation data are considered simulta-

neously, can at first glance seem surprising. On the other hand, the

ability to stack successive convolutional layers to increase the overall

receptive field of the model theoretically allows the model to use as

much of the covariation data for a target protein as necessary when

predicting individual contacts. In a recent work,45 we created CNN

models with varying sized receptive fields in order to assess whether

a completely global view of the covariation data is necessary in order

to achieve high precision when predicting contacts. We found that

increasing the receptive field of the network led to increased preci-

sion, as might be expected, but significant gains were realized only up

to a maximum receptive field size of 15 residues or so; further

increases in the receptive field size (up to the evaluated maximum of

49) led to little or no gain in mean precision. The model, which we ter-

med DeepCov, was also found to be significantly more precise than

F IGURE 3 Illustration of data flow in a residual block. Red text
illustrates the overall mathematical form of the transformations
achieved at various steps. Input data x enters the residual block at the
top, and flows through a number of weight layers (such as fully
connected or convolutional layers), and usually includes one or more
nonlinear activations (in this case, ReLU). The whole transformation
up to this point is represented by F(x). The result of these weight
layers is then added to the input x, before passing through another
nonlinear activation layer. Other “wirings” of residual blocks are
possible and have been studied.49 ReLU, rectified linear units
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the global statistical model predictor, CCMpred,59 and equaled or out-

performed our best available method at the time, MetaPSICOV2.39

These results suggested that most of the information needed to accu-

rately predict contacts between a pair of residues lies in the residue

covariation data for seven or so residues on either side of the residue

pair being considered. The distance prediction model used by the

A7D group in CASP1310 is a deep convolutional ResNet that uses

64 × 64 residue crops of the input features, and so by definition has a

maximum 64 × 64 receptive field despite using a very large number of

layers. The team was clearly able to produce highly accurate models

using the predictions from this restricted model. However, the fact

that the A7D team used a global statistical model (pseudolikelihood

coupling parameters) to generate their input features makes the

receptive field interpretation far less clear than for DeepCov, as pre-

dictions of distances for any residue pair could in theory depend on

residue covariation statistics for the entire protein.

4 | WHY IS DEEP LEARNING EFFECTIVE?

We now give some personal thoughts as to why we think DNN-based

models are effective at various problems, as well as some potential

pitfalls.

4.1 | Learning hierarchical representations

As each successive layer in a DNN composes the outputs from the

previous layer, features of the data can be learned at varying levels of

abstraction, allowing deeper models to recognize increasingly complex

patterns. Taking as an example the task of recognizing faces in images,

early convolutional layers can learn very simple features of the image,

such as edges. Subsequent convolutional layers can then compose

edges and learn to detect simple shapes, individual facial features, and

finally whole faces. It is possible to inspect the convolutional filters in

a trained CNN, and although these levels of abstraction are not always

arranged neatly across successive convolutional layers, a hierarchy of

features can often clearly be seen.62 Such an ability to learn hierarchi-

cal features can be useful in a variety of structural bioinformatics

tasks, as information in biological data often does exist at various

levels of hierarchical organization. For example, in proteins, informa-

tion exists at the levels of individual residues, sequence motifs, frag-

ments, secondary and supersecondary structures, domains, and so

on. In the realm of contact prediction, Liu et al63 show that an FCN

trained to predict interresidue contacts can recognize specific contact

patterns between elements of secondary structure, although the work

only inspected the patterns learned in the first convolutional layer in a

simplified version of the model.

In general, DNN models work well on data that exhibit structure

such that some form of hierarchical parsing is both possible and mean-

ingful. For this reason, DNN models are generally not particularly

effective in modeling unstructured data, which is unfortunately very

common in many areas of biology and medicine. By unstructured data,

we mean data where there is no geometric relationship between the

inputs for example, features such as “cost,” “height,” “molecular

weight,” “radius of gyration,” and so forth. In bioinformatics, an illus-

trative example of this is the DeepBipolar method64 that used CNNs

to tackle the Bipolar exome task at the fourth Critical Assessment of

Genome Interpretation (CAGI) experiment. Despite using a complex

CNN architecture, it performed only slightly better than traditional

classifiers such as random forests, likely due to the unstructured

nature of the inputs (presence or absence of particular gene variant

calls), but also, to be fair, possibly due to the limited amount of avail-

able training data. One useful take-home message we can take from

this is that deep learning has only proven to be effective in a fairly

narrow (but still important) range of problems, and is not going to be

the best approach in every machine learning application area.

