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Anorexia Nervosa (AN) is viewed as primarily a psychiatric disorder owing to the

considerable behavioral and genetic overlap with mood disorders and other psychiatric

traits. However, the recent reconceptualization of AN as one of both psychiatric and

metabolic etiology suggests that metabolic circuits conveying hunger, or sensitive to

signals of hunger, may be a critical nexus linking metabolic dysfunction to mood

disturbances. Within the brain, hunger is primarily percieved by Agouti-related (AgRP)

neurons and hunger increases plasma concentrations of the hormone ghrelin, which

targets ghrelin receptors on AgRP neurons to facilitate metabolic adaptations to low

energy availability. However, beyond the fundamental role in maintaining hunger signaling,

AgRP neurons regulate a diverse range of behaviors such as motivation, locomotor

activity, negative reinforcement, anxiety, and obsession and a key factor involved in the

manifestation of these behavioral changes in response to activation is the presence or

absence of food availability. These changes can be considered adaptive in that they

promote affective food-seeking strategies in environments with limited food availability.

However, it also suggests that these neurons, so well-studied for their metabolic control,

shape mood-related behaviors in a context-dependent manner and dysfunctional control

leads not only to metabolic problems but also potentially mood-related problems. The

purpose of this review is to underline the potential role of AgRP neurons and ghrelin

signaling in both the metabolic and behavioral changes observed in anorexia nervosa.

We aim to highlight the most recent studies on AgRP neurons and ghrelin signaling

and integrate their metabolic and behavioral roles in normal function and highlight how

dysfunction may contribute to the development of AN.

Keywords: behavior, anorexia, hunger, appetite, AgRP, GHSR

NEUROENDOCRINE CONTROL OF ENERGY HOMEOSTASIS

Energy homeostasis is the balance between energy intake, including the total amount and
density, and energy expenditure, including basal metabolic rate, diet-induced, and activity-induced
thermogenesis. The maintenance of energy homeostasis is an integral process required for the
ongoing sustainability and survival of a species, especially since starvation leads to death and
metabolic imbalance affects reproductive fertility. The hypothalamus is a key structure involved
in the maintenance of energy homeostasis and is composed of different nuclei that contain a
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variety of neuronal populations. These nuclei are involved
in vital functions such as stress, thermogenesis, reproduction,
growth, metabolism, and food intake (1). Key nuclei responsible
for energy homeostasis include the arcuate nucleus (ARC),
the ventromedial hypothalamic nucleus, the paraventricular
hypothalamic nucleus, the lateral hypothalamus and the
dorsomedial hypothalamic nucleus (2, 3).

The ARC was first implicated in the control of food
intake and glycemia using neurotoxic drug injections (4, 5).
Indeed, it was later discovered that these treatments led to
the destruction of specific neuronal populations including
proopiomelanocortin (POMC)-expressing neurons and agouti-
related peptide (AgRP)-expressing neurons. AgRP neurons,
the focus of this review, are critical for survival since adult-
ablation of these neurons leads to anorexia, rapid weight loss,
and death by starvation (6). Further, beyond the fundamental
role in maintaining hunger signaling, AgRP neurons regulate
a diverse range of behaviors such as motivation, locomotor
activity, negative reinforcement, anxiety, and obsession (7–
10), and a key factor involved in the manifestation of these
behavioral changes in response to activation is the presence
or absence of food availability. For example, AgRP activation
in presence of food drives food intake, whereas when food is
not available it drives other motivated goal-directed behaviors
and reduces anxiety-like behaviors (7, 8, 11, 12). These changes
can be considered adaptive in that they promote affective food-
seeking strategies in environments with limited food availability.
However, it also suggests that these neurons, so well-studied
for their metabolic control, shape mood-related behaviors in
a context-dependent manner and dysfunctional control leads
not only to metabolic problems but also potentially mood-
related problems.

