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Hypothalamic primary cilium: A hub for metabolic homeostasis
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Obesity is a global health problem that is associated with adverse consequences such as the development of metabolic disorders,
including cardiovascular disease, neurodegenerative disorders, and type 2 diabetes. A major cause of obesity is metabolic
imbalance, which results from insufficient physical activity and excess energy intake. Understanding the pathogenesis of obesity, as
well as other metabolic disorders, is important in the development of methods for prevention and therapy. The coordination of
energy balance takes place in the hypothalamus, a major brain region that maintains body homeostasis. The primary cilium is an
organelle that has recently received attention because of its role in controlling energy balance in the hypothalamus. Defects in
proteins required for ciliary function and formation, both in humans and in mice, have been shown to cause various metabolic
disorders. In this review, we provide an overview of the critical functions of primary cilia, particularly in hypothalamic areas, and
briefly summarize the studies on the primary roles of cilia in specific neurons relating to metabolic homeostasis.
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INTRODUCTION

The cilium is a hair-like organelle formed with cell membrane and
is present on nearly every mammalian cell. Cilia have historically
been classified as either motile or immotile. Structurally, a cilium
consists of a microtubule-based axoneme covered by a ciliary
membrane (Fig. 1). The axoneme emerges from the basal body, a
centriole-derived and microtubule-organizing center, extending
from the cell surface into the extracellular space [1]. In terms of
their formation and functions, cilia are constructed through a
microtubule motor-based transport system that consists of
intraflagellar transport (IFT) complexes that bind directly to cargos
and their motors kinesin-2 and dynein, enabling travel across the
axoneme [2, 3]. The IFT complex consists of two distinct
subcomplexes, complexes A and B. Complex A is needed for
retrograde movement from the ciliary tip to the cytoplasm, while
complex B is utilized in anterograde transport from the cellular
base to the ciliary tip. Balanced transport systems are important
for ciliogenesis, as faulty regulation of these factors causes
abnormal cilia formation [3].

Most mammalian cells have a single immotile cilium, called the
primary cilium, which has evolved to receive various signals from
extracellular stimuli [1, 4]. Due to their ability to detect sensory cues,
primary cilia are considered cellular antennae. However, little
attention had been directed to the importance of primary cilia
until the discovery of their association with polycystic kidney disease
(PKD) [5]. PKD is an inherited genetic disorder that results in
progressive renal cyst formation due to abnormal primary cilia
function. Later, the medical significance of primary cilia, beyond
their relation to PKD, became increasingly evident, with evidence
showing that the structural and functional anomalies of primary cilia
arise from genetic mutations in ciliary proteins. These proteins are
closely related to human diseases comprehensively called ciliopa-
thies, including retinal degeneration, polydactyly, hypertension, and

obesity [6]. While it has been established that primary cilia have
critical and diverse functions in several cell types, many questions
regarding the precise functions of primary cilia in these cell types,
particularly neuronal primary cilia, remain.

Body weight regulation has garnered significant attention due to
its importance in maintaining energy balance, which is primarily
determined by food intake and energy expenditure. Research on
feeding behavior and energy consumption is needed to cure
metabolic diseases such as obesity and diabetes, along with their
complications. The brain, particularly the hypothalamus, plays a critical
role in integrating and coordinating several types of signals, including
hormones and nutrients, to maintain body homeostasis. Recently,
primary cilia have received attention because of their functioning as
sensory centers in controlling energy balance. Early evidence linking
primary cilia and energy homeostasis was realized upon the discovery
that proteins associated with human obesity syndromes, such as
Alstrom and Bardet-Biedl syndromes, localize to primary cilia.
Mutations in these proteins, both in humans and in mice, result in
organisms displaying severe obesity and diabetes [6-8]. In 2007,
Davenport et al. directly assessed the importance of primary cilia by
utilizing conditional knockout (KO) of ciliogenesis genes (Tg737 and
Kif3a). This study was the first to show that neuronal primary cilia are
required for normal energy homeostasis [9]. Since then, neuronal
primary cilia have emerged as critical organelles in the integration of
the complex signals in metabolic homeostasis [10-12]. Therefore, in
this review, we summarize the evidence supporting the role of
hypothalamic primary cilia in controlling metabolic homeostasis.