4.2 | Deep learning as a neighborhood density
estimation method

In order to find better ways of using deep learning in future CASP

experiments, it is valuable to have in mind a high-level concept of

what it is that these networks are actually doing. One way to think of

what a NN actually does is that it acts as a highly sophisticated lookup

table. During training, the NN places the features of each piece of

training data in a high-dimensional space. The shape of this space is

learned alongside the data, but ultimately the end result is not that

complicated. Given a particular set of inputs, the trained network

computes the similarities between these particular inputs and repre-

sentations of all of the inputs it has ever seen before in training. If the

network is very large, and the amount of training data relatively small,

then the network really does ultimately become a trivial lookup table.

In that scenario, the training data are effectively stored within the

weights of the network and during inference the network simply

assigns a weight to these stored patterns and produces as output a

weighted average of the original training outputs. A network like this

is essentially useless for making predictions because unless the input

is really close to one of the training examples, it will simply produce a

output an average of all of the original training outputs, which is

unlikely to be informative. This is what we mean by overfitting in the

context of NN training.

It is easy to see that an overtrained model would exhibit very low

to zero training error and could be obtained by a relatively straightfor-

ward optimization of a loss function. A number of regularization tech-

niques can be used to avoid overfitting, such as adding penalty terms

to the loss function (eg, L1 or L2 penalties, which are commonly used

in regression models65-67), Dropout,68,69 or early stopping,70 to name

a few. Besides regularization, the main key to avoiding overfitting is

always to collect a lot more data, but some benefit can be gained from

simply reducing the complexity of the network. Reducing the com-

plexity of the network basically means reducing the number of adjust-

able weights or parameters, and so typically means either using fewer

layers, and so producing a shallower network, or making each layer

narrower that is, reducing the number of weights in each layer. This

model complexity reduction forces the NN to be more “creative” in

the way it stores the training input–output pairings. It still tries to

KANDATHIL ET AL. 1183



memorize the training data, but because it no longer has enough

memory capacity to simply store the information, it is forced to make

use of more complex representations of the data to store the same

amount of data in less memory. This of course is recognizable as data

compression, and so another useful way of looking at a NN is that it is

learning how to compress the input training data. The better this com-

pression is, the more we assume the network has learned about the

underlying shape or structure of the data. Of course there must be

limits to this, otherwise we would opt to use a NN with just a single

adjustable weight to learn any sized data set. As with any compression

method, data can only be compressed so much until it is simply not

possible to reconstruct the original input to any kind of useful accu-

racy. This is what we refer to as underfitting a NN model.

Having illustrated the dangers of over- and underfitting, it is worth

pointing out that most DNNs used in practice are overparameterized,

that is, they have far more adjustable parameters than they have

examples in the training set. Despite this, many such models can suc-

cessfully generalize to new data, indicating that they are not over-

fitted to their training sets. Empirically, it has been found that

overparameterization has the desirable side-effect of producing

models that are easier to train,71,72 meaning that once the gradient-

based weight optimization process has reached a stationary point, the

resulting model is found to be highly performant. Getting high perfor-

mance from an overparameterized model (while avoiding overfitting)

is possible due to the creation of an easier optimization landscape to

be solved during the gradient-based training process.73-75 Thus, some-

what paradoxically, overparameterized models do often show better

generalization than underparameterized models. There is a tension

between keeping a model parsimonious while on the other hand hav-

ing sufficient complexity to model the data usefully, and crucially, so

that the model can be trained effectively. As always, the pragmatic

approach is to test various model architectures for a given problem

and use the best one as determined from a held-out test set.

