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Genetic adaptation of microbial 
populations present in high-
intensity catfish production 
systems with therapeutic 
oxytetracycline treatment
Qifan Zeng1, Xiangli Tian2 & Luxin Wang1

Microbial communities that are present in aquaculture production systems play significant roles in 
degrading organic matter, controlling diseases, and formation of antibiotic resistance. It is important 
to understand the diversity and abundance of microbial communities and their genetic adaptations 
associated with environmental physical and chemical changes. Here we collected water and sediment 
samples from a high-intensity catfish production system and its original water reservoir. The 
metagenomic analysis showed that Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, 
and Firmicutes were the top five phyla identified from all samples. The aquaculture production system 
significantly changed the structure of aquatic microbial populations. Substantial changes were also 
observed in SNP patterns among four sample types. The gene-specific sweep was found to be more 
common than genome-wide sweep. The selective sweep analysis revealed that 21 antibiotic resistant 
(AR) genes were under selection, with most belonging to antibiotic efflux pathways. Over 200 AR 
gene gains and losses were determined by changes in gene frequencies. Most of the AR genes were 
characterized as ABC efflux pumps, RND efflux pumps, and tetracycline MFS efflux pumps. Results of 
this study suggested that aquaculture waste, especially waste containing therapeutic antibiotics, has a 
significant impact on microbial population structures and their genetic structures.

Aquaculture has been a fast-growing industry in recent years because of dramatic increases in fish and seafood 
demand worldwide. As a result, high-intensity production systems, such as in-pond raceways (IPRS), have 
received increasing attention. Such production systems are developed with the dual goals of reducing production 
costs and increasing production yield1. Unfortunately, concerns about the impact of aquaculture wastes on the 
environment and the ecosystem have also increased. Aquaculture production wastes, such as ammonia and phos-
phorus, are the result of the excretion and decomposition of unconsumed feed2–4. In addition, antibiotic use in 
aquaculture has induced the emergence and dissemination of diverse antibiotic-resistant genes and microorgan-
isms. According to Cabello et al., approximately 80% of antimicrobials used in aquaculture enter the environment 
with intact activity, with the ability to exert selection for resistant bacteria in microbial populations with diverse 
insensitivity5. Alarmingly, antibiotic-resistant fish- and human- pathogens, such as Aeromonas6,7, Vibrio8, and 
Salmonella9,10, have been isolated from aquaculture operations.

Microbial communities consist of genetically and ecologically distinct groups. They are important constitu-
ents of the aquatic ecosystem. Microorganisms present in aquaculture production systems play significant roles 
in nutrient recycling, degradation of organic matter, and treatment and control of disease11. The abundance and 
diversity of microbial communities as well as their genetic structures are directly associated with the physical and 
chemical properties of the aquaculture production environment11,12. These physical and chemical properties are 
largely determined by production practices, such as feed frequencies and the application of antibiotics.
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Microbial communities respond rapidly to changes in their immediate environment, and these changes 
may be subtle and may manifest themselves as activation or inactivation of different metabolic pathways11,13. 
Aquacultural microbiomes are likely to be system-specific. In recent decades, monitoring and manipulating 
microbial communities in aquaculture environments have shown great potential. For example, due to the increas-
ing concern regarding antibiotic-resistant bacteria and risks, the addition of probiotics to feed for disease preven-
tion or treatment is proposed as an alternative way to treat diseases without the use of antibiotics. Unfortunately, 
the lack of knowledge about the ecology of the microbiomes present in different production systems currently 
hampers the successful management of aquaculture microbial communities11. Studies that can better illustrate 
interactions between microbial communities and complex aquaculture production systems are still needed.

The development of metagenomics has made the study of microbial community structures in a given envi-
ronment possible. It has been found that bacterial communities consist of closely related organisms and display 
cohesive ecological associations that distinguish them from each other14–16. Comparisons of the sequence poly-
morphism within a population or the divergence between populations can be used to identify potential genetic 
loci affected by selection pressures. These analyses have helped in estimating levels of recombination and muta-
tion occurring within or between different sequence clusters17,18. More importantly, such analyses have also pro-
vided the foundation for manipulating and engineering microbial populations in a given environment19.

One major constraint in aquaculture is disease outbreaks, bacterial fish pathogens are considered the most 
important infectious microbes20. The development of antibiotic resistance is outpacing the discovery and devel-
opment of new antibiotics, and the fact that certain bacterial infections are becoming untreatable has made eval-
uation of the therapeutic usage of antibiotics an urgent need. Such evaluation should include analysis of the 
diversity and abundance of microbial populations as well as changes and adaptations in their genetic structures. 
In bacteria, genetic adaptations to environmental changes are achieved through the selection of advantageous 
mutations and the horizontal transfer of beneficial genes21. For example, based on the mutant selective window 
hypothesis, directional selection usually occurs at antimicrobial concentrations between the minimal inhibitory 
concentration (MIC) of the susceptible bacteria and that of the resistant population22,23. Other studies suggest that 
antimicrobial concentrations lower than MIC also can enrich resistant bacteria from populations with minute 
differences in insensitivity to antibiotics24,25. Because of the differences seen between previous findings and the-
ories, adaptive laboratory evolution experiments have been conducted in order to better determine the potential 
selection regime of microbial resistance26,27. Unfortunately, most of these studies were limited to one or a few 
bacterial species cultured in the laboratory environment and did not reflect the dynamic evolutionary processes 
that occur in a real production system. Given that antibiotics are used in aquaculture only for disease treatment 
and require a veterinary prescription, an evaluation focusing on the therapeutic usage of antibiotics in a real 
aquaculture production system is needed.

