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Abstract Background/purpose: Mini-implant screws are now routinely used as anchorage de-
vices in orthodontic treatments. This study used synthetic bone models to investigate how the
primary stability of an orthodontic mini-implant (OMI) as measured by resonance frequency
(RF) is affected by varying cortical bone thickness and trabecular bone density.
Materials and methods: Three synthetic cortical shells (thicknesses of 1, 2, and 3 mm) and
three polyurethane foam blocks (densities of 40, 20, and 10 pound/cubic foot) were used to
represent jawbones of varying cortical bone thicknesses and varying trabecular bone densities.
Twenty-five stainless steel OMIs (2 � 10 mm) were sequentially inserted into artificial bone
blocks to depths of 2, 4, and 6mm. Five experimental groups of bone blocks with OMIs were
examined by Implomates� RF analyzer. Statistical and correlation analyses were performed
by Kruskal-Wallis test, Wilcoxon rank-sum test, and simple linear regression.
Results: As trabecular bone density decreased, RF decreased; as cortical bone thickness
decreased, RF also decreased. Simple linear regression analysis showed highly linear correla-
tions between trabecular bone density and RF (R2> 0.99; P< 0.0001) and between cortical
bone thickness and RF (R2> 0.98; P< 0.0001).
Conclusion: The stability of an OMI at the time of placement is influenced by both cortical
bone thickness and trabecular bone density. Both cortical bone thickness and trabecular bone
density have strong linear correlations with RF.
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Table 1 Mechanical properties

Dens

Cortical bone 1.64
Trabecular bone 0.64
Trabecular bone 0.32
Trabecular bone 0.16
ª 2019 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

The need for orthodontic treatment modalities that provide
maximal anchorage control but with minimal patient
compliance requirements has led to the development ofmini-
implant anchorage devices for orthodontics.1 Mini-implants
allow orthodontists to achieve treatment goals that were
previously considered extremely difficult, if not impossible.
The clinical success rate of mini-implants in orthodontics now
exceeds 85%,2,3 which is a considerable improvement from
the past. However, this success rate is still unsatisfactory,
especially in comparison with the success rate for dental im-
plants (>95%).4 Anchorage stability is a key factor in the
success of orthodontic treatment assistedwithmini-implants.
Orthodontic mini-implants (OMIs) are used mainly for primary
loading. Primary stability is an important factor in the success
rate of OMIs. If primary stability is not achieved upon inser-
tion, the OMI may loosen during orthodontic treatment.5 Pri-
mary stability is affected by bone quantity (bone volume),
bone quality (bone density), surgical technique, and implant
geometry (length, diameter, and surface characteristics).6e8

The primary stability of an OMI mainly depends on mechani-
cal retention between the OMI and bone.9 Cortical bone
thickness is important in the success of an OMI because
insufficient cortical bone thickness often causes inadequate
primary stability. Low bone density in the posterior maxilla is
another major cause of implant loss.10

The stability of an OMI is difficult to evaluate and is
often measured in terms of mobility. Resonance frequency
analysis (RFA) is a noninvasive diagnostic method of
assessing the stability of OMIs and dental implants. Two RFA
devices that are currently in clinical use are the Osstell�

(Integration Diagnostics AB, Göteborg, Sweden) and
Implomates� (BioTech One, Inc., Taipei, Taiwan) devices.
For clinical use in detecting resonance frequency (RF)
values of an unmodified OMI, Implomates� is more conve-
nient than Osstell�. Although the Osstell� system has been
used to assess the stability of dental implants, the system is
less than ideal for this purpose. For RF measurement, for
example, the head designs of OMIs are not threaded to
enable coupling with SmartPeg for RF measurement.11

The objective of this study was to determine precisely
how bone quality and quantity (i.e., cortical bone thickness
and trabecular bone density) correlate with primary OMI
of artificial bone (Sawbones�) u

ity Com

Strength

g/cm3 157 MPa
g/cm3 31 MPa
g/cm3 8.4 MPa
g/cm3 2.2 MPa
stability by using the Implomates� device to measure RF in
synthetic bone samples.

Materials and methods

Orthodontic mini-implants

Twenty-five stainless steel OMIs (2.0 mm in diameter and
10mm in length; Bio-Ray Biotech Instruments Co., Ltd.,
New Taipei City, Taiwan) were used for the experiments in
this study (five mini-implants per experimental group). The
OMIs were placed without pre-drilling. Each OMI was
inserted manually with a hand driver. Measurements of RF
were performed in OMIs sequentially inserted to depths of
2, 4, and 6mm.