Turning once again to CASP, the previously outlined develop-

ments in using deep convolutional NNs to predict either interresidue

contacts or more usefully interresidue distance distributions has

clearly had an impact, and there appears to have been an advance in

our general ability to model protein structures without reference to a

template structure. But is this really true? Have these DNNs looked

through all of the structures in the protein data bank (PDB) and simply

learned how proteins fold from first principles? If so, can a complete

solution to the protein folding problem be just a few short years away

from realization? That cannot be absolutely ruled out, but the likely

answer to both these questions is probably no. To see why this is, we

have to look at the basis of these exciting developments in protein

structure and to place them in the context of what has happened in

the previous 25 years or so of the CASP experiment. In many

respects, deep learning-based prediction of contacts and distances

has superficial similarities to fold recognition and fragment-assembly

methods, in that they all make predictions by referencing some parts

or all of a set of known structures.

Considering the NN models used in A7D (DeepMind's

AlphaFold),10 RaptorX,8 or our own DMPfold,9 it is important to

understand the limitations of what these models are capable of doing.

The first thing we notice about these models is that they employ a

variety of sequence-derived input features. The majority of these fea-

tures encode evolutionary information of various kinds, particularly

direct coupling features, which have also had an impact on the last

few CASP experiments. Indeed, DCA and SICE predictions have on

their own been used successfully to fold proteins.53,60,76-79 It should

therefore come as little surprise that models that take these features

as input are successful at predicting contacts, as in these cases the

model does not have to achieve much more than “clean up” the initial

predictions by recognizing local contact patterns across the training

set. However, some DNN-based contact prediction methods do not

use direct coupling features, and instead operate on raw residue

covariance matrices45 or even the input multiple sequence alignment

(MSA) directly.80

Regardless of whether direct couplings, covariances, or the MSA

itself is used, these features are arguably a very long way away from

the simplest case of encoding a single amino acid sequence as the sole

input. This means that a network using these features is almost cer-

tainly not learning anything specifically about the actual target

sequence, but instead is learning statistical features of the family to

which the target sequence belongs. This immediately creates a limita-

tion on what the network can ultimately learn. If the inputs comprise

information summarized from hundreds or perhaps thousands of dif-

ferent proteins, then it is clearly not ideal to train the network to asso-

ciate this input with just a single target set of distances. Each member

of the family will have a slightly different structure from every other

member, and so this creates an inherent accuracy limit to deep

learning-based modeling, at least in its current form. At best, the net-

work can learn the structure of an “average” member of the family,

but at worst the known structure used in training could turn out to be

something of an outlier. In that case the network will likely model that

family fairly inaccurately, as it has been provided with a highly biased

sample of the ensemble of structures represented in the family. This

bias will vary from protein family to protein family, but it is reasonable

to guess that the average of these biases is going to be somewhere in

the region of 3-5 Å RMSD. So, without many more samples of known

structures, which would require a huge increase in the number of

structures in PDB, covariation-based deep learning models will likely

only ever directly produce predictions of around this accuracy. This

perhaps emphasizes the increased importance of structure refinement

to the future of protein structure prediction, as “fold level” modeling

may well effectively become a solved problem within a few years.

4.3 | Robustness to missing or noisy inputs

An aspect of DNN-based predictors that can be surprising is that they

seem able to produce reasonable predictions even when the inputs

are noisy or sparse (incomplete). An example in contact prediction is

when the input MSA only has very few sequences in it.45,47 With very

few sequences, DCA- or other global model-based predictors struggle

to predict contacts, as there is too little information with which to fit

the parameters of the global model accurately. Why then, can a DNN
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seemingly conjure up a reasonable contact prediction where other

predictors cannot?

An accurate and deep MSA generally provides a reliable estimate

of residue covariation along the entire protein chain. Conversely, shal-

low alignments comprised of only a few sequences or sequence clus-

ters provide noisy and less reliable estimates of residue covariation.

Low sequence diversity in the MSA is a particular problem: Pairs of

columns in an MSA showing no variation at all will be assigned a

covariance value of zero, and the presence of a large number of such

pairs in the MSA essentially means that one has large amounts of

missing data. This is a problem for the global statistical models as the

calculations are performed using probability estimates for every amino

acid type at every pair of sequence positions. Pseudocounts are gen-

erally used to “fill-in” data for unobserved pairs, and for deep align-

ments we would expect that most of the parameters used in fitting

come from actual observations rather than pseudocount guessing. For

shallow alignments, however, most of the parameters will have been

guessed rather than observed. So, it should not be at all surprising

why global statistical models fail completely when given only shallow

alignments.