AgRP neurons are located at the base of the third ventricle
near the median eminence and can rapidly sense changes in
metabolic state through neuroendocrine feedback mechanisms
involving various hormones and nutrients. During hunger or
energy deficiency, where the body expends more energy than
it receives, elevated plasma ghrelin provides critical feedback
information to the brain, signaling negative energy balance
(13). Indeed, AgRP neurons are a key target of plasma ghrelin,
with >80% of AgRP (coexpressing Neuropeptide Y [NPY])
neurons also expressing the ghrelin receptor (GHSR; growth
hormone secretagogue receptor) (14). Moreover, a number of
functions ascribed to ghrelin can be attenuated or blocked when
manipulating GHSRs in the ARC or after deleting GHSRs from
AgRP neurons (15, 16). Thus, in a physiological setting many of
the behavioral adaptations caused by AgRP activation maybe be
related to ghrelin signaling.

A primary and critical role of ghrelin is to inform the brain of
low energy availability. Although GHSRs are found in a number
of different brain regions, AgRP neurons remain a primary target
to convey this metabolic information via a variety of specific
projections (17). Ghrelin-AgRP feedback is specifically designed
to prevent excessive and pathological weight loss. This system,
however, is not fail-safe, with AN a prominent example whereby
patients present with a severe energy deficit and dangerously low
body weight.

AN belongs to a family of eating disorders including bulimia
nervosa and binge-eating disorder. The pathogenesis of AN
involves a number of genetic, neurobiological, psychological,
socio-cultural, and developmental factors (18) with accumulating
evidence suggesting an important role for metabolic dysfunction
(19, 20). Further support for the metabolic origins of AN
comes from a recent genome-wide association study that
revealed significant genetic correlations with metabolic traits
including insulin resistance and glucose metabolism (21).
AN patients present various hormonal and neurobiological
alterations associated with negative energy balance, leading to
the dysregulation of homeostatic systems (22, 23), which is
frequently associated with other psychiatric disorders (24–26).
Given that AgRP-ghrelin signaling influences both metabolic
and behavioral consequences, particularly in the absence of food
availability, it is intriguing to speculate that abnormal function of
this system may contribute to both the metabolic and behavioral
consequences of AN. The purpose of this review is to underline
the potential role of AgRP neurons and ghrelin signaling in both
the metabolic and behavioral changes observed in AN.We aim to
highlight the most recent studies on AgRP neurons and ghrelin
signaling and discuss their metabolic and behavioral roles in
normal function and discuss how dysfunction may contribute to
the development of AN.

AN: PREVALENCE AND PERSISTENCE

The first description of behaviors linked to AN date back
the Middle Ages with the case of St Catherine of Siena (27),
although it was Sir William Gull who first coined the term AN
in 1874 to define a number of his patients (28). Diagnostic
criteria for AN comprise persistent restriction of food intake
leading to significantly low body weight in the context of what
is minimally expected for the height, age and developmental
stage of the individual, in addition to a fear of weight gain
and becoming fat, and a disturbance of the self-body perception
with dysmorphobia. Different studies report the incidence of
eating disorders including AN among the Australian or European
populations, as <1–5% of the population, and predominantly in
females (29–31). AN has long-term and long-lasting effects, as
evidenced by a large cohort study following inpatients over 25
years that showed remission in only 30% of patients, with close
to 46% in either partial remission or with a crossover diagnosis
of eating disorder not otherwise specified (EDNOS) and 16% of
patients retaining their AN diagnosis (32).