In summary, although improving the production efficiency of current aquaculture production systems 
through manipulating and engineering microbial populations is promising, information on the genetic adap-
tation of microbial populations present in different complex production systems is still missing. The goal of this 
study is to address this knowledge gap by providing an in-depth evaluation of the genetic adaptations that occur 
in a high-intensity production system (the in-pond raceways system) and the interactions between bacterial 
populations and their ecological niches. By conducting metagenomics sequencing, genetic factors underlying the 
heterogeneity in antimicrobial resistance and metabolic alterations were also investigated.

Results
Microbial community analysis.  A total of 278.5 million reads with the average read length of 100 bp were 
generated from all sediment and water samples. After trimming, a total of 270.2 million filtered reads (~97%) 
were kept for further analysis (Supplementary Table S1). A total of 145.8 million and 124.3 million filtered reads 
were obtained from the sediment and water samples respectively.

Kaiju and Phylosift software were used to generate the taxonomic profile. In total, 21.78 million filtered reads 
of the “treatment” sediment dataset were assigned to the superkingdom level, accounting for 35.2% of the total 
reads. For the “treatment” water samples, 20.75 million reads (28.5% of the total reads) were matched to reference 
sequences at the superkingdom rank. For the water and sediment samples collected from the control system, 
29.88 M (35.2%) and 19.04 M (36.9%) reads were annotated at the rank of superkingdom respectively.

Bacteria accounted for over 94% of the identified sequences in all the samples (Supplementary Fig. S1). 
Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were the top five phyla identified 
from all four types of samples (Fig. 1). These five phyla accounted for 76% and 77% of the total bacterial pop-
ulations present in the treatment and control sediment samples collected. For the treatment and control water 
samples, these five phyla accounted for more than 90% and 95% of the total bacteria identified.

Differences were also observed in the relative abundance of archaeal microorganisms and viruses when com-
paring sediment samples with water samples. Archaeal microorganisms were more abundant in sediment than in 
water samples (5% and 4% in “control” and “treatment” sediments, 0.5% and 0.4% in “control” and “treatment” 
water respectively), with Euryarchaeota as the most abundant phylum (5% in “control” sediment and 4% in “treat-
ment” sediment). Viral communities were observed at higher levels in water samples than in sediment samples 
(0.2% and 0.4% in “control” and “treatment” sediment, 3% and 6% in “control” and “treatment” water), with 
Caudovirales being the most abundant order (2.5% in “control” water and 5.3% in “treatment” water).

The community composition of the four types of samples collected exhibited significant differences at the 
genus level. The average Shannon diversity index is 7.50 in the sediment samples and 6.93 in the water samples, 
indicating that sediment samples have a higher level of diversity compared to water samples. The principal com-
ponent analysis revealed drastic differences in microbial populations present in the water and sediment samples. 
Sample types (sediment vs. water) explained 85.5% of the variance observed among the genomes sequenced, 
while the “treatment” and “control” factors explained only 13.2% of the abundance variabilities.
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Pairwise comparisons were conducted in order to investigate the change in abundance of the different genera 
present in water and sediment samples collected from both systems (treatment vs. control). For water samples, 
a total of 437 genera were identified with different abundance between the treatment and the control, including 
339 bacterial and archaeal genera and 98 viral genera (Fig. 2, Supplementary Table S2). Bacteria that were sig-
nificantly enriched in the water samples collected from IPRS belonged to 7 phyla. Proteobacteria remained the 
leading phyla, accounting for 53.3% of the genera identified (Supplementary Dataset S1). In contrast, only 18 
genera showed significantly different abundance between the treated sediment samples and the control sediment 
samples, including 10 bacterial and archaeal genera and 8 viral genera (Supplementary Dataset S2).

De novo metagenome assembly and phylogenetic assignment.  Bacterial genomes were recon-
structed from a combined assembly of metagenomic sequences. A total of 932,714 contigs with N50 size of 

Figure 1.  Microbiome composition at the phylum level of four different sample types (water samples collected 
from the IPRS system “treated water,” sediment samples collected from the IPRS system “treated sediment,” 
water samples collected from the control pond “control water,” and sediment samples collected from the control 
pond “control sediment”). The top 11 phyla (accounts for over 90% of matches at the phylum level) were 
reported for each sample, and all other phyla were grouped into “Other.”

Figure 2.  Comparisons of bacterial genera abundance between treatment and control samples (Left, sediment 
samples; Right, water samples).
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1,930 bp were assembled from the pooled sequencing reads. Gene annotation was conducted with the JGI pipe-
line, which identified 532,854 genes from the metagenomics assembly. The genes were functionally categorized 
using the Pfam, KEGG, and COG database.

Assembled contigs were organized into 291 GBs based on tetranucleotide sequence composition and different 
coverage patterns. After removing GBs with less than 50% completeness or over 20% contamination, phyloge-
netic analyses were conducted for the 95 GBs. The phylogenetic tree suggested that these 95 GBs belonged to 27 
families from 11 phyla (Fig. 3, Supplementary Table S3). A total of 18 GBs were assigned to the genus level and 42 
GBs were classified to the family level, while the remaining 35 GBs were classified to the phylum level due to the 
limitation of available related reference genomes.

Antibiotic-resistant genes (ARGs) identification and antibiotic-resistant ontology (ARO) anal-
ysis.  The core Resfams database was used to identify ARGs from all samples collected, and a total of 603 AR 
genes were identified in the combined assembly. The identified ARGs were then assigned AROs and classified 
into broad functions, including major facilitator superfamily (MFS) antibiotic efflux, resistance-nodulation-cell 
division (RND) antibiotic efflux, ATP-binding cassette (ABC) antibiotic efflux, tetracycline antibiotic efflux, 
acetyltransferase, phosphotransferase, β-lactamase, and glycopeptide resistance. The Fisher’s exact test was used 
to identify enriched AR mechanism by bacterial phyla within habitat with P values < 0.05. As shown in Fig. 4, 
MFS and tetracycline antibiotic efflux were significantly enriched in Bacteroidetes from water collected from 
the treated system; ABC antibiotic efflux was enriched in Actinobacteria from water samples collected from the 
control and treated systems; and β-lactamase was enriched in Proteobacteria from treated ponds (both in sedi-
ment and in water). In addition, glycopeptide resistance was enriched only in Cyanobacteria present in sediment 
samples collected from the treated system.

Genetic heterogeneity and selective sweep in microbial populations.  The genome-wide scan of 
Tajima’s D was performed to screen for genes under directional evolution in the microbial populations present in 
all samples. Gene-specific selective sweeps were identified with Tajima’s test of neutrality and nucleotide diver-
sity. Non-neutral genic loci were identified when π < 2−10 and Tajima’s D was greater than 1.5 or less than −1.5. 
As shown in Fig. 5A, a total of 452 (control water), 6,173 (treatment water), 2,828 (control sediment), and 385 
(treatment sediment) genes were under positive selection (blue dots in Fig. 5A). A significantly higher number of 
genes (6,173) from the treatment water samples were identified as being under positive selection, suggesting that 
the micro-niche-adapted populations in treatment water were likely driven by stronger environmental selection. 

Figure 3.  Phylogenetic assignment of assembled genome bins. The phylogenetic tree was obtained with PhyloPhlAn 
using 400 broadly conserved proteins to extract phylogenetic signal. Organisms are colored based on phyla.
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When taking a look at the distribution of AR genes in Fig. 5A, AR genes from treatment water spread over a wider 
range compared with that from the other three habitats. Two (treatment sediment), nine (treatment water), four 
(control sediment), and one (control water) AR genes were identified to be under positive selection.

To investigate the difference in genetic structure among microbial populations, all GBs were hierarchically 
clustered based on the Gst values calculated between every two types of samples (Fig. 5B).The Gst values calcu-
lated between the treatment water and the other three samples (column d, e, and f in Fig. 5B) clustered together 
and were greater than 0.25 in most of the GBs, suggesting that microbial populations in treatment water exhibited 
greater divergence and trended toward the fixation of alternative alleles compared to other samples.

Gene-level Gst values were also calculated to interpret genic selection occurring in the microbial populations 
present in the treated water samples. As shown in Fig. 5C, the total identified genes were divided into three groups 
based on gene-wise Gst values and levels of nucleotide diversity (Tajima’s π). A total of 1,046 genes had Gst values 
greater than 0.5 and πtreatment/πcontrol less than 0.1 (blue dots in Fig. 5C); these genes were identified to be genes 
under selection in microbial populations present in treatment water samples. In contrast, only 180 genes were 
identified to be under selection in control water samples by showing Gst values greater than 0.5 and πtreatment/
πcontrol greater than 10 (green dots in Fig. 5C). The remainder of the genes were defined as having no obvious 
differences in allele frequency between treatment and control water samples (black dots in Fig. 5C). When taking 
a look at the AR genes (red dots in Fig. 5C), five AR genes were identified to be under selection in treatment water 
samples, and no AR gene was identified to be under selection from the control water samples.