In contrast, when properly trained, DNN models can be quite

robust to missing data. Figure 4 illustrates this idea using an image

classification model that is available online. Given an input image, this

model is trained to predict scores for a predefined set of concepts

that describe the content of the image. Figure 4A shows the

10 highest-scoring predictions for the original image. In Figure 4B,C, a

significant fraction of the image has been “censored” or more techni-

cally “ablated,” mimicking a situation where one has missing data. The

model clearly still returns reasonable predictions, although the overall

accuracy is clearly reduced as more data get ablated. If we consider

the task of contact prediction from just raw covariance data, when an

input MSA has only a few sequences, the covariance estimates can

only take on a limited set of values. In the realm of digital images, this

is (very loosely) similar to using only a limited number of colors for an

image. Once again, properly trained DNN models for image recogni-

tion can be surprisingly robust to this effect (Figure 4D).

Robustness to missing or noisy data is not necessarily a new

aspect of deep learning (DL) models; instead, the lack of such robust-

ness can be considered an obvious failure mode of global models such

as DCA, pseudolikelihood methods, and SICE. When the inputs to

such models are sparse, one is forced to use techniques such as

shrinking the covariance matrix or adding pseudocounts so that the

model has complete information to work with. DL models can simply

be trained to naturally deal with such missing data without needing it

to be explicitly filled in.

To better understand this, imagine an MSA with two distinct

regions (this could be a two domain protein). One region has many

aligned sequences, and few long gaps, the other region has few

aligned amino acids and very many long gaps. An unsupervised covari-

ation method such as PSICOV will struggle to produce an accurate

contact map in this situation. This is because every decoupling equa-

tion in the calculation will include pairwise covariance terms from

both the good and bad parts of the alignment. Thus, the whole

predicted map will be of low accuracy because of the missing data in

the bad section. A convolutional network method such as DeepCov,

on the other hand, will have no such problems. The learned filters in

the convolutional layers will still detect local patterns corresponding

to real contacts in the good parts of the alignment, but will be

unhindered by the noisy data from the bad part of the alignment. In

the bad part of the alignment, the filters will simply detect few or no

F IGURE 4 Well-trained DNN models can be robust to missing or noisy data. Four versions of a sample input image are shown. Beneath each
image, the top 10 predictions from an image classification model are shown. Panel A shows results for the original image; panels B and C show
results for versions of A with data progressively “censored”; and panel D shows results for the same image as in C but using only eight colors.
Although the predictions get worse going from panels A to D, there are still a few reasonable predictions in the top 10. The model used is the
“general” image classification model available at: https://clarifai.com/demo. Source: Joseph Gonzalez on Unsplash
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contacts. This is analogous to the way that convolutional nets out-

perform fully connected nets in image labelling tasks (see Figure 4,

wherein a confident prediction for “breakfast” is still returned after

much of the input image has been ablated). In the case of shallow

alignments with more or less uniform coverage across the whole

query sequence, the network would simply look at the data for those

columns that do show some covariation, and possibly detect contacts

in these regions. Additional benefits may be gained from the fact that

the network has seen multiple proteins and MSAs during training,

which is in contrast to the way in which global statistical models

operate.

In fact, a convolutional network can be made even more robust by

augmentation of the training data. In the case of contact prediction,

this could involve showing the network multiple versions of input fea-

tures for each target protein, where each version of the input is com-

posed from MSAs of varying quality. An approach of this type has

already been used to try to improve robustness in contact

prediction.42

4.4 | Potential pitfalls

Compared to application areas such as text or images, bioinformatics

databases typically have far fewer data points that can be used to

train predictive models. As DNN models frequently have millions of

adjustable parameters, for sufficiently small numbers of training exam-

ples it becomes possible for DNNs to be easily overtrained and to

memorize a training set, as we have described above. Perhaps the big-

gest problem with overtrained models is that we may overestimate

their performance before they are applied to new problem instances.