MAIN TEXT

The hypothalamus, a site for energy balance control

The hypothalamus is a key brain region in the balance of body
homeostasis [13, 14]. It encompasses several anatomically
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Fig. 1 Schematic structure of primary cilia. Immunofluorescence images of primary cilia (green, ADCY3) in hypothalamic cells (a) and arcuate
nuclei (b). Scale = 20 pm. Schematic structure of primary cilia (c). The primary cilium is an antenna-like organelle that receives diverse signals
from the extracellular environment. It is comprised of the ciliary membrane surrounding the microtubule-based axoneme. The nine parallel
microtubule doublets of the axoneme, which show “9+ 0" rings, form the backbone of the appendage, while the basal body acts as a
microtubule-organizing center. The components that are transported from the basal body to the ciliary tip by anterograde transport rely on
the intraflagellar transport (IFT) protein attached to the motor protein kinesin 2. In contrast, retrograde transport from the ciliary tip to the
cytoplasm depends on dynein motor proteins. The ciliary membrane is highly enriched with several receptors, including G protein-coupled
receptors (GPCRs).

Segittal section PVN NTS
)
9 () POMC
~—
AgRP Vs
INPY
. LH
°®
Nutrients Insulin
Leptin /
Ghrelin GLP-1
ARC
Energy Food
expenditure intake

ME

A

Fig. 2 Hypothalamic nuclei involved in the regulation of energy balance. Energy homeostasis is regulated by a complex feedback loop
involving endocrine and neuronal signals originating from peripheral organs and intrahypothalamic communications. The ARC is a key
nucleus that houses POMC and AgRP/NPY neurons, which integrate the aforementioned signals. These neurons project to various nuclei,
including the PVN, VMH, and LH. In turn, the ARC receives input from the VMH and LH. The NTS receives projections from the ARC, PVN, VMH,
and LH and regulates multiple metabolic effectors of energy balance. 3V, third ventricle; AgRP, agouti-related protein; ARC, arcuate nucleus;
LH, lateral hypothalamus; ME, median eminence; NPY, neuropeptide Y; NTS, nucleus of tractus solitarius; POMC, proopiomelanocortin; PVN,
paraventricular nucleus; SF-1, steroidogenic factor 1; and VMH, ventromedial hypothalamus.

well-defined nuclei, including the arcuate nucleus (ARC), as well as peripheral, nutritional, and hormonal cues to control energy

the ventromedial hypothalamus (VMH), dorsomedial hypothala-
mus (DMH), lateral hypothalamus (LH), and paraventricular
nucleus (PVN) of the hypothalamus (Fig. 2) [15]. The ARC, which
is located at the base of the hypothalamus and is in close
proximity to the median eminence (ME), primarily senses
metabolic signals from the periphery via systemic circulation.
There are two distinct functionally antagonistic neurons: (i)
orexigenic agouti-related peptide (AgRP)- and neuropeptide Y
(NPY)-expressing neurons and (ii) anorexigenic proopiomelano-
cortin  (POMCQ)-expressing neurons [16, 17]. These neuronal
populations are called first-order neurons because they integrate
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balance [18, 19] through various hormone receptors distributed
over the neuronal membrane, such as leptin receptor (LepR) and
insulin receptor (IR) [20]. For example, leptin binds to receptors
expressed at the surface of POMC and AgRP neurons. Once leptin
binds to LepR, the neurons are either activated or inhibited and
regulate food intake and energy expenditure by releasing
melanocortin peptides, which are key products that control
energy balance. POMC neurons produce a-melanocyte-stimulat-
ing hormone (a-MSH), an agonist of melanocortin receptor 4
(MC4R), which is key in regulating energy and glucose home-
ostasis. In contrast, the inverse agonist AgRP suppresses MC4R
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activity and simultaneously antagonizes the effects of a-MSH
[18, 21, 22]. These neurons project to both intrahypothalamic
neurons (e.g., neurons in the VMH, DMH, LH, and PVN) and
extrahypothalamic neurons (e.g., the nucleus of tractus solitarius
(NTS) and the mesolimbic reward system), communicating
information regarding peripheral energy availability to other
brain areas (Fig. 2) [23]. Among these areas, the PVN seems to be
the center of the melanocortin system. Once either AgRP or
a-MSH binds to MC4R in the neurons of the PVN, feeding
behavior is modulated, possibly through the autonomic nervous
system [24-29].