Functional analysis of genes under selection.  Genes under selection in response to four environmental 
variables (treatment sediment, treatment water, control sediment, and control water) were collected for COG 
enrichment analysis and KEGG pathway analysis. As shown in Table 1, genes under selection in the treatment 
water sample mainly belonged to intracellular compartments and trafficking pathways (COG classes U and 
M), cell motility (class N), nucleotide transport and metabolism (class F), and defense mechanisms (class V). 
According to the KEGG database (Supplementary Table S4), many of these genes interact as parts of functional 
modules or pathways. A total of 23 functional modules/pathways related to environmental information process-
ing, energy metabolism, and nucleotide metabolism were obtained at a high confidence cutoff (KEGG module 
completion ratio ≥ 50% and Q value < 0.05). When taking a look at the genes under selection identified from the 
control water samples, no significant pathway was detected from those genes.

For the control sediment samples, as shown in Table 1, selective sweep genes in the control sediment sample 
were enriched in signal transduction (class T), cell motility and cell wall/membrane/envelope biogenesis (classes 
N and M) and intracellular trafficking (class U), as well as in some unknown functions (class S). Evaluation of 
the metabolic and physiological potentials revealed 70 KEGG modules/pathways that belong to broader cat-
egories such as carbohydrate and lipid metabolism, energy metabolism, and genetic information processing 
(Supplementary Table S4).

Figure 4.  Binary heatmaps of major antibiotic resistance mechanisms organized by phylogeny within habitat. 
Sections of the heatmaps are colored once a particular AR mechanism is significantly enriched in a phylum (P 
value < 0.05, Fisher’s exact test).
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Antibiotic-resistance genes under selection.  The analysis of population differentiation and selective 
sweep revealed that 21 antibiotic-resistance genes were under selection in the four microbial populations. As 
shown in Table 2, 14 of the 21 antibiotic-resistance genes were identified in the treatment water samples. Most 
of these ARGs were antibiotic efflux transporters, including six ATP-binding cassette (ABC) antibiotic efflux 
pump genes, four RND antibiotic efflux pump genes, and one tetracycline resistance MFS efflux pump gene that 
can selectively pump out tetracycline or tetracycline derivatives. In contrast, only seven ARGs were identified to 
be under selection in the other three samples, which were also mainly characterized as antibiotic efflux pumps.

The ARGs under selection in treated water samples belonged to eight GBs from six families belonging to the 
phyla of Actinobacteria, Bacteroidetes, Proteobacteria, and Verrucomicrobia. In contrast, ARGs identified from 
other samples were exclusively from a single GB. In treated sediment samples, the two ARGs under selection were 
from GB-17, genus Pedosphaera. In control sediment samples, selective sweep ARGs were exclusively present in 
GB-20, genus Beggiatoa.

Gain and loss of antibiotic-resistance genes.  As shown in Table 3, a total of 207 gene gains and losses 
were observed when comparing AR genes identified from treatment water with the AR genes identified from 
control water samples; while a total of 167 gene gains and losses were observed when comparing the AR genes 
identified from the treatment sediment with the control sediment samples. A total of 262 unique AR gene gains 
and losses were identified in water and sediment samples collected from the treatment system when compared 
with their corresponding control samples.

Figure 5.  The analysis of genes under selection. (A) Gene-wise selective analysis by Tajima’s D test of the four 
populations. (B) GB-wise Gst analysis. a, control sediment against treated sediment; b, control water against 
treated sediment; c, control water against control sediment; d, treated water against treated sediment; e, treated 
water against control sediment; f, treated water against control water. (C) Gene-wise Gst analysis between 
microbial populations from treated water and control water samples.
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For the treatment water sample, frequencies of over 200 ARGs were changed, including 90 gains and 117 
losses. Almost half of these AR genes belong to the class of ABC antibiotic efflux pumps, including 38 gains and 
58 losses. In addition to ABC efflux pumps, the other major AR gene classes include resistance-nodulation-cell 
division (RND) efflux pumps, tetracycline resistance major facilitator superfamily (MFS) efflux pumps, and AR 
genes against β-lactams. Phylum-specific patterns of AR gene gains and losses were also observed in treatment 
water samples (Fig. 6). For example, gene gains and losses of ABC efflux pumps were observed mainly in the phyla 
of Actinobacteria and Bacteroidetes. Copy number changes of class B β-lactamases were mainly observed in the 
phylum of Proteobacteria. The gain and loss of tetracycline resistance MFS efflux pumps were mostly identified 
in the phylum of Bacteroidetes.

For treatment sediment samples, a total of 167 AR genes with 84 gains and 83 losses were identified from 67 
GBs belonging to 11 phyla. The pattern of gene gains and losses and their correlations with different phyla were 
similar to that of the treatment water samples, with most of the AR genes characterized as ABC efflux pumps, 
RND efflux pumps, and tetracycline MFS efflux pumps. As noted in Fig. 6, efflux pumps were the dominant AR 
functions that had significant gains or losses when comparing the treatment water or sediment samples with their 
corresponding control samples.