ENDOCRINE CONSEQUENCES OF AN

Many of the endocrine alterations observed in AN patients
are found in all animals in response to prolonged fasting
or food restriction in order to meet and maintain energy
demands (33, 34). Different phases are classically described
in mammals, including humans (33, 35); following a
hypoglycaemic period the secretion of glucagon, epinephrine
or glucocorticoids, the main counter-regulatory hormones, lead
to a glucose overcompensation from glycogenolysis and then
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gluconeogenesis mainly from the liver and kidney. Fasting is
accompanied by other hormonal alterations including a decrease
of plasma leptin and insulin concentrations, in parallel with
the increase of plasma ghrelin concentrations. If the fasting is
prolonged the organism starts to use stored lipids, causing a
marked increase of glycerol and free fatty acids in the plasma,
both of which are used by the liver to produce glucose and
ketone bodies, respectively (35). Lipolysis, gluconeogenesis and
synthesis of ketone bodies caused by severe restriction are all
associated with a reduction of energy expenditure, as a means
to protect energy stores (36–38). Finally, when lipid stores are
completely depleted, an organism enters a proteolytic phase in
which proteins from the muscle provide carbon precursors used
in the different steps of gluconeogenesis (35). This depletion of
energy stores is associated with a reduction of both lean and fat
mass and in the most severe situations induces muscle wasting as
well as decreased body temperature (39, 40). AN patients exhibit
most, if not all, of these physiological consequences of severe
calorie restriction, however, it is interesting to note that the BMI
used to reflect the severity of the pathology is regularly lower
in AN patients compared to starvation and/or food restriction
studies in healthy volunteers. For example, it is not rare to
observe a BMI lower than 15 kg.m−2 in AN patients at admission
whereas subjects from the seminal Minnesota semi-starvation
study presented as 16.4 kg.m−2, on average, after 24 weeks of
food restriction (20, 41, 42). This is likely due to the paradoxical
increase in energy expenditure that manifests in the majority
of AN patients (43, 44). Interestingly, no relationship has been
found between the severity of the disease and mood disorder
outcomes, although lower bone mass density was observed in
more severe cases (41, 42, 45).

Among all the hormones affected in AN patients, changes
in leptin and ghrelin may be best used to aid in diagnosis
(18, 24, 46, 47). Some euglycemic hyperinsulinemic clamp
studies in AN patients have shown significantly lower total
ghrelin, suggesting an increase of satiety sensation (48).
Other studies have suggested that despite the high levels
of plasma ghrelin in AN patients, ghrelin resistance could
explain the ability to engage in persistant food restriction
(49–52). Significant elevations in plasma AgRP levels have
been demonstrated in AN patients compared to controls
(53) and subtle impairments in cognitive flexibility associated
with acute AN were negatively correlated with plasma AgRP
levels (53). Moreover, several genetic, and genome-wide
association studies have shown associations between the
occurrence of AN and ghrelin-related hormones and peptides
including preproghrelin, ghrelin O-acyltransferase (GOAT), the
enzyme required for acylation, and AgRP (54–57). Genetic
evidence from patients supports a role of AgRP in AN,
indicating that allelic variations in the AgRP gene are
associated with susceptibility to AN, with one polymorphism
conveying a relative risk of 2.63 for carriers to develop
the condition (58). Single nucleotide polymorphisms in the
melanocortin-3 receptor (MC3R) were proposed to underlie this
association, however, direct sequencing of four single nucleotide
polymorphisms in the MC3R did not demonstrate significant
associations with AN (59).

BEHAVIORAL CHANGES IN AN

AN is often associated with comorbid diagnoses, particularly
anxiety and depression (60, 61). Other psychiatric tendencies
such as obsessive-compulsive behavior and harm avoidance
have also been observed in many patients (60, 61). Besides
restrictive feeding behavior, up to 80% of AN patients engage
in excessive physical activity in order to reduce their body
weight, a behavior that is often considered compulsive (62). In
contrast, non-AN subjects that participated in the Minnesota
semi-starvation study reported lethargy and a reduction of self-
initiated spontaneous activity.

Although the mechanisms need to be clarified, these results
suggest homeostatic hunger signals, such as AgRP neuronal
activity and plasma ghrelin, may manifest different goal-directed
behavioral outcomes in AN patients compared to healthy
controls. Both AgRP neuron activity and ghrelin signaling
increase motivation, which is usually directed toward a food goal.
However, when food is no longer a relevant goal, a shift in goal-
directed behavior to locomotor activity may reflect a strategy to
channel motivation derived from homeostatic signaling toward
non-food related outcomes. In support of this, both AgRP
neuron activity and ghrelin signaling increase locomotor activity
in rodents when food is unavailable (63–66) and blocking
ghrelin/AgRP actions decreases physical activity and/or food
anticipatory behavior compared to control animals (67, 68).
Moreover, in time-schedule feeding studies, ghrelin is required
to promote food anticipatory activity (69, 70) and plasma ghrelin
concentrations are positively correlated with food anticipatory
activity. Central ghrelin injection also increased anticipation of
palatable food (71).