The PVN lies alongside the top portion of the third ventricle
(3 V) in the anterior hypothalamus, and it plays an imperative role
in the regulation of energy balance and endocrinological activities.
Lesions in the PVN produce obesity and hyperphagia via control of
the sympathetic outflow to peripheral metabolic organs [30, 31].
PVN neurons also constitute the primary endocrine control center,
synthesizing and secreting neuropeptides that have a net
catabolic action, such as corticotropin-releasing hormone (CRH)
[32] and thyrotropin-releasing hormone (TRH) [33].

The VMH is an oval-shaped hypothalamic nucleus located
directly above the ARC. This brain area contains neurons that
sense glucose and leptin and thus is the site controlling the
regulation of body weight and glucose homeostasis [34, 35]. A
number of studies have shown that steroidogenic factor-1 (SF-1)
neurons in the VMH actively participate in insulin and leptin
signaling in energy expenditure and glucose homeostasis,
exerting minor effects on feeding behavior [36-38]. In addition,
VMH neurons can modulate sympathetic nerve activity (SNA),
which is thought to underlie a variety of neuronal mechanisms in
the VMH [37, 39-43]. For instance, electrical stimulation of the
VMH induces glycogenolysis and gluconeogenesis in the liver and
increases blood pressure and heart rate through sympathoexcita-
tion [44, 45], whereas destruction of the VMH by bilateral lesions
causes hyperphagia, obesity, hyperglycemia, and reduced SNA
[14, 46, 47]. POMC neurons in the ARC project to the VMH and
control food intake via stimulation of MC4R and subsequent
activation of brain-derived neurotrophic factor (BDNF) [48]. On the
other hand, the VMH, which consists mostly of glutamatergic
neurons, projects to the ARC and transduces excitatory input to
both POMC and AgRP neurons [49].

The LH is important in receiving sensory signals from the
periphery, including the gut and liver [50, 51]. This brain region
contains large numbers of glucose-receptive neurons that
respond to circulating glucose levels, most likely via pathways
ascending from the hypothalamus [52]. In contrast to the PVN
and VMH, bilateral destruction of the lateral portion of the LH
abolishes food intake, thus resulting in weight loss in rats, even
in those who had previously been induced to obesity [14].
Therefore, the LH is considered a feeding center in the
hypothalamus.

Overall, the diverse neuronal networks of various hypothalamic
regions are instrumental in regulating energy balance, each
individually functioning to maintain body homeostasis.

Neuronal primary cilia and regulation of body homeostasis

While it has been known for decades that primary cilia exist in
neurons, their precise functions in each type of neuron remain
poorly understood. In the past 20 years, the importance of
neuronal cilia has been reported through various studies, and the
evidence for this importance is increasing daily. An early
observation showing a correlation between metabolic disorders
and neuronal primary cilia function was based on conditional
tamoxifen-inducible KO of the core ciliogenesis gene Kif3a and the
intraflagellar transport 88 (/ft88, also called Tg737) protein [9].
Germline ablation of either Kif3a or Tg737 in adult mice resulted in
hyperphagia-induced obesity with elevated serum leptin, insulin,
and glucose levels. Restricting dietary intake prevented increases
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in both body weight and serum hormones, supporting the notion
that the obesity and diabetic phenotypes were a consequence of
hyperphagic behaviors. Interestingly, specific deletion of Kif3a or
Tg737 using synapsin 1-cre (Synl-cre) led to similar results of
obesity and leptin resistance, indicating that neuronal primary cilia
may play important roles in the regulation of body weight
homeostasis [9].