Discussion
Aquaculture has been a fast-growing industry as the demand for fish and seafood dramatically increases through-
out the world. As a result, traditional pond farming systems in many regions are now slowly being replaced 
by modern high-intensity systems28. However, growing concerns are expressed about the potential effects of 
ever-increasing aquaculture waste on the microbial ecosystenms in these systems. Uneaten feed, excreta, and 
chemicals are all processed biochemically in the aquaculture production system, alterating the physical and 
chemical properties of the environment. Chopin et al. estimated that 49.3 kg N and 7.0 kg P per ton of fish are 
released into the water column per year29. In addition, the extensive use of antibiotics in aquaculture induces 
the emergence and dissemination of diverse AR genes in microorganisms, which has already undermined the 
treatment efficiency of these antibiotics. According to the World Health Organization, approximately half of the 
world’s antibiotics are used in agricultural animals30,31, leading to increasing antibiotic-resistance risks in aquacul-
ture production ecosystems. Without proper management, aquaculture pollution accidents caused by aquaculture 
wastes, such as the uneaten feed and chemical and antibiotic treatments, may cause economic losses totaling 
millions of dollars32. In recent years, the monitoring and manipulating of microbial communities in aquacul-
ture environments have shown great potential. However, additional information about the microbial populations 
present in complex aquacultural production systems and their genome-wide changes is still missing. There is an 
urgent need to understand the adaptations that drive the associations of bacteria to particular ecological niches 
in aquaculture environments, as well as genetic factors underlying the heterogeneity in antimicrobial resistance.

In the United States, catfish production plays an important role in the aquaculture industry, constituting 
68% of total domestic freshwater production in 201533. IPRS catfish production systems have become more and 
more popular in the United States because of their low product cost and high production yield. Such system 
serves as a great model for studying the dynamic genetic repertoire of microbial communities and the process 
of environmental selection in metapopulations. In this study, water and sediment samples from both the catfish 
IPRS high-intensity production systems (treatment) and the control watershed were collected for metagenomic 
sequencing. The taxonomic analyses revealed that the aquatic microbial population has a lower level of species 

COG classes
Population 
counta

Study 
countb FDR

Genes under selection in treatment water identified by Gst

(N) Cell motility 109 22 4.81E-05

(U) Intracellular trafficking, secretion, and vesicular transport 288 33 5.34E-03

(V) Defense mechanisms 151 29 7.56E-06

Genes under selection in control water identified by Tajima’s test of neutrality

(L) Replication, recombination and repair 5,752 31 1.18E-04

Genes under selection in treatment water identified by Tajima’s test of neutrality

(F) Nucleotide transport and metabolism 3,482 153 4.36E-04

(L) Replication, recombination and repair 6,411 288 8.30E-08

(M) Cell wall/membrane/envelope biogenesis 6,661 294 1.41E-07

(O) Post-translational modification, protein turnover, chaperones 4,712 195 8.09E-04

Genes under selection in control sediment identified by Tajima’s test of neutrality

(M) Cell wall/membrane/envelope biogenesis 1,926 193 2.47E-07

(N) Cell motility 621 82 2.47E-07

(S) Function unknown 2,826 223 2.04E-02

(T) Signal transduction mechanisms 1,897 206 5.41E-10

(U) Intracellular trafficking, secretion, and vesicular transport 944 91 2.80E-03

Table 1.  COG enrichment analysis of genes under positive selection. anumber of COG function term 
associated genes in the population gene set. bnumber of COG function term associated genes in the selective 
swept gene set.
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diversity compared to the sediment samples, regardless of whether the water is from the treatment system or the 
control watershed. To examine the extent of taxonomic abundance changes between the treatment and control 
bacterial communities, water and sediment samples were compared separately. In the IPRS production systems, 
the bacterial communities found in water samples undergo more dramatic changes than the bacterial commu-
nities found in sediment (Fig. 2). The bacteria enriched in aquacultural water exhibited much lower species 
diversity than the bacteria in control water, indicating the simplification of microbial populations caused by the 
aquaculture. The significantly higher concentrations of the major photosynthetic clades, such as Cyanobacteria, 
Chlorobi, and Chloroflexi, suggest that the eutrophication of aquacultural water may result in the reduction of 
autotrophic bacteria and the reduction of the microbial ecosystem’s functional diversity. Similar results have been 
observed in other studies that evaluated the effects of aquaculture activities on microbial assemblages34,35. It has 
been found by previous studies that the organic load generated from aquaculture production activities signifi-
cantly reduced the bacterial diversity and altered the assemblage composition36,37.

In this study, bacterial genomes were reconstructed from a combined assembly of all the samples. Contigs 
from the combined assembly were organized and curated into 95 GBs. Closely related genomes were distin-
guished based on unique read coverage patterns throughout the collected samples38. Taxonomic assignment 
showed that none of the GBs could be assigned to species level, only 18 GBs were assigned to the genus level, 
while 35 GBs were assigned to the phylum level, revealing that most of the microbial species in the community 
were not previously characterized at the genomic level.