It is regularly reported that stressful life events (e.g.,
separations, violence, aggression) precede the development of
eating disorders (52). Many studies show that perinatal or
juvenile stress can predispose individuals to the development
of metabolic phenotypes in humans and in rodents (72, 73)
and contribute to psychiatric phenotypes (74, 75). These studies
highlight that perinatal and/or juvenile stressors can manifest
in adulthood as both metabolic and psychiatric problems,
reinforcing the important link between metabolic and mood
related circuits in the brain. Thus, we put forward the novel
hypothesis that early-life stress might impact common neural
circuits regulating energy homeostasis and emotional mood
responses, which could predispose individuals to both metabolic
and psychiatric problems in later life.

THE GHRELIN-AgRP NEURON AXIS IN
ANIMAL MODELS OF AN

The homozygous anx/anx mouse model develops the primary
symptom of AN, starvation and subsequent emaciation, however
dies prematurely around 3 weeks of age, when they weigh around
half as much as their wildtype siblings and display a range of
hypothalamic neuropeptidergic and molecular aberrances (76),
including an increased number of AgRP/NPY immunopositive
cell bodies in ARC (77). However, the neuronal circuits
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responsible for energy homeostasis are not fully developed during
the short lifespan of this model, making it difficult to extrapolate
these findings to the neuroendocrine dysfunction observed in
AN patients. Although ghrelin resistance is known to occur in
obese animal models (78–81), to our knowledge, no study has
directly implicated altered plasma ghrelin levels in the anx/anx
phenotype or in other animal models of AN. In the activity-based
anorexia (ABA) rat model, which relies on allowing animals
unhindered access to running wheels in combination with time-
limited access to food (82), central infusion of the inverse agonist
AgRP (83–132) increased both cumulative food intake and basal
body temperature during exposure to ABA conditions, but did
not significantly impact body weight loss (83).

In support of the hypothesis that early-life stress might
contribute to the development of AN, it has been shown that
early-life stress in a mouse model impacts on both leptin
and ghrelin secretion and AgRP fiber density, with changes in
plasma ghrelin seen only in females (84). Importantly, both
ghrelin and leptin play a critical role in the development
of hypothalamic circuits regulating feeding and diet-induced
obesity impairs hypothalamic NPY and AgRP signaling, as well
as POMC fiber pathways (84, 85). Thus, early-life stress can
impact on neural circuits controlling energy homeostasis and
can predispose individuals to metabolic disease (diet-induced
obesity) in adulthood (86–88). Whether or not similar early-life
stress events predispose to AN in animal models via homeostatic
circuit modification has not been addressed but should be
considered in the future.

THE ROLE OF GHRELIN AND AgRP
NEURONS IN METABOLISM

AgRP neurons are essential hunger-sensing neurons, as shown by
the seminal studies of Luquet et al. (6). In this study, the authors
used mice expressing the human diphtheria toxin receptor in
AgRP neurons (AgRPDTR mice) allowing the destruction of these
neurons after diphtheria toxin treatment. Diphtheria toxin in
adult mice caused a rapid and substantial decrease in food intake
and body weight, results that have been subsequently confirmed
using similar techniques (89, 90). Importantly, neonatal ablation
of AgRP neurons did not lead to a pronounced phenotype (6).
These results highlight not only the importance of compensatory
mechanisms in the neurodevelopmental process of hypothalamic
feeding circuits but also the indispensable role of the AgRP
neurons in sensing hunger and feeding behavior. As a key hunger
signal, ghrelin targets AgRP neurons to increase food intake and
although it has been shown that ghrelin requires AgRP neurons
to increase food intake, a number of studies demonstrate that
other ghrelin sensitive regions, including the hippocampus and
brainstem, are also involved in the control of food intake (91–95).