Adenylyl cyclase 3 (ADCY3) catalyzes the synthesis of cyclic AMP
(cAMP), an important second messenger in signaling pathways,
from ATP [53, 54]. In the central nervous system (CNS), cAMP plays
a critical role in neuronal functions, including survival, growth,
differentiation, and synaptogenesis [55]. In 2007, neuronal cilia
were found to be specifically enriched with ADCY3 [56], and it has
subsequently been shown that global Adcy3-KO mice exhibit adult
onset obesity due to disruption of cAMP signaling in the
hypothalamus [57]. In addition, a number of G protein-coupled
receptors (GPCRs), including somatostatin receptor 3 (SSTR3),
serotonin receptor 6 (5-HT6R), melanin-concentrating hormone
receptor 1 (MCHR1), and more recently MC4R, have been reported
to be located in neuronal cilia [58]. Once ciliary components are
defective, aberrant ciliary localization and signaling of certain
GPCRs are displayed, causing obesity.

Overall, these results indicate that both the structural and
functional roles of neuronal primary cilia are necessary to control
energy homeostasis. Indeed, several recent pieces of evidence
suggest that hypothalamic cilia may function together as a
metabolic signaling center, which is critical to the control of body
homeostasis (Table 1) [9, 41, 59-62].

Primary cilia in the arcuate nucleus

Primary cilia in both orexigenic and anorexigenic neurons in the
ARC have been implicated not only in the regulation of food
intake but also in responses to hormones, including leptin and
insulin. Systemic ablation of ciliary genes from neurons using
Syn1-cre led to hyperphagic-induced obesity, and the obesity
phenotype of both Kif3a-Syn1-KO and Tg737-Syn1-KO mice was
reproduced in POMC-specific Kif3a-KO (Kif3a-Pomc-KO) mice [9].
Both male and female Kif3a-Pomc-KO mice exhibited significant
increases in weight, primarily due to hyperphagia. Deletion of
Kif3a in POMC neurons also led to elevated levels of leptin and
insulin, indicating that cilia in POMC neurons are required to
maintain both energy balance and responses to satiety signals
such as leptin and insulin signals. Furthermore, introduction of
short inhibitory RNA (siRNA) targeting Kif3a or Ift88 in the ARC led
to an increase in food intake and a decrease in energy
expenditure, manifesting the obese phenotype [63].

A recent study showed that inhibition of ciliogenesis in
developing POMC neurons, which was realized by depleting Kif3a
or Ift88, led to adulthood obesity in mice [64]; these mice showed
disruption of axonal projections through impaired lysosomal
protein degradation in POMC neurons. In contrast, ciliary deletion
in adult POMC neurons using tamoxifen-inducible cre did not lead
to significant changes in body weight, fat mass, or lean mass,
suggesting that primary cilia in adult POMC neurons have a
minimal role in the regulation of energy balance.

Bardet-Biedl syndrome (BBS) is a rare recessive genetic disease,
and its patients commonly display severe obesity [7, 8]. The BBS
protein complex, a subset of the IFT complex, also participates in
the transportation of ciliary membrane proteins [65, 66]. In
contrast to /ft88 and Kif3a, loss-of-function mutations in BBS genes
do not lead to complete structural defects of primary cilia;
however, they disrupt ciliary functions [67]. Germline ablation of
the Bbs2 and Bbs4 (Bbs2~/~ and Bbs4’~) genes led to
hyperphagia-induced obesity, coupled with reduced phosphor-
STAT3 levels in the hypothalamus. Furthermore, research has
shown that a lack of localization of SSTR3 and MCHR1 to cilia in
Bbs2~/~ and Bbs4~'~ mouse neurons [68], indicating that the
altered signaling caused by mislocalization of ciliary signaling

SPRINGER NATURE



DJ. Yang et al.

1112

Table 1.