According to Bendall et al.’s study, reads mapped to each GB are regarded as sequence-discrete populations 
that can be used for genetic variation and selective sweep analysis39. The Gst, Tajima’s D, and π tests were used 
to identify potential genetic loci affected by selection. Both the Gst and Tajima’s indices revealed that genomic 
regions appeared to sweep independently without purging diversity of the rest of the genome. Controversy exists 
as to whether genome-wide sweeps or gene-specific sweeps are driven by selection. Evidence of genome-wide 
sweep has been reported in Bendall et al.’s study, where nearly all of the genes from a green sulfur bacteria swept 
slowly over several years39. In contrast, gene-specific sweep has been supported by studies on multiple microbial 
populations40–42. As reviewed by Shapiro et al., gene-specific sweep may be more common when recombination 
is frequent and the selection is moderate43. A study on negative frequency-dependent selection (NFDS) revealed 
that gene-specific selective sweeps are expected to be a major and general phenomenon in prokaryotes due to 
potential NFDS caused by ubiquitous viruses. In this study, the largest number of selective swept genes was identi-
fied in water samples from IPRS, suggesting that obvious divergence and fixation of alternative alleles were caused 
by aquaculture production actives.

Genes under selection in different samples were associated with specific functions such as protein biogenesis, 
cell motility, nucleotide metabolism, and defense mechanisms, leading to the hypothesis that such genes are 
heavily involved in the microbial adaptation in the IPRS environment. In the IPRS water sample, the multidrug 
efflux pump pathway was significantly enriched, suggesting that a recent selective sweep caused by the addition of 
oxytetracycline removed most of the variations in the region. In addition to SNP dynamics, patterns of gene gain 
and loss within microbial populations were revealed by gene frequency changes. The relative abundance of over 

Sample GB Gene name Resfam Family Tajima’s D Gst Tajima’s π

Treated water

GB-104 ABC transporter ATP-binding protein ABC_efflux −0.05 0.71 1.32E-02

GB-18 ABC transporter ATP-binding protein ABC_efflux −0.11 0.52 4.36E-03

GB-18 Multidrug transporter AcrB RND_efflux −0.32 0.64 4.41E-03

GB-18 ABC transporter ATP-binding protein ABC_efflux −0.31 0.73 3.35E-04

GB-186 ATP-binding protein MsbA ABC_efflux −2.98 — 2.67E-04

GB-30 Antibiotic ABC transporter ATP-binding protein ABC_efflux −2.02 — 3.15E-04

GB-33 Multidrug efflux pump RND_efflux 0.21 0.66 2.27E-03

GB-35 ABC transporter ATP-binding protein ABC_efflux −1.83 — 2.38E-04

GB-35 Hydrophobe/amphiphile efflux-1 family RND 
transporter RND_efflux −1.64 — 4.97E-04

GB-48 Hydrophobe/amphiphile efflux-1 family RND 
transporter RND_efflux −1.99 — 7.85E-04

GB-48 Tetracycline resistance MFS efflux pump tet_MFS_efflux −1.61 — 2.53E-04

GB-60 Efflux RND transporter periplasmic adaptor subunit MexH −2.24 — 5.88E-04

GB-60 Multidrug efflux protein MexW-MexI −2.37 — 2.04E-04

— beta-lactamase NDM-CcrA −1.77 — 5.54E-04

Treated sediment
GB-17 Lipid A export permease/ATP-binding protein MsbA msbA −1.99 — 5.38E-04

GB-17 ABC transporter ATP-binding protein ABC_efflux −1.82 0.26 3.78E-04

Control sediment

GB-20 MexH family multidrug efflux RND transporter 
periplasmic adaptor subunit MexH −2.87 — 4.87E-04

GB-20 Multidrug transporter AcrB RND_efflux −2.93 — 4.66E-04

GB-20 ABC transporter ATP-binding protein ABC_efflux −3.04 — 6.25E-04

GB-20 Lipid A export permease/ATP-binding protein MsbA msbA −3.08 — 4.50E-04

Control water — MBL fold metallo-hydrolase ClassB −1.53 — 6.62E-04

Table 2.  AR genes under selection in the four samples.
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260 AR genes was changed in the treatment sediment and water samples. Despite a small number of AR genes 
that belong to metallo-beta-lactamase (MBL) fold metallo-hydrolase, most of them are related to antibiotic efflux 
pumps. Previous studies have revealed that the exposure of bacteria to antibiotics may induce SOS responses 
to disseminate AR genes44–46. Thus, the observed AR gene gains and losses are likely associated with horizontal 
gene transfer or integron recombination. This phenomenon may also be explained by the balancing selection 
hypothesis47. The general tempo of gene transfer is affected by two opposing forces: the benefit accrued through 
acquisition of foreign genes and the potential deleterious effects of invasion by detrimental genetic elements. The 
antibiotics distributed in the environment may have altered the balance of the two forces. Therefore, bacteria lin-
eage with a greater porosity to gene transfer have an inherent advantage in the expression of resistance genes48,49.

In summary, this study examined the ecological and evolutionary patterns of the bacterial communities pres-
ent in an IPRS high-intensity catfish production system by conducting metagenomic sequencing. By comparing 
microbial compositions and genetic structures, we observed substantial genetic heterogeneity within genetically 
and ecologically distinguishable populations. Population genetic summary statistics calculated for the collected 
samples suggested that gene-specific sweep is more common than genome-wide sweep in microbial populations 
present in aquaculture production system. Over 6,000 genes were identified under selective pressure in the IPRS 
water samples, suggesting that aquaculture wastes, especially therapeutic antibiotics, generate significant impacts 
on microbial population genetic structures. Furthermore, over 200 AR gene gains and losses were identified by 
analyzing the changes of gene frequencies, with most of the AR genes characterized as ABC efflux pumps, RND 
efflux pumps, and tetracycline MFS efflux pumps. This discovery highlighted the importance of better under-
standing the short-term and long-term impacts generated by the therapeutic treatments used in aquaculture. 
This work is the first to provide an in-depth evaluation of the genetic adaptive patterns of aquatic microbial com-
munities present in high-intensity catfish production systems. The information generated will directly benefit 
future works on determining genetic factors underlying the heterogeneity in antimicrobial resistance and on the 
development of intervention strategies for mitigating antibiotic resistance risks.

Methods
The high-intensive production system and sample collection.  The IPRS high-intensity catfish cul-
ture system selected for this study was stocked with channel catfish (Ictalurus punctatus) at a rate of ~25,000 fish/
ha. The water in this high-intensity system was taken from a watershed reservoir, which was also sampled and 
used as the “control.” Fish in this high-intensity production system were infected with columnaris disease and 
treated with Terramycin orally through medicated feed at 50 mg/kg of fish per day for 10 days. Daily care, pond 
operations and management, application of medicated feed as well as the sample collections were performed 
following the procedures outlined in SOP 2015–2705, a standard operation procedure manual approved by the 
Institutional Animal Care and Use Committee (IACUC) at Auburn University. Four 1-L water and four 50-gram 
sediment samples were collected from the treated production system two months after the addition of Terramycin 
(“treatment” samples). Four water samples and four sediment samples were collected in the same time from the 
control watershed (“control” samples).

DNA extraction, library preparation and sequencing.  For every water sample, 1-L of collected water 
was first filtered through 0.2-um filters (EMD Millipore, Temecula, CA). The filtered membranes were then cut 
with scissors into small pieces for DNA extraction using a PowerSoil® DNA isolation kit (MoBio Laboratories, 

Resfams family

Treatment water Treatment sediment

Gene gain Gene loss Sub-total Gene gain Gene loss Sub-total

ABC_efflux 38 58 96 36 41 77

RND_efflux 16 12 28 12 15 27

ClassB 10 13 23 12 7 19

tet_MFS_efflux 8 9 17 8 3 11

ClassA 4 7 11 6 3 9

msbA 6 4 10 1 4 5

MexH 3 6 9 3 4 7

MexE 1 2 3 0 1 1

ClassD 2 0 2 0 1 1

MexW-MexI 0 2 2 1 2 3

NDM-CcrA 1 0 1 0 1 1

ArmA_Rmt 0 1 1 1 0 1

MexX 0 1 1 1 0 1

vanR 1 0 1 1 0 1

AAC3 0 1 1 1 1 2

macB 0 1 1 1 0 1

Total 90 117 207 84 83 167

Table 3.  Copy number changes of the AR genes identified in the treatment water and sediment samples 
collected from the in-pond raceways production system.
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Carlsbad, CA) according to the manufacturer’s instructions. The DNA of each sediment sample was extracted 
using the same kit. Equal amounts of DNA (~1000 ng/sample) extracted from every water sample collected from 
either the treated system or the control system were pooled for sequencing. Equal amounts of DNA (~1000 ng/
sample) extracted from every sediment sample collected from the treated or the control system, were pooled for 
sequencing.

The library construction and sequencing were conducted at the HudsonAlpha Genomic Services Lab 
(Huntsville, AL). Genomic libraries were prepared using the Paired-end Sequencing Sample Preparation Kit 
(Illumina, San Diego, CA) according to the manufacturer’s instructions. The four prepared DNA libraries (treat-
ment sediment, treatment water, control sediments, control water) were sequenced on one lane of the Illumina 
HiSeq. 2000 platform to generate 100-bp paired-end reads.

Taxonomy classification and differential abundance analysis.  Raw reads were first evaluated 
for quality using FastQC (version 0.11.5)50. Reads were then trimmed using Trimmomatic (version 0.36)51. 
Ambiguous nucleotides (N’s), extreme short reads (<25 nt), and low-quality bases were trimmed with a sliding 
window method, bases within a window size of 4 were cut once the average quality was less than 15 in the Phred 
scale. The filtered reads were subjected to taxonomy classification by Kaiju (version 1.4)52 with the representa-
tive set of bacterial and archaeal genomes from the proGenomes database53. The phylogenetic analyses of the 
microbial composition were conducted by using Phylosift (version 1.0.1)54. Sample distances and Shannon diver-
sity index were estimated using MetagenomeSeq (version 1.6)55. Genera with significantly different abundance 
between the “treatment” and “control” samples were identified using edgeR (version 3.16.5) with FDR corrected 
P values < 0.0556.

De novo metagenome assembly and gene annotation.  Filtered reads from all samples were pooled 
together and assembled using Megahit (version 1.1)57 with k-mer size from 27 to 99 with a step of 10. Contigs 
with a length over 2.5 kbp were organized into genome bins (GBs) using MetaBat (version 0.32.4)58 based on the 
tetranucleotide sequence composition and overall contig coverage patterns obtained from backtrack alignment 
files. Reads from each sample were mapped to the assembly using the Burrows-Wheeler aligner (BWA) employ-
ing the backtrack alignment algorithm with a minimum of 95% sequence identity59. To assess the completeness 
of GBs and to reduce the incorrectly binning contigs from different organisms, overlapping sets of ubiquitous and 
single-copy genes within a phylogenetic lineage were estimated in each GB by CheckM (version 1.0.6)60. GBs with 
less than 50% completeness or over 20% contamination were excluded from phylogenetic analysis.

Gene prediction and annotation of metagenomic reconstructions were performed using the DOE Joint 
Genome Institute’s Integrated Microbial Genome database tool (version 4.15.1)61. Briefly, open read frames were 
predicted by Prodigal (version 2.6.3)62 and Prokaryotic GeneMark.hmm (version 2.8)63. Conserved protein fami-
lies and domains were identified using BLASTP search against COG64, Pfam65, and KEGG Orthology (KO) data-
base66 with the cutoff of e value < 1e-10. KEGG pathway modules were identified using MAPLE (version 2.3.0)67. 
Antibiotic resistance genes (ARGs) were identified using the Resfams database (version 1.2)68.

Figure 6.  AR gene gains and losses in (A) water samples and (B) sediment samples. The blue lines represent 
gene loss when comparing treatment samples with control samples, while the red lines represent gene gains 
when comparing treatment samples with control samples. The width of each connection line between the AR 
genes and the phylum is proportional to the number of genes with changed frequency. The wider the line, the 
more gene gains or losses identified in that GB.
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Phylogenetic analysis and taxonomic analysis of metagenomic assemblies.  The taxonomic iden-
tities of identified GBs and their evolutionary relationships with 3,171 known microbial genomes were deter-
mined using PhyloPhlAn pipeline (version 0.99)69. GBs were assigned to the finest taxonomic level for which all 
marker genes agreed, ranging from the phylum level for some genomes to the genus level for others. Predicted 
genes within each GB were also checked by sequence similarity to the non-redundant (NR) database using 
BLASTN. The taxonomic assignment of the best match generated by BLASTN was retrieved for validation of the 
results generated from PhyloPhlAn.

Single-nucleotide polymorphism (SNP) identification and analysis.  SNPs were identified by map-
ping reads with over 95% identity from each sample to reference genomes using BWA. SNPs were identified with 
a minimal coverage of 5, minimal average base quality of 30, and minor allele frequency of 0.05. To ensure that 
only the high-confidence SNPs were examined, SNPs were removed once its coverage is over 1.5 interquartile 
ranges below the first quartile of above the third quartile. Allele frequencies were calculated as the number of 
reads that carry the reference or alternate alleles.

Tajima’s π and D were calculated to evaluate the nucleotide diversity and identify mutations under selec-
tion. Non-neutral genic loci (the ones under selection or experienced gene-specific sweeps) were identified when 
π < 2−10 and Tajima’s D was over 1.5 or less than −1.5. To measure the genetic structure changes between micro-
bial populations, the Fixation index (Gst) was calculated by comparing the allele frequencies of each GB associ-
ated with every two sample types. Gst is a measurement of population genetic differentiation70, it measures the 
differentiation fairly well especially when heterozygosity is low71. In this study, genes with Gst > 0.5 and πtreatment/
πcontrol < 0.1 were identified as genes with spread of adaptive alleles and recent purge of diversity in treatment 
water samples; genes with Gst > 0.5 and πtreatment/πcontrol > 10 were identified as genes under selection in control 
water samples; the remainder of the genes were defined as having no obvious differences in allele frequency 
between treatment and control water samples.

Gene gain and loss.  To identify genes with significantly changed abundance between the treatment and 
control samples, gene coverage and frequency were calculated for each GB of every sample. Gene coverage was 
determined by normalizing the number of mapped metagenomics reads by the gene length. Gene frequency was 
determined for each gene by dividing its coverage by the median coverage of all genes within a GB, which implies 
the copy number of every gene present in each cell within one microbial population39. Genes were considered as 
gained or lost once their frequencies changed by magnitudes greater than 0.4 between the treatment and control 
samples.

Data availability.  All the sequencing data were deposited at the NCBI BioProject with accession 
PRJNA394151.
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