Chemogenetic and optogenetic techniques developed more
recently have allowed researchers to comprehensively define this
role of hunger-sensing AgRP neurons (8, 9, 96–99). By using
DREADD hM3Dq expression in AgRP neurons of NPY and
GABA receptor double knockoutmice, Krashes et al. (98) showed
that both NPY and GABA are necessary for a rapid increase of

food intake, whereas stimulating AgRP neurons in the absence of
NPY and GABA had a delayed effect on food intake indicating
AgRP peptide produces a slower feeding effect than NPY or
GABA (98). Besides stimulating food intake, activation of AgRP
neurons increases fat mass and reduces energy expenditure,
respiratory exchange ratio and body temperature, all of which
contribute to the conservation of energy (63, 100, 101).

Rodents, like humans, adopt similar strategies to cope with
acute or chronic energy deficit in order to maintain vital signs
in homeostatic range and organ functions (102, 103). At the
level of AgRP neurons, food deprivation leads to changes in gene
expression in pathways involved in hormone signaling, including
leptin, insulin and ghrelin that leads to modulation of AgRP,
NPY and GABA expression (104). Ghrelin acts on central and
peripheral targets via the expression of GHSR1a and, as well
as increasing food intake, ghrelin reduces energy expenditure
and fat usage, increases glycogenolysis and glycemia (47).
Collectively, ghrelin is a metabolic signal that informs the brain
of low energy availability, allowing for metabolic adaptations
to conserve energy. Ghrelin action via the GHSR1a on AgRP
neurons is partially responsible for its effect on food intake, but
expression of GHSR also acts to normalize glycemia under fasted
and food restricted conditions via effects on plasma glucagon
and an upregulation of gluconeogenesis gene expression (105).
Along with other similar findings on feeding and glycemia (16),
these results suggest that ghrelin acts via the GHSR in AgRP
neurons primarily to control glycemia in response to negative
balance, with a secondary effect on feeding. Consistent with these
physiological studies, the GHSR is expressed by a large majority
of AgRP neurons (90%) and a significant portion of Growth
hormone releasing hormone neurons (25%) and chemogenetic
inhibition of GHSR neurons in the mediobasal hypothalamus
blocks fasting-induced feeding, whereas chemogenetic activation
increases food intake in satiated mice (15). Also highlighting the
importance of the ghrelin-AgRP nexus is the ability of plasma
ghrelin to rapidly enter the ARC for sensing by ARC (AgRP)
neurons. In fact, this is the most prominent site for plasma
ghrelin entry into the brain and accessibility increases during
energy deficit (106–108). Taken together, these findings underline
the important interaction between ghrelin and AgRP neurons
that is magnified in situations of energy deficit such as AN.
Indeed, AgRP neurons are required to integrate signals of energy
status for the normal action of ghrelin, as we recently showed
that glucose-sensing via AMPK in AgRP neurons modulates the
ability of ghrelin to stimulate food intake (109).

AgRP neurons are important to sense and compute incoming
information related to energy availability, a process that involves
both sensory detection from olfactory and visual cues (12), as
well as metabolic feedback in response to food consumption
(110–112). Fiber photometry to visualize AgRP population
activity showed a rapid reduction in fasted AgRP activity
(within seconds) in response to the presentation of food, with
a greater reduction in response to highly palatable foods (12).
The reduction in AgRP activity was sustained only if food
remained available for consumption after presentation and AgRP
activity returned to high fasted levels if food was inaccessible
or removed after presentation (12). Su et al. showed that
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sustained reductions in AgRP neurons required gastro-intestinal
nutrient and hormonal feedback over a longer timescale (30min)
(110, 111). These results demonstrate that AgRP neurons
are responsive to different feedback modalities over different
time frames—sensory feedback occurs within seconds and
predicts the value of incoming nutrients, whereas nutrient and
hormonal feedback occurs over minutes and provides a post-
ingestive confirmation of actual calorie consumption to sustain
changes in AgRP feedback. We recently showed that carnitine
acetyltransferase (Crat) in AgRP neurons is an important enzyme
required for the normal response to calorie intake during fasting,
calorie restriction and restricted feeding (112–114), highlighting
that normal metabolic processing of AgRP neurons is required to
detect and compute calorie feedback.

Interestingly, signals of long term energy storage, such as
leptin from adipose tissues, provides feedback to control AgRP
neuronal activity over hours to days (110). Each aspect of
the temporal feedback model may be important for normal
homeostatic and behavioral actions of AgRP neurons and ghrelin,
as a hormone that increases AgRP activity. If adipose stores are
depleted, the absence of long-term feedback from leptin may
affect both the sensory (seconds) and homeostatic (minutes)
response to food. Indeed, AN is characterized by a loss of both
long-term and homeostatic post-ingestive responses due to both
the lack of food intake and absence of leptin, which has significant
impact on the sensory control of AgRP. As a result, this may
impair immediate behavioral and stress responses, something
that is often reported in AN patients.

AgRP AND GHRELIN SIGNALING IMPACT
ON BEHAVIOR

Optogenetic stimulation of hypothalamic axon terminals in the
paraventricular hypothalamic nucleus, lateral hypothalamus, and
in extra-hypothalamic axon terminals in bed nucleus of the
stria terminalis, paraventricular thalamus, and medial amygdala
increase food intake (8, 10, 17, 97, 99, 115). An intriguing
observation is that there are a number of brain regions innervated
by AgRP neurons that have no effect on food intake or other
metabolic parameters (17). In addition, a number of the brain
regions innervated by AgRP neurons that increase food intake
also play important roles in the modulation of mood and
motivation, including the output regions of the hypothalamus
described above. Thus, AgRP neurons, as key neurons detecting
hunger, are anatomically connected to numerous brain regions to
control both feeding-related and non-feeding related behaviors.

Besides food intake, acute activation of AgRP neurons drives
motivation to obtain food rewards, food-seeking locomotor
behavior and a number of peripheral changes to limit energy
expenditure (11, 63). In addition, AgRP neuronal activation
is shown to evoke stereotypical behavioral patterns including
repetitive obsessive and compulsive tendencies (9) when food
was not available for consumption, similar to symptoms of AN.
Optogenetic activation of AgRP neurons initiates a conditioned
place aversion when food is not available, suggesting that
increased motivation after AgRP neuronal activation is driven

by the desire to remove the aversive feeling, otherwise known as
negative reinforcement (11). Notably, fasting, ghrelin and AgRP
activation all increase exploratory and risk-taking behavior in
order to access food (7, 10, 116, 117). An important distinction
here is that food is available during the task if the mouse is willing
to risk obtaining it. Taken together, these data establish that AgRP
neurons drive a neural signal of hunger, but if this neural signal of
hunger is not fulfilled by appropriate food intake, or accessibility
to food, this leads to non-feeding behaviors such as obsessive and
compulsive tendencies and hyperlocomotion; that is, increased
motivation driven by negative reinforcement. Such a response to
hunger in the absence of food intake could underlie behavioral
changes seen in AN, such as increased motivation for locomotion
(exercise) rather than food (118).

Hunger-sensitive AgRP neurons and ghrelin feedback regulate
non-food related behaviors, such as mood and motivation,
which may be a result of an interaction between the ghrelin-
AgRP nexus and stress pathways. This interaction can be
bidirectional whereby fasting may activate the ghrelin-AgRP
nexus to influence the Hypothalamo-Pituitary-Adrenal (HPA)
stress axis (119, 120) or the HPA stress axis affecting the ghrelin-
AgRP nexus (121). This interaction is pertinent, since AN
patients show increased activation of the HPA stress axis at both
the neuroendocrine (increased corticotropic-releasing hormone)
and endocrine level (increased cortisol) (122–124), both of
which are broadly implicated in neuropsychiatric disease (125).
However, it should be noted that ghrelin can also directly activate
corticotropic-releasing hormone neurons independently from
the ARC (126, 127), indicating that behavioral changes associated
with high ghrelin may simultaneously, yet independently, occur
at the ARC and paraventricular hypothalamic nucleus.

Nevertheless, all psychological or physical stressors increase
plasma ghrelin (128) and ghrelin regulates the HPA axis at
the level of the pituitary and hypothalamus (129). The HPA
axis mediates the body’s response to stressors and facilitates
the appropriate mechanisms to deal with stressful events
(128). However, dysregulation of the HPA axis can prove
maladaptive by promoting mood disorders, such as anxiety,
depression, and compulsion (130), or metabolic disorders
such as overeating and excessive weight gain (131, 132). In
terms of regulating mood, GHSR signaling reduces anxiety
and depression-like symptoms in a model of chronic social
defeat (133, 134) and a Leu72Met gene polymorphism in
the human ghrelin gene associates with major depression
(135). In response to acute stress, ghrelin regulates the HPA
axis to limit anxiety-like behavior (128, 129). However, this
appears to be related to the ratio of acyl ghrelin to des-acyl
ghrelin since mice lacking the enzyme that acylates ghrelin
(GOAT) show increased anxiety-like behavior under both non-
stressed and stressed conditions, which not due to changes
in corticosterone (136). In addition, there is an unusual
paradox, as a number of publications have reported that ghrelin
promotes anxiety (137–139). In these studies, animals underwent
behavioral testing within 30min of ghrelin injection without
food availability, suggesting that the unfulfilled hunger signal
from ghrelin may have promoted an anxiety-like state during the
testing period.
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GHSR signaling in the brain also influences motivation for
food rewards in models of conditioned place preference and
operant conditioning (91, 140–143). It is particularly relevant
that GHSR signaling in the brain may link stress/mood with
the motivation to obtain food reward. For example, chronic
social defeat stress in mice drove consumption of high fat diet
and weight gain in GHSR wild-type but not GHSR knockout
mice (131). Moreover, we have demonstrated that a ghrelin
injection conditions a rewarding experience when paired with
food availability but conditions an aversive experience when food
is withheld (81), similar to examples above showing that AgRP
neuronal activation in the absence of food drives a conditioned
place aversion. Thus, plasma ghrelin, as a hunger signal from
the body, influences mood and motivation and the behavioral
readout depends on food availability.

How hunger states can affect mood and motivated behaviors
needs addressing when we consider the co-morbidity between
metabolic dysfunction and mental illness (144). Moreover,
exactly where in the brain both metabolic and mood/motivation
circuits interact remains unknown. One important regionmay be
the amygdala given its roles in emotional learning, cue-predicted
learning, anxiety, reward processing, and motivation (145).

Indirect evidence shows that ghrelin regulates the activity of
neurons in the medial amygdala after acute stress (38) and GHSR
signaling in the basolateral amygdala regulates neuronal activity
in a model of cue-potentiated feeding (146). Furthermore,
repeated ghrelin agonist injections in the basolateral amygdala
increased fear memory (147). In terms of AN, brain-imaging
studies show differential activation of the amygdala in AN
patients relative to controls (148) and homeostatic signals
such as ghrelin, AgRP and NPY are all significantly increased
in AN patients (149, 150). Interestingly, AN patients have
significantly higher plasma ghrelin concentrations compared to
constitutively lean women (151) and constitutional thinness is
not associated with psychological disturbances, amenorrhea, or
other hormonal abnormalities associated with undernutrition
(36, 152). The mechanisms underlying this difference may be
related to increased exercise often observed in AN patients,
since exercise is known to increase plasma ghrelin concentrations
(153). It is therefore plausible that persistent high levels of
plasma ghrelin may contribute to mental health issues in
AN patients.