Gene Mutation Target area
Structural defect
Ift88 (Tg737)

CAGG-cre®:Ift88'>" Global KO

Syn1-cre:Ift88'>® Neurons

POMC-cre::|ft88'"
POMC-cre®R::Ift88'"
LepRb-cre:ft88'>®

POMC neurons

LepRb-expressing
neurons

SF1-cre:Ift88'°%" SF-1 neurons

Kif3a CAGG-cre™:Kif3a'>® Global KO

POMC-cre::Kif3a'**" POMC neurons

Functional defect

Adcy3 Adcy3nul/nul Global KO
AAV-Cre:Adcy3'>® VMH
Bbs1 Nestin-cre:Bbs1'>® CNS
LepRb-cre:Bbs1'*® LepRb-expressing
neurons

POMC neurons
AgRP neurons
Global KO

POMC-cre::Bbs1'o?
AgRP-cre:Bbs1'®

Bbsznull/null Bbs4null/null and
Bbs6 nuII/nuI’I !

Mc4r SIM1-cre:Mc4rPProz3oteu
GPR88 SIM1-cre::AAV-GPR88*

*G protein-coupled receptor 88

Bbs2, Bbs4, Bbs6

Sim1 neurons
Sim1 neurons

proteins underlies the BBS phenotypes. Subsequently, Bbs2~/~,
Bbs4~'~, and Bbs6~’~ mutant mice were reported to display
hyperleptinemia as a result of defective leptin signaling [61, 69].
Molecular studies revealed that Bbs1, a component of the
BBSome, directly bound to the leptin receptor long-form (LepRb)
and participated in LepRb trafficking. Consistently, Bbs7 M390R,
which is the most common mutant of Bbs1 found in patients,
showed decreased interaction with LepRb, implying that the
LepRb trafficking and subsequent signaling pathways may be
altered in BBS mutant patients. These studies suggest that ciliary
BBS proteins might be required for normal leptin signaling and
thus for the maintenance of energy balance [61]. Later, the results
of studies on targeted disruption of the BBSome by deletion of the
Bbs1 gene in the brain using Nestin-cre (Nestin“"®/Bbs1™"M) showed
obesity in mice, and the obese phenotype was reproduced b
ablation of Bbs1 in LepRb-expressing neurons, LRb"¢/Bhbs1/162,
Both Nestin“®/Bbs1™ and LRb/Bbs1™™ mice demonstrated
increased food intake coupled with reduced hypothalamic Pomc
levels. On the other hand, disruption of Ift88 in LepRb-expressing
cells caused minimal gains in body weight and fat mass. In
contrast to LRb</Bbs1™M, no difference in food intake was found
in LRb"/Ift88™" mice; however, this model showed a decrease in
both energy expenditure and body temperature. Moreover,
mechanistic studies demonstrated that the deletion of the
expression of BBS proteins, but not /ft88, impaired LepRb
trafficking to the plasma membrane, leading to central leptin
resistance in a manner independent of obesity. In summary, these
results demonstrated that cilium-mutant mouse models may
display obesity through different and independent mechanisms.

Recent studies from the same group that performed the LepRb
trafficking study reported the role of Bbs? in POMC and AgRP

SPRINGER NATURE

Metabolic phenotypes of hypothalamic primary cilia dysfunction.

Metabolic phenotype Ref.
Hyperphagic-induced obesity, hyperleptinemia, [9]
hyperinsulinemia, hyperglycemia

Hyperphagia-induced obesity, hyperleptinemia, [9, 64]
hyperglycemia

No change [64]
Mild obesity, decreased energy expenditure, minimal [62]
leptin resistance

Obesity, decreased energy expenditure, leptin resistance, [41]
hyperinsulinemia, hyperglycemia, high bone density
Hyperphagic-induced obesity, hyperleptinemia, [9, 64]
hyperinsulinemia, hyperglycemia

Obesity, insulin resistance [57]
Obesity, hyperphagia [771 [62]
Obesity, hyperphagia

Obesity, hyperphagia, decreased energy expenditure,

leptin resistance

Obesity, hyperphagia, hyperglycemia, insulin resistance [70]
Obesity, hyperinsulinemia

Obesity, hyperphagia, hypertension, leptin resistance [69]
Obesity [75]
Obesity

neurons. Deletion of Bbs1 in either POMC or AgRP neurons led to
result similar to those obtained with models of leptin-signaling
deficiency [70]. Both POMC“"¢/Bbs1™"™ and AgRP“"®/Bbs1™ mice
showed obesity associated with an increase in food intake. In
addition, by lacking the BBSome protein, as identified by the
impairment of serotonin receptor 5-HT,cR, it was shown that
trafficking to the membrane contributed to the hypothalamic
BBSome control of energy balance and handling of metabolic
receptors [70].