It is thus important to evaluate a model's ability to generalize to new,

unseen examples, and to confirm that the model has indeed learned

features of the input data that are predictive of the desired

property(ies), rather than just memorizing the training set. One

approach is to use a test set that has no overlap to the training set

(but which obviously sits within the same problem domain that the

model was trained on). The procedure chosen for defining the non-

overlap between the training and test sets is thus of crucial impor-

tance. In structural bioinformatics, the best procedure varies

according to the prediction task. Considering DNNs that predict inter-

atomic contacts or distances, for example, it is desirable that the

model can accurately predict these properties for entirely novel folds.

The only way to evaluate this reliably is to ensure that there are no

proteins in the test set(s) used for benchmarking that have a similar

3D structure or fold as any protein in the training set. Structural classi-

fication databases such as CATH81,82 and ECOD83-85 can be used for

this very purpose, as some studies have wisely done.45,80 As an exam-

ple, eliminating training examples in the same CATH or ECOD T-group

as any testing example provides a satisfactory means to eliminate

structural overlap between the two sets. Many papers, on the other

hand, use a data set split based only on a sequence identity threshold,

most commonly 25%-30% sequence identity. While such a split may

be sufficient in cases where structural information is not relevant, the

problem is that sequences in the same family and with similar

structures can have sequence identity well below 30%, and some-

times with 0% sequence identity. In this case, a correct prediction by

the network is likely to be repeating what it has already seen during

training rather than making a true prediction of the task at hand. This

problem affects prediction tasks including secondary structure predic-

tion and contact or distance prediction, to name but a few. We can

think of vanishingly few problems for which a split based on sequence

identity is sufficient; one example is function prediction, in which two

highly sequence-similar proteins can have very different functions.

While it is difficult to encourage researchers to adopt a more stringent

procedure that is both harder to implement and makes their

benchmarking results look worse, a shift to using rigorous training and

testing splits is essential if we are to accurately assess the impact of

deep learning-based methods, and for practitioners to trust the pre-

dictions provided by such models in the future.

5 | CONCLUSIONS AND OUTLOOK

Research in NNs and deep learning continues to develop at a rapid

pace, with ideas for new architectures, training tricks, weight optimi-

zation algorithms and other tools appearing on a weekly and some-

times daily basis. Indeed, there are a number of very important ideas

that we have not covered in this article. Perhaps the most important

is that of recurrent architectures, which map sequences of data to

other sequences. Recurrent NNs are widely used in the prediction of

secondary structure, solvent accessibility, disorder and backbone tor-

sion angles.86-88 Recurrent architectures have also been used in con-

tact prediction.48,89 More recently, a recurrent architecture has been

used to model tertiary structure.90 This latter method has the attrac-

tive property of being end-to-end differentiable, meaning that all parts

of the process from taking in the input features to predicting 3D coor-

dinates (via predicted torsion angles) can be simultaneously optimized

during the NN training process. Other methods such as deep rein-

forcement learning91 and generative models (such as generative

adversarial networks92 and variational autoencoders93) have not yet

had a clear impact in CASP, but perhaps will in the future.

Deep learning is clearly taking bioinformatics by storm. As

reviewed here, this is due to the ability of deep learning models to

take into account different levels of structure in data, to deal with

noisy data, to take in raw features without the need for feature engi-

neering, and to interpolate sensibly to make reasonable predictions

for data not used in training. This trend looks likely to continue for at

least a few years due to a few reasons: constant improvements in

hardware, architectures and algorithms; the ever-increasing amount

of experimental data collected; and the increasing crossover between

the machine learning and bioinformatics communities. As deep learn-

ing for bioinformatics moves into a more mature phase it is essential

that rigorous benchmarking and evaluation becomes more common in

published literature. Of course, the ultimate aim of bioinformatics is

not just accuracy on prediction tasks but understanding of the under-

lying biological processes at work. As research into the interpretability

of NNs improves, it would be beneficial for successful networks in
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bioinformatics to be interrogated to see which features and signals

are important. Such understanding could even be used to help the

networks themselves become more robust and accurate.
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