AN patients have other behavioral maladaptations/
disturbances not apparently linked to hunger sensing (via

FIGURE 1 | Ghrelin is secreted from the stomach primarily under conditions of negative energy balance and acts to inform the brain of low energy availability. As a

signal of energy deficit, ghrelin promotes behaviors to encourage food-seeking and food intake as well as adaptive strategies to cope with hunger, and influence

metabolism to maximize energy storage. One of the major targets of circulating ghrelin is the population of AgRP neurons that reside in the arcuate nucleus of the

hypothalamus. Ghrelin reaches AgRP neurons and fasting increases permeability to allow greater diffusion of ghrelin into this central target. As highlighted in this

figure, AgRP neurons project to a large number of different nuclei throughout the hypothalamus, amygdala, brainstem, thalamus, and midbrain. However, not all AgRP

neurons projections stimulate food intake, it is currently thought that only the Agrp to PVN, LHA, BNST, PVT, PBN, and MeA projections influence food intake. Thus, it

is important to appreciate that activation of hunger-sensing AgRP neurons affects both feeding and nod feeding pathways when active. Another important observation

is that ghrelin and fasting both increase AgRP neuron activity, leading to increased food intake when food is available; whereas when food is unavailable, the activation

of AgRP neurons leads to changes in energy metabolism and behavioral adaptations. Such behavioral changes in the absence of food include obsession-compulsion,

mood-changes, motivation, aversion, sociability, although the specific circuits involved in these behaviors remain to determined. In situations of acute energy deficit,

these behavioral responses are thought to be adaptive, however the consequences of long-term energy deficit on these behavioral response remain unknown. These

observations highlight a potential role for disrupted or prolonged chronic ghrelin-AgRP signaling in the absence of appropriate food intake to have a significant impact

on normal behavior in anorexia nervosa (AN), a disorder characterized by a severe and chronic energy deficit. Indeed, similar behavioral features have also been

observed in patients with AN, therefore, understanding how Ghrelin-AgRP neuronal signaling mediates behavioral and metabolic adaptations in the presence or

absence food availability may shed light on the role of these circuits in the pathophysiology of AN.
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AgRP neurons) or hunger signaling (via ghrelin or GHSR).
These behaviors include disrupted sleep-wake structure and
quality with lower slow wave sleep and rapid eye movement
sleep, in addition to harm avoidance and social interaction
deficits (154–156). Food restriction protocols in rodents are
known to disturb the normal light-dark cycle activity in mice,
as shown by food anticipatory activity and a recent study
indicating that optogenetic AgRP neuronal activation increased
the number and length of wake periods and the duration
of non-rapid eye movement (NREM) sleep periods (157).
Conversely, chemogenetic inhibition of these same neurons
has no effect in satiated mice but reduced NREM sleep and
microarousals during NREM sleep in fasted mice (157). Thus,
persistently high AgRP and ghrelin levels as seen in AN
(149, 150), may also impact behavior via impairing the quality
of sleep.

CONCLUSION

An understanding of how hunger signals influence mood and
motivation may provide valuable insight into the pathogenesis
of both metabolic dysfunction and mental illnesses, such as
AN. Indeed, AN is viewed as primarily a psychiatric disorder
owing to the considerable behavioral and genetic overlap with
mood disorders and other psychiatric traits (158). However, the
recent reconceptualization of AN as one of both psychiatric
and metabolic etiology (19, 20) suggests that metabolic circuits
conveying hunger, or sensitive to signals of hunger, may
be a critical nexus linking metabolic dysfunction to mood
disturbances (see Figure 1). In line with this line of reasoning one
would expect that dampening down persistent signals of hunger
(AgRP neurons or GHSR activity) may alleviate some potential

psychiatric problems associated with AN. However, this would
be considered controversial and require substantial experimental
evidence to support such actions.

The advent of new technologies developed this last decade
has brought with it a new suite of information regarding the
activity and function of AgRP neurons within hypothalamic
and extrahypothalamic circuits. These neurons appear to be
sensitive to a wide range of signals including food cues,
nutrients and hormones and respond to these signals (8,
159). In light of this, it is clear that the AgRP neurons
may have a significant role in AN at both a metabolic and
behavioral level. Future studies are required to examine the
causal role of hunger-sensing AgRP neurons and the hunger
signal, ghrelin, in behavioral changes associated with AN. A
major limitation at this stage, due to the complexity of the
etiology of the disease, is an appropriate animal model in
which to do so. Novel translational models should incorporate
both voluntary reduction in food intake and excessive exercise
behavior, both essential elements of body weight loss in AN, in
addition to genetic, metabolic and environmental drivers of the
human condition.
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