Abnormal functions of primary cilia in the paraventricular
nucleus cause obesity

MC4R is a central component of the melanocortin system, a
hypothalamic network that integrates information from the
periphery and regulates food intake and energy expenditure
[71]. Mutations in Mc4r are the most common monogenic cause of
severe obesity in humans, as well as in rodents [72-74]. Although
the expression pattern of MC4R has been well documented,
previous attempts to determine the subcellular localization of
MC4R in vivo have been unsuccessful. In 2018, it was first reported
that MC4R localizes to primary cilia in a subset of mouse
hypothalamic neurons, including the PVN, where it colocalized
with ADCY3 [75]. This finding was particularly relevant since it was
previously reported that ADCY3 mutations are closely associated
with human obesity, and Adcy3-KO mice exhibited obesity upon
disruption of cAMP signaling in the hypothalamus [57]. In this
study, it was discovered that the impaired localization of MC4R in
primary cilia caused MC4R mutations, which led to suppression of
ADCY3 activity in cilia and, in turn, the acquisition of the obese
phenotype in mice [75]. Furthermore, specific inhibition of ADCY3
through the use of GPR88, a constitutively active version of the
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cilia-specific Go;-protein-coupled receptor, resulted in suppression
of cAMP production and, consequently, increased body weight.
These findings suggest that MC4R and ADCY3 may positively
regulate cAMP generation in neuronal primary cilia of the PVN,
where MC4R is highly expressed, and impaired cAMP signaling in
the primary cilia of MC4R-expressing neurons leads to obesity.
However, additional studies investigating whether primary cilia
are required for Gas coupling and ADCY3 activation by MC4R may
be necessary. Moreover, since the primary cilia of MC4R-positive
neurons are not solely limited to the PVN, it is necessary to
observe the functions of cilia in other MC4R-positive neurons.

The importance of primary cilia in the ventromedial
hypothalamus

It has been reported that Adcy3 gene polymorphisms are associated
with obesity and are known to be exclusively expressed in neuronal
cilia [57, 76]. Selective ablation of Adcy3 by injection of AAV-Cre into
the VMH of Adcy3-floxed mice significantly increased body fat and
led to obesity, supporting the idea that Adcy3 in the VMH plays an
important role in the regulation of energy balance [77].

Recently, we addressed the homeostatic roles of VMH-expressing
primary cilia in our research. We deleted VMH-primary cilia by
targeting the Ift88 gene using either steroidogenic factor 1 cre
(SF1-Cre) or bilateral AAV-Cre injection and then monitored the
metabolic changes [41]. The VMH-specific primary cilia KO (IFT88-
KO>") mice exhibited metabolic dysregulation linked to decreased
sympathetic nervous activity (SNA) and central leptin resistance,
which led to marked obesity. The obese phenotype of the IFT88
KO®F! mice presented with decreased energy expenditure, which
appeared to be a primary consequence of reduced sympathetic
outflow rather than a secondary effect of obesity. In addition to the
energy balance disturbance in the IFT88-KO*"" mice, VMH-primary
cilia have also been shown to be associated with bone density
maintenance, suggesting that the altered sympathetic activity
induced by deleting VMH-primary cilia might be critical for
changing bone density [41]. Further studies delineating how
VMH-primary cilia control SNA activity are necessary.

Neuron

PVN
Adcy3

Mc4r

SIM1

ARC
Kif3a
1ft88

POMC Bbs1

AgRP/NPY Bbs1

Adcy3
1ft88

Genes mutated

GPR88

DJ. Yang et al.

Leptin signaling and primary cilia in the hypothalamus

The most severe obesity phenotype in humans and mice results
from a deficiency of either the leptin or the leptin receptor. Leptin
deficiency-associated obesity is resolved upon treatment with
recombinant leptin, strongly indicating the critical physiological
roles of leptin and leptin signaling in the control of body energy
homeostasis [78, 79]. One of the distinct phenotypes of ciliopathy
is elevated leptin levels, indicating that leptin resistance may
either be a cause or be a consequence of obesity [80, 81]. Thus,
the relationship between leptin action and the functional
involvement of primary cilia has been investigated.

A potential molecular mechanism of cilia in leptin action was
suggested by scientists studying BBS-mutant mice [61]. BBS-
mutant mice exhibited hyperphagia and higher leptin levels.
Interestingly, they did not respond properly to leptin even after
leptin levels were normalized by caloric restriction. Considering
these results, Seo et al. suggested that the leptin-resistant
phenotype in BBS-mutant mice may be a primary effect of cilia
dysfunction [61]. However, Berbari et al. analyzed the leptin
response in pre-obese, obese, and food-restricted mice after
generating inducible /ft88 and Bbs4 KOs [82] and found that the
mutant mice showed leptin resistance only under obesity-
inducing conditions, strongly indicating that leptin resistance is
a secondary consequence of obesity.

In another study, Guo et al. tested leptin sensitivity in LRb®™®/
Bbs1"? mice that were at comparable body weight with WT
littermates, but the response was substantially attenuated [62]. In
addition, the LRb"®/Bbs1™" mice under calorie-restricted condi-
tions remained at a higher body weight and fat mass with lower
energy expenditure, possibly due to reduction in leptin sensitivity
and impaired leptin signaling. In addition to these experiments,
the deletion of /ft88 in SF-1 neurons of the VMH also indicated the
involvement of primary cilia in leptin action [41]. We measured
leptin levels when the body weights of WT and IFT88-KO®"" mice
were comparable, simultaneously and directly injecting IePtin and
examining the leptin sensitivity in the WT and IFT88-KO*" ' mice.
The physiological response to leptin in the IFT88-KO*F" mice,

Metabolic consequence

1 Body weight
1 Food intake

1 Body weight
1 Food intake
| Energy expenditure
1 Serum leptin and insulin
1 Blood glucose

1 Body weight
1 Food intake

1 Body weight
| Sympathetic activity
1 Serum leptin and insulin
1 Blood glucose
1 Bone mineral density

Fig. 3 Ciliary genes in the hypothalamic nuclei involved in metabolic dysfunction. Simplified overview of metabolic changes as a
consequence of the mutation of ciliary genes in the indicated hypothalamic neurons. Notably, primary cilia play a distinct homeostatic role in

each hypothalamic nucleus.
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portrayed as significantly increased rebound food intake, as well
as the effects of an increase in energy expenditure, were blunted,
indicating that the deletion of primary cilia in the VMH blunted
leptin sensitivity [41].

Taken together, the current data imply that the impact of
primary cilia on leptin action may differ among neuron types. To
rationalize the molecular mechanism underlying between primary
cilia and leptin in energy homeostasis, further observations should
be considered to determine (i) whether the leptin receptor exists
in the primary cilium and (i) distinct neuronal populations linking
leptin action and the role of primary cilia.

CONCLUSIONS

The regulation of energy balance is complex and governed by
diverse neuronal factors. Several recent studies have revealed the
distinct roles of hypothalamic primary cilia in controlling energy
balance (Fig. 3) [41, 61, 62, 64, 77]. Although the functional
importance of cilia has been determined, studies are needed to
further reveal and to gain full understanding of the molecular
composition of neuronal cilia and their precise roles in modulating
energy homeostasis, primarily by determining the distinct roles
that hypothalamic primary cilia play in different neurons. More-
over, given that cilia biogenic genes such as /ft88 have cilia-
independent roles in tissue development, direct evidence that
defects in ciliary formation per se are necessary for acquisition of a
pathological phenotype is still needed. Additionally, since primary
cilia have been known to contribute to neural development, it
would be reasonable to examine whether neuronal cilia influence
the formation of the neuronal circuit [64, 83, 84]. In summary,
studies of hypothalamic primary cilia offer great potential to gain
understanding of other aspects of energy homeostasis regulation
through the central nervous system and possibly provide a new
strategy to overcome metabolic disorders.
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