Bone specimens

Mechanical test blocks of artificial bone (Sawbones�; Pa-
cific Research Laboratories Inc., Vashon Island, WA, USA)
were selected as a jaw bone equivalent (Table 1). The
mean bone mineral density was 0.55 g/cm3 for the anterior
maxilla and 0.31 g/cm3 for the posterior maxilla.12 Poly-
urethane foam blocks of artificial bone with densities of 40
pcf (pound/cubic foot) (0.64 g/cm3), 20 pcf (0.32 g/cm3),
and 10 pcf (0.16 g/cm3) were selected as the trabecular
bone equivalent in the experimental groups. For trabecular
bone samples, the moduli of elasticity were 759, 210, and
58 MPa. The average cortical bone thickness ranged from
1.09 to 2.12 mm in the maxilla and from 1.59 to 3.03 mm in
the mandible.13 Sheets of artificial bone used in the ex-
periments had cortical layer thicknesses of 1, 2, and 3mm
and an elastic modulus of 16.7 GPa.

Resonance frequency analysis

The RF of OMIs inserted into artificial bone was measured at
three different insertion depths (2, 4, and 6mm). All
measurements were performed with an RF analyzer
(Implomates�) (Fig. 1). For each OMI, RF was measured
three times at each insertion depth, and the mean RF was
recorded. The mean values for the five OMIs were used as
the measured variables.
sed in this study.

pressive Tensile

Modulus Strength Modulus

16.7 GPa 157 MPa 16 GPa
759 MPa 19 MPa 1000 MPa
210 MPa 5.6 MPa 284 MPa
58 MPa 2.1 MPa 86 MPa
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Figure 1 The Implomates� resonance frequency analyzer
used in this study. The device uses an impact force to excite
resonance in the mini-implant screw. (A) The impact force is
provided by a small electrically driven impact rod inside the
transducer. (B) The received response signal is then transferred
to a computer for frequency spectrum analysis.
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Statistical analysis

The Kruskal-Wallis test was used to compare RF values for
OMIs implanted under varying trabecular bone densities,
varying cortical bone thicknesses, and varying insertion
depths. Post-hoc pairwise comparisons were also per-
formed by Wilcoxon rank-sum test. Simple linear regression
Table 2 Mean� standard deviation of the resonance frequency
in artificial bone with various trabecular bone densities.

Group n 2mm

1 (40 pcf) 5 1.160� 0.015
2 (20 pcf) 5 1.190� 0.138
3 (10 pcf) 5 1.133� 0.012
P-valuea 0.1067
Significant differenceb

a Kruskal-Wallis test.
b Post hoc pairwise comparisons were conducted by Wilcoxon rank-
analysis was performed to determine correlations between
RF and trabecular bone density and between RF and
cortical bone thickness in OMIs placed at each of the three
insertion depths. A P value of <0.05 was considered sta-
tistically significant. All statistical analyses were performed
using JMP 8 (SAS Institute Inc., Cary, NC, USA).

Results

Trabecular bone density versus resonance
frequency

Table 2 presents the mean RFs and standard deviations for
the OMIs. The OMIs were sequentially implanted into arti-
ficial bone with a cortical bone thickness of 2mm and
trabecular bone densities of 40, 20 and 10 pcf at depths of
2, 4, and 6mm. The RF values were progressively increased
with insertion depth. The Kruskal-Wallis test revealed that
OMIs inserted to a depth of 2 mm did not significantly differ
in RF (PZ 0.1067). However, OMIs inserted to depths of 4
and 6mm significantly differed in RF (PZ 0.0111 and
PZ 0.0024, respectively). Post-hoc pairwise comparisons
demonstrated that, at an insertion depth of 4 mm, RF
values were significantly lower in Group 3 (10 pcf) than in
Group 1 (40 pcf); at an insertion depth of 6 mm, RF values
were significantly lower in Group 2 (20 pcf) and in Group 3
(10 pcf) than in Group 1 (40 pcf). For OMIs inserted to
depths of 2, 4, and 6mm, RF had a significant linear cor-
relation with trabecular bone density. All R2 values excee-
ded 0.99 (P< 0.0001) with decreasing slopes (Group 1:
bZ 1.609; Group 2: bZ 1.502; Group 3: bZ 1.45) (Table 4
and Fig. 2). That is, as trabecular bone density decreased,
RF values also decreased.

Cortical bone thickness versus resonance
frequency

Table 3 presents the mean RFs and standard deviations for
OMIs sequentially inserted to depths of 2, 4, and 6mm into
artificial bone with a trabecular bone density of 20 pcf and
cortical bone thicknesses of 1, 2 and 3mm. The table shows
that RF values increased as insertion depth increased. The RF
values for OMIs inserted to a depth of 2mm did not signifi-
cantly differ (PZ 0.2622). However, RF values significantly
differed for OMIs with insertion depths of 4mm (PZ 0.0122)
or 6mm (PZ 0.0116). Post-hoc pairwise comparisons
values (kHz) for mini-implants inserted with different depths

4 mm 6mm

4.783� 0.077 7.597� 0.070
4.543� 0.180 7.197� 0.175
4.377� 0.121 6.933� 0.059
0.0111 0.0024
Group 3<Group 1 Group 2<Group 1

Group 3<Group 1

sum test.



Table 3 Mean� standard deviation of the resonance frequency values (kHz) for mini-implants inserted with different depths
in artificial bone with various cortical bone thicknesses.

Group n 2mm 4mm 6mm

5 (3mm) 5 1.150� 0.020 4.850� 0.111 7.373� 0.049
2 (2mm) 5 1.190� 0.138 4.543� 0.180 7.197� 0.175
4 (1mm) 5 1.123� 0.019 4.423� 0.109 7.047� 0.061
P-valuea 0.2622 0.0122 0.0116
Significant differenceb Group 4<Group 5 Group 4<Group 5

a Kruskal-Wallis test.
b Post hoc pairwise comparisons were conducted by Wilcoxon rank-sum test.

Table 4 A simple linear regression was used to analyze the relationship between the experimental groups of orthodontic mini-
implants placed at 2, 4, and 6-mm depths and the measured resonance frequencies.

Group y Z a þ b x b P-value R2

1 y Z �1.923333 þ 1.6091667 x 1.6091667 <0.0001 0.994325
2 y Z �1.696667 þ 1.5016667 x 1.5016667 <0.0001 0.991895
3 y Z �1.652222 þ 1.45 x 1.45 <0.0001 0.994496
4 y Z �1.725556 þ 1.4808333 x 1.4808333 <0.0001 0.99495
5 y Z �1.765556 þ 1.5558333 x 1.5558333 <0.0001 0.987616

x, insertion depth of orthodontic mini-implant (2, 4, and 6mm).
y, measured resonance frequency (kHz).
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revealed that RF values in Group 4 (1mm) were significantly
lower than those in Group 5 (3mm) at an insertion depth of
4mm and were significantly lower in Group 4 (1mm) than in
Group 5 (3mm) at an insertion depth of 6mm. Table 4 and
Fig. 2 show that RF values had significant linear correlations
with cortical bone thicknesses in OMIs inserted to depths of
2, 4, and 6mm; all R2 values were higher than 0.98
(P< 0.0001) and had decreasing slopes (Group 5: bZ 1.556;
Group 2: bZ 1.502; Group 4: bZ 1.480). As cortical bone
thickness decreased, RF also decreased.
Discussion

The RF analysis is currently considered the gold standard
for clinical assessment of implant stability.14 The Osstell�

RFA device is routinely used to monitor the stability of a
dental implant during treatment. A dental implant study
showed that RF values measured with the Implomates�

have a strong positive linear correlation with implant sta-
bility quotient (ISQ) values derived with the Ossstell� de-
vice (rZ 0.991, P< 0.001).15 The Implomates� RFA device
developed by Huang et al.15,16 utilizes an impact force for
resonance excitation of an OMI. Impact force is provided by
a small electrically driven rod inside the transducer. The
design of the Implomates� transducer minimizes contact
and no torque force is required during its application. The
received response signal is then transferred to a computer
for frequency spectrum analysis. High and low RF values are
interpreted as high and low stability, respectively.

Titanium alloy OMIs and stainless steel OMIs are
currently used in orthodontic practice. Compared to tita-
nium alloy OMIs, stainless steel OMIs have better penetra-
tion and do not require a pilot hole. Another advantage of
stainless steel OMIs is their ease of placement. Our study
revealed that OMI stability is significantly associated with
insertion depth, which is consistent with the results of a pig
study in which OMIs placed in the pelvic bone blocks
showed linear associations between insertion depth and
stability.17 However, the primary stability of an OMI mainly
depends on insertion depth rather than on the implant
materials (e.g., titanium alloy or stainless steel).18

Artificial bone was used to simulate OMIs implanted in
human jaw bones. However, the cortical layer density
specification of the artificial bone is only 102 pcf (1.64 g/
cm3). Therefore, this study compared varying trabecular
bone density to determine whether changes in bone density
affect RF. According to Nackaerts et al.,19 the bone mineral
density (BMD) of the mandible ranges from 0.528 to
0.820 g/cm3 and averages 0.661 g/cm3. Based on this data,
artificial bone with a density of 40 pcf (0.64 g/cm3) was
used to simulate the trabecular BMD of the mandible.
Artificial bone with a density of 20 pcf (0.32 g/cm3) was
used to simulate the posterior maxilla,12 and artificial bone
with a density of 10 pcf (0.16 g/cm3) was used to simulate a
jawbone with low BMD. As mentioned above, the average
cortical bone thickness ranges from 1.09 to 2.12 mm in the
maxilla and from 1.59 to 3.03 mm in the mandible.13

Therefore, artificial bone with cortical layer thicknesses
of 1, 2, and 3mm were selected.

Primary stability had a strong correlation with cortical
bone thickness, which is in agreement with a systematic
review and meta-analysis of clinical studies.20 The primary
stability of an OMI was positively associated with cortical
bone thickness at the receptor site. However, the likelihood
of OMI failure is higher in cortical bone with a thickness less
than 1mm compared to that with a thickness of 1mm or
more.21,22 Numerical analyses using finite element models
have shown that deflection of OMIs decreases as cortical
bone thickness increases23 and that cortical bone with



Figure 2 Relationships between cortical bone thickness, trabecular bone density and measured resonance frequency values of
the mini-implants.
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thickness less than 1mm is vulnerable to stresses that can
cause bone resorption in this region.24 Motoyoshi et al.22,25

reported that a cortical bone thickness greater than 1mm
was needed for adequate primary stability and acceptable
success rates in OMI placements.

Deguchi et al.26 used three-dimensional computed to-
mography to evaluate cortical bone thickness in various
locations in the maxilla and the mandible and to compare
cortical bone thickness between implant angulation
measured by 3 angulations (30�, 45�, and 90�) from the long
axis of each tooth mesial and distal to the first molar and
distal to the second molar. In the maxilla, cortical bone
thickness in the buccal region distal to the second molar
(1.3 mm) was significantly lower than that mesial and distal
to the first molar (1.8 mm and 1.5 mm). Cortical bone
thickness was significantly higher on the lingual side of the
second molar (1.7 mm) compared with the buccal side. In
the mandible, cortical bone thickness was significantly
higher mesial and distal to the second molar (1.8e2.0mm)
compared with the maxilla. Additionally, cortical bone
thickness at 30� to the long axis of the tooth was as much as
1.5 times higher than cortical bone thickness at 90�

(perpendicular) to the long axis of the tooth. Therefore, in
most clinical cases, altering the OMI insertion angle can
compensate for insufficient cortical bone thickness and can
increase insertion depth.

A systematic review of clinical studies indicate that
implant primary stability is positively associated with bone
mineral density at the receptor site: as the bone density in-
creases, the primary stability of dental implants also in-
creases.27 In the present study, measured RF decreased as
trabecular bone density decreased. When OMIs were implan-
ted into artificial bone at a depth of 4mm, RF in Group 3 (10
pcf)was significantly lower thanGroup1 (40pcf).Atadepthof
6mm, RF in Group 2 (20 pcf) and Group 3 (10 pcf) were
significantly lower than Group 1. These experimental results
indicate that a change in the density of the trabecular bone
can be detected by a change in RF value.
Skeletal anchorage with mini-implant screws is widely
used in orthodontic practice because it has no patient
compliance requirements. Two key determinants of pri-
mary stability are bone quality and quantity.28 Cortical
bone quantity and quality affect the long-term stability of
an OMI. Stationary anchorage failure often results from low
bone density due to inadequate cortical thickness.29 The
primary implant stability of an OMI can be estimated by
computed tomography measurements of cortical bone
thickness and trabecular bone density before treatment.30

In conclusion, the primary stability of an OMI depends on
both cortical bone thickness and trabecular bone density.
Furthermore, these factors have strong linear correlations
with RF value. Further clinical research is still needed to
confirm the findings of this in vitro study performed using
synthetic bone models. Measuring RF with an Implomates�

device is a practical, noninvasive, and nondestructive
approach to evaluating OMI stability.
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