
RESEARCH ARTICLE

Multivariate analysis of roadway multi-fatality

crashes using association rules mining and

rules graph structures: A case study in China

Chenwei Gu1, Jinliang XuID
1*, Chao Gao1, Minghao Mu2, Guangxun E3, Yongji Ma1

1 School of Highway, Chang’an University, Xi’an, Shaanxi, China, 2 Innovation Research Institute of

Shandong High-Speed Group, Jinan, Shandong, China, 3 Shandong Hi-Speed Group Co., Ltd, Jinan,

Shandong, China

* xujinliang@chd.edu.cn

Abstract

Roadway multi-fatality crashes have always been a vital issue for traffic safety. This study

aims to explore the contributory factors and interdependent characteristics of multi-fatality

crashes using a novel framework combining association rules mