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Abstract: Protein kinase A (PKA), commonly referred to as cAMP-dependent protein
kinase, exists as a heterotetramer composed of two catalytic (C) and regulatory subunits
(R). This versatile kinase exhibits regulatory functions in various biological processes in-
cluding growth, division, and differentiation. Although PKA is well established as a master
regulator of oocyte maturation across species, its functional role in insect parthenogenesis
has remained enigmatic. Here, we systematically investigated the regulatory effect of PKA
in the induction of parthenogenesis in model lepidopteran Bombyx mori. Our findings
demonstrated an inverse correlation between PKA activity and parthenogenetic induction
efficiency in silkworms. Notably, PKA activation resulted in delayed embryonic develop-
ment, whereas PKA-C1 knockdown disrupted normal cell cycle progression. These results
indicated that maintaining appropriate PKA activity is essential for ensuring proper cell
division process, especially in the successful induction of silkworm parthenogenesis. The
evolutionary conservation of PKA across species, coupled with its critical regulatory role
in parthenogenesis, positions this kinase as a promising molecular target for breeding
design. Our findings establish a foundation for developing silkworm strains with enhanced
parthenogenetic capacity through PKA modulation, thereby facilitating the preservation of
elite production traits. These results provide novel mechanistic insights into parthenogene-
sis while demonstrating the potential application of PKA regulation in both genetic studies
and breeding programs.

Keywords: PKA; enzyme activity; cell cycle; parthenogenesis; Bombyx mori

1. Introduction
Protein kinase A (PKA) is an evolutionarily conserved serine/threonine kinase that

functions as a primary effector of cyclic adenosine monophosphate (cAMP) signaling [1].
PKA is heterotetramer and consists of two catalytic and regulatory subunits [2,3]. The
R subunits of PKA contain cAMP-binding domains: the C subunit that releases enzyme
activity when intracellular cAMP levels are elevated; conversely, when regulatory and
catalytic subunits remain bound, PKA remains inactive [4]. PKA is ubiquitously expressed
across various tissues and exerts pleiotropic regulatory effects upon activation [5,6]. As a
central signaling mediator, activated PKA phosphorylates diverse substrate proteins [7],
thereby modulating a broad spectrum of cellular processes including but not limited to
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gene transcription [8], energy metabolism [9], cell proliferation and differentiation [4], cell
cycle progression [10,11], and programmed cell death in virtually all tissue types [12].

PKA not only promotes sperm capacitation by modulating ion channels and enzyme
activity [13] but also regulates oocyte maturation and meiotic progression through the
cAMP signaling pathway [13,14]. Notably, changes in PKA activity directly influence the
activation state of maturation-promoting factor (MPF). This regulation occurs through the
precise phosphorylation of cell cycle regulators (Wee1, Cdc25) that dictate MPF activa-
tion states, ultimately determining meiotic arrest (MII) or completion [15,16]. In insects,
PKA similarly exhibits crucial regulatory functions: in the cotton bollworm (Helicoverpa
armigera), PKA modulates ecdysteroid biosynthesis via the cAMP/PKA/CREB signaling
pathway, thereby influencing developmental and metamorphic processes [17]. In Drosophila,
PKA mutations disrupt microtubule polarity in oocytes, impairing normal oocyte devel-
opment [18]. The amphibian Xenopus system further demonstrates PKA’s evolutionary
versatility, where regulatory subunit injection paradoxically promotes maturation through
MPF activation [19]. These findings collectively highlight PKA as a highly evolution-
arily conserved protein kinase that, through intricate signaling networks (such as the
cAMP/PKA/CREB pathway and MPF activation mechanisms), serves as a central regula-
tor in key physiological processes—including germ cell maturation, hormone synthesis,
and developmental metamorphosis—across diverse species.

Parthenogenesis represents an exceptional reproductive mode wherein unfertilized
oocytes undergo complete embryonic development to form viable offspring [20]. In lepi-
dopteran model Bombyx mori, this phenomenon occurs naturally at minimal frequencies
(~0.003%) [21,22]. Artificial induction methods, particularly thermal stimulation (46 ◦C
for 18 min), can significantly enhance parthenogenetic development and yield exclusively
female progeny [23,24]. Cytological hypothesis demonstrated that this treatment over-
comes meiotic arrest at metaphase I, triggering an equational division that mimics mitotic
processes and yields genetically identical clonal offspring [25,26].

While we have previously established that the activity dynamics of maturation-
promoting factor (MPF) and its downstream effector cyclin-dependent kinase 2 (Cdk2)
critically regulate parthenogenetic induction rates in silkworm [27,28], the upstream regu-
latory role of PKA in this process remains poorly understood. Notably, although thermally
induced parthenogenetic strains have been successfully implemented in sericultural pro-
duction [29], the molecular mechanisms governing this reproductive mode—particularly
the hierarchical relationship between PKA signaling and the MPF-Cdk2 cascade—require
systematic elucidation. This knowledge gap presents a key frontier in reproductive biol-
ogy, as resolving PKA’s regulatory logic could (1) optimize existing induction protocols,
(2) enable genetic enhancement of parthenogenetic efficiency, and (3) provide evolutionary
insights into asexual reproduction across taxa.

Here, we elucidated the crucial regulatory role of PKA on parthenogenesis induction
in silkworm. The results demonstrated a significant negative correlation between PKA ac-
tivity and parthenogenetic induction efficiency. Our functional analyses demonstrated that
PKA activity modulation exerts bidirectional control over parthenogenetic development in
silkworm. PKA activity upregulation caused embryonic developmental delays, while PKA
deficiency led to cell cycle dysregulation. It established that maintaining PKA activity home-
ostasis was essential for normal cell division and critical for successful parthenogenesis
induction. Evolutionary analysis highlighted the high conservation of PKA across species,
underscoring its universal role as a key regulatory node in reproduction. These discoveries
not only clarified the molecular mechanisms underlying PKA-mediated parthenogenesis
in silkworms. PKA’s evolutionarily conserved nature provided novel insights for reproduc-
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tive regulation studies in other species. These also demonstrated considerable potential for
applications in genetic improvement and breeding technology innovation.

2. Materials and Methods
2.1. Silkworm and Cells

The parthenogenetic lines (PLs, Wu9, and Wu14) were provided by the Zhejiang
Academy of Agricultural Sciences. The PLs have been stably maintained for over
30 generations through warm bath induction (46 ◦C, 18 min) [23]. Rearing conditions
were as described previously [27,28]. The BmN cell line, originally derived from B. mori
ovarian tissue [30]. BmN cells provide unique advantages for insect biotechnology due to
their immortalized cell system, genetic stability, and compatibility with modern molecular
tools including CRISPR/Cas9-based genome engineering. Cells were cultured on 25 cm2

Petri dishes at 27 ◦C in TC-100 medium (LVN1013, Livning, Beijing, China) containing 10%
fetal bovine serum (FBS).

2.2. Artificially Induced Parthenogenesis

Twelve hours after eclosion, unfertilized eggs were subjected to parthenogenetic induc-
tion [23]. The unfertilized eggs were immersed in a warm bath at 46 ◦C for 18 min. Subsequently,
these were transferred to a water bath at room temperature of 25 ◦ C for rapid cooling for 3 min.
Successful parthenogenetic activation was as described previously [27,28]. Developmental
outcomes were quantified using two parameters: pigmentation rate (%) = (pigmented/total
eggs) × 100, hatching rate (%) = (hatched/total eggs) × 100. Each experimental group included
45 moths for statistical analysis. Pigmentation indicated the initiation of embryonic develop-
ment, and hatching indicated the completion of the whole process of embryonic development
into an individual.

2.3. Protein Structure and Phylogenetics Analysis

The online software Uniprot for sequence annotation (https://www.uniprot.org/,
accessed on 20 January 2025) and Swiss-model for 3D modeling (https://swissmodel.
expasy.org/, accessed on 20 January 2025) [31]. E-value cutoff for BLASTP2.14.0
was <1 × 10−10. Phylogenetic analysis was then performed using the neighbor-joining
method in MEGA 11 [32], employing the Poisson correction model for evolutionary dis-
tance calculation and assessing node support through 1000 bootstrap replicates, followed
by visualization refinement using the Chiplot0.1.0 (https://www.chiplot.online/, accessed
on 20 January 2025) [33].

2.4. RNA Isolation, cDNA Synthesis, and qPCR Analysis

Trizol® reagent (Invitrogen, Carlsbad, CA, USA) was used to isolate total RNAs.
Complementary DNA (cDNA) synthesis conditions were as described previously [27,28].
Quantitative real-time PCR (qRT-PCR) analyses were as described previously [27,28,34].
The specific primers used were listed in Table 1.

Table 1. Specific primers.

Primer Name Primer Sequence (5′-3′)

qRT-PCR

BmPKA-C1-F TTCGCTGATCAACCCATTCA
BmPKA-C1-R TGCAGCGAGGTATGAATGGA

Bmrp49-F TCAATCGGATCGCTATGACA
Bmrp49-R ATGACGGGTCTTCTTGTTGG

https://www.uniprot.org/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
https://www.chiplot.online/
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Table 1. Cont.

Primer Name Primer Sequence (5′-3′)

mRNA synthesis

sgRNA-C1-F1 TAATACGACTCACTATAGGACAACTCTAACTTGTACA
GTTTTAGAGCTAGAAATAGCAA

sgRNA-C1-F2 TAATACGACTCACTATAGGTTGATCAGCGAAAAA
GGGGTTTTAGAGCTAGAAATAGCAA

sgRNA-R
AGCACCGACTCGGTGCCACTTTTTCAAG

TTGATAACGGACTAGCC
TTATTTTAACTTGCTATTTCTAGCT

2.5. Enzyme Activity Regulation and Detection

PKA activity modulation was performed using synchronized healthy silkworm pu-
pae (consistent pupation time) maintained at 25 ◦C and 80% RH incubator. PKA activity
were modulated by activator (HY-B0764, MCE, Atlantic City, NJ, USA) and inhibitor
(HY-15979A, MCE). The activator Bucladesine sodium salt (Dibutyryl-cAMP sodium salt,
C18H23N5NaO8P) was a stable cAMP analog that activates PKA by elevating intracellular
cAMP levels. Its mechanism involved mimicking endogenous cAMP to bind PKA reg-
ulatory subunits, thereby releasing catalytic subunits and enhancing PKA activity. The
inhibitor H-89 dihydrochloride (C20H22BrCl2N3O2S) specifically targeted PKA by com-
petitively binding to the ATP-binding catalytic subunits, preventing ATP binding and
subsequent substrate phosphorylation. These compounds have been validated in insects
and other animals, showing dose-dependent PKA activity modulation [35–40]. Different
concentrations were configured as described previously [27,28], based upon which three
appropriate concentrations (0.1 µM, 1 µM, and 5 µM) were finally set determined based
on preliminary experiment. The administered injection was consistently 6 µL. Injection
methods and enzyme activity assays were performed as previously described [27,28].

2.6. Observation of Ovariole and Embryo

The female moth had eight ovarioles. We observed the morphology by dissection 12 h
after emergence. At the same time, we dissected and observed the continuous developmen-
tal morphology of the embryos. Dissection and photography were performed as described
previously [27,28].

2.7. mRNA Synthesis and Cell Transfection

‘GGACAACTCTAACTTGTACATGG’ and ‘GGTTGATCAGCGAAAAAGGGCGG’
were designed single-guide RNA (sgRNA) target sites. The sgRNA templates were synthe-
sized using T7 as described previously [41]. mRNAs synthesis and cell transfection were as
described previously [28].

2.8. Cell Viability and Cycle Assay

Forty-eight hours after transfection, 100 µL cell suspension per well were added to a
96-well plate containing 10 µL of CCK-8 solution (40203ES60, YEASEN, Shanghai, China) in
triplicate. Incubated at 27.5 ◦C for 2 h and measured absorbance at 450 nm using microplate
reader to reflect the cell viability and proliferation. The cell cycle analysis was used, and the
cell cycle and apoptosis analysis kit (C1052, Beyotime, Shanghai, China) were as described
previously [28].
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2.9. Statistical Analysis

Student’s two-tailed t-test analysis in GraphPad Prism 8.3.0. Each treatment included
three independent replicates. Data were presented as means ± SEM (standard error
of the mean).

3. Results
3.1. Protein Structures of PKA in Silkworm

In silkworm, we successfully identified and functionally characterized the catalytic
and regulatory subunits of protein kinase A (PKA) (Figure 1). The analysis of putative
structural revealed that both catalytic subunits PKA-C1 and PKA-C3 contain conserved
S_TKc and S_TK_x domains, which facilitate the phosphorylation in specific substrate
peptides. The regulatory subunits PKA-R1 and PKA-R2 each possess two cAMP binding
sites. These binding sites play crucial roles in both PKA dissociation and activation, with
cAMP binding exhibiting strong positive cooperativity in the enzyme activation process.

Figure 1. Predicted protein. (A) Functional domain. (B) Tertiary structure. PKA-C1 and PKA-C3 were
catalytic subunits; PKA-R1 and PKA-R2 were regulatory subunits. S_TKc and S_TK_x regions were
the serine/threonine protein kinases catalytic domain; RIIα region was the regulatory domain; cAMP
region was the cAMP binding domain. Blue was α-helices; red was β-folded; gray was random coils.

3.2. Evolutionary Conservation of PKA Proteins

The representative sequences evaluated were from Lepidoptera (Bombyx mori, Bombyx
mandarina), Diptera (Drosophila melanogaste), Anura (Xenopus laevis), Primates (Homo sapiens),
Artiodactyla (Sus scrofa), Rodentia (Mus musculus), and Araneae (Parasteatoda tepidariorum).
The results indicated that these proteins were highly conserved (Figure 2). These data
indicate that the functional insights from silkworm studies may extend to diverse taxonomic
groups. The sequence numbers are listed in Table 2.
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Figure 2. The phylogenetic relationship analysis. PKA-C1 and PKA-C3 were catalytic subunits;
PKA-R1 and PKA-R2 were regulatory subunits.

Table 2. The protein sequence number.

Species Name
GenBank Accession Number

Order
PKA-C1 PKA-C3 PKA-R1 PKA-R2

Bombyx mori NP_001093303.1 XP_004929251.2 NP_001093295.1 NP_001104823.1 Lepidoptera
Bombyx mandarina XP_028034091.1 XP_028043672.1 XP_028029886.1 XP_028029886.1 Lepidoptera

Drosophila melanogaster NP_476977.1 NP_524097.2 NP_001014593.1 NP_523671.1 Diptera
Xenopus laevis NP_001080696.1 XP_018101650.1 XP_018091896.1 NP_001084637.1 Anura
Homo sapiens NP_002722.1 NP_005035.1 NP_001158230.1 NP_001308911.1 Primates

Sus scrofa XP_003123401.1 XP_020935351.1 XP_020941591.1 NP_999423.2 Artiodactyla
Mus musculus NP_032880.1 NP_058675.1 NP_001300902.1 NP_032950.1 Rodentia

Parasteatoda tepidariorum XP_015929533.1 XP_042904975.1 XP_015922609.1 XP_015906869.1 Araneae

3.3. Pharmacological Modulators Effectively Regulated PKA Activity Without Toxic

PKA activity assays conducted at various treatment concentrations revealed a dose-
dependent response: PKA activity showed significant elevation with increasing activa-
tor concentrations, while demonstrating marked reduction with higher inhibitor doses
(Figure 3A,B). Simultaneous morphological examinations of the ovarioles and egg develop-
ment at different concentration gradients showed that both treatments maintained normal
anatomical organization—the eight ovarioles retained their characteristic bilateral abdom-
inal arrangement. Importantly, no significant alterations in egg developmental status or
morphology were observed compared with control (Figure 3C). These findings collectively
demonstrate that the chemical modulators precisely control PKA activity while maintaining
physiological compatibility with normal egg development processes.
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Figure 3. PKA activity. (A) Enzyme activity after activator treatment. (B) Enzyme activity after
inhibitor treatment. (C) Ovarioles observation. ** p < 0.01; *** p < 0.001. The scale was 10 mm.

3.4. PKA Activity Affected Parthenogenesis Induction

We conducted parthenogenetic induction on unfertilized eggs and quantitatively eval-
uated development through pigmentation and hatching rates after modulating PKA activity.
Our analyses revealed that both the parthenogenetic lines Wu9 and Wu14 showed clear
activity-dependent variations in developmental outcomes (Figure 4). The pharmacological
inhibition of PKA consistently enhanced both pigmentation and hatching success across
both lines. In contrast, PKA activation substantially hindered developmental progression,
manifesting as significantly reduced pigmentation and hatching frequencies. These find-
ings demonstrated that PKA serves as a critical regulator of parthenogenetic initiation, with
its activity level exhibiting an inverse correlation with parthenogenetic induction efficiency.

 

Figure 4. Parthenogenesis induction rate. (A) Pigmentation rates after activator treatment.
(B) Pigmentation rates after inhibitor treatment. (C) Hatching rates after activator treatment.
(D) Hatching rates after inhibitor treatment. * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.5. Abnormal Elevation of PKA Activity Impeded Embryonic Development

We performed comprehensive morphological analyses using Wu14 eggs treated with
the highest concentration (5 mM) as a representative model. Our observations spanned
critical developmental stages from day 6 (characterized by complete C-shaped embryo for-
mation) to day 9 (exhibiting fully developed morphological features) (Figure 5A). Embryos
in the PKA-inhibited treatment developed synchronously, whereas PKA activation caused
significant developmental delays from day 6 onward compared with the control (Figure 5B).
This observation suggested that, when the PKA activity exceeds a critical threshold, it
led to progressive developmental arrest or even complete cessation. These results demon-
strated that PKA functions as a key coordinator of multiple biological checkpoints during
parthenogenesis.

 

Figure 5. Development process of embryos. (A) Morphology of embryos. (B) Length of time. The
scale was 1 mm. Yellow is D1~D5, green was D6, blue was D7, cyan was D8, purple was D9.

3.6. Knockdown of PKA-C1 Gene Affected Cell Cycle Transition

We investigated the effect of PKA tetramer dysregulation on cell cycle progression,
focusing on PKA-C1 as a representative catalytic subunit with core kinase functionality.
We knocked down the PKA-C1 gene to investigate its function in BmN cells. The mRNA
expression of PKA-C1 gene was significantly down-regulated after transfection, and the
double-target effect was especially significant (Figure 6A). Cell viability was not affected
by PKA-C1 knockdown (Figure 6B), but PKA activity was significantly reduced (Figure 6C)
and normal cell cycle progression was disrupted (Figure 6D). Tenetic perturbation induced
cell cycle dysregulation in BmN cells (Figure 6E), characterized by (1) G0/G1 accumulation,
(2) S phase depletion, and (3) G2/M augmentation. Although the G1-S transition showed
particularly pronounced effects, the overall phenotype represents complex cell cycle dys-
regulation rather than simple arrest. These findings demonstrated that maintaining stable
PKA activity was crucial for precise cell cycle regulation.
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Figure 6. Knockdown of PKA-C1 gene affected cell cycle. (A) The mRNA expression of PKA-C1
gene. (B) Cell viability. (C) Enzyme activity. (D) Cell cycle. (E) Flow cytometry analysis. * p < 0.05;
*** p < 0.001; n.s. p > 0.05.

4. Discussion
Through comprehensive molecular characterization, we identified and functionally

validated the PKA heterotetrameric complex in Bombyx mori. The R subunits function as
high-affinity cAMP receptors, while the C subunits contain the conserved kinase domain
responsible for phosphotransferase activity [42,43]. PKA activation is initiated through
cAMP binding to R subunits, which reduces the affinity between regulatory and catalytic
domains, leading to rapid release of catalytic subunits that subsequently phosphorylate
nearby substrate proteins [44]. In eukaryotic cells, nearly all cAMP-mediated signaling
occurs through PKA activation. The catalytic subunits transfer the γ-phosphate from ATP
to serine/threonine residues on target proteins, enabling the precise regulation of protein
activity through phosphorylation–dephosphorylation cycles [45].

The acquisition of oocyte developmental competence—defined as the ability to com-
plete maturation and sustain embryonic development—constitutes an essential prerequisite
for successful parthenogenetic activation [46]. Central to this process is the sophisticated
interplay between the PKA signaling cascade and the core cell cycle regulators (e.g., MPF,
Cdk2), which collectively orchestrate the precise spatiotemporal control of oocyte matura-
tion events [27,28,47,48]. Our systematic functional analyses revealed that PKA serves as
a critical rheostat for parthenogenesis, exhibiting dose-dependent regulatory effects. The
pharmacological inhibition of PKA markedly enhanced parthenogenetic success, whereas
PKA activation substantially reduced parthenogenesis rates and caused developmental
delays or arrest. This aligns with established roles of PKA in regulating oocyte maturation
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and fertilization processes in both Drosophila and mammals [18,49]. Additional studies
in Xenopus demonstrated that PKAc overexpression disrupts gastrulation through RhoA
hyperactivation [50,51], collectively indicating that PKA activity must be maintained within
a precise range to ensure accurate signaling during reproductive development.

The CRISPR/Cas9-mediated knockdown of PKA-C1 in BmN cells caused severe cell
cycle dysregulation, characterized by significant S phase depletion, G0/G1 and G2/M
phase accumulation. These findings established that intact PKA holoenzyme function is
indispensable for maintaining proper cell cycle progression in lepidopteran cells. Com-
parative studies in Xenopus revealed PKA’s negative regulation of G2/M transition [19],
while yeast studies showed that PKA promotes G1/S progression through Cln1/Cln2 phos-
phorylation and Cdc28-Cyclin complex formation [52]. In mammals, PKA facilitates G1/S
transition via cAMP-dependent RhoA activation and p27kip1 degradation [53], further
establishing PKA’s conserved role in cell cycle regulation and embryonic development.

This study systematically deciphered the pivotal regulatory role of PKA in Bombyx
mori parthenogenesis, establishing a novel “PKA–cell cycle development” axis that or-
chestrated the transition from oocyte maturation to parthenogenesis development. We
demonstrated for the first time in insects that PKA serves as a bimodal switch governing
parthenogenetic efficiency through (1) the precise modulation of cell cycle checkpoints
(evidenced by cell cycle disorder upon PKA-C1 knockdown), and (2) developmental timing
control (embryogenesis delay upon PKA hyperactivation). These findings redefine current
models by revealing PKA’s dual-context functionality conserved in the mechanism (cAMP
dependence) yet specialized in outcome (thermal induction response). Beyond funda-
mental insights, this work pioneered kinase-targeted reproductive engineering strategies,
offering tangible applications in (1) sericulture improvement via PKA activity optimiza-
tion, (2) CRISPR/Cas9-based breeding of parthenogenetic strains, (3) insect biotechnology
platform development. By bridging molecular genetics with applied entomology, these
discoveries open new frontiers in non-canonical reproduction research and agricultural
insect management.

5. Conclusions
In summary, the present study elucidated the pivotal role of protein kinase A (PKA), a

conserved cAMP-dependent kinase, in regulating parthenogenesis induction in Bombyx
mori. As a heterotetrameric complex, PKA is involved in diverse cellular processes, includ-
ing growth, division, and differentiation, but its role in insect parthenogenesis remains
largely unknown. Here, we demonstrated that PKA activity negatively correlated with
parthenogenetic efficiency, where the excessive activation of PKA delays embryonic devel-
opment and its inhibition disrupts cell cycle progression. These findings highlighted the
necessity of tightly regulated PKA activity for normal division and successful partheno-
genesis. Given PKA’s evolutionary conservation, our results suggested its broader role
as a key regulatory node in reproductive strategies across species. This work not only
advances our understanding of parthenogenetic mechanisms in insects but also opens new
avenues for genetic manipulation and breeding applications, particularly in enhancing
asexual reproduction in economically important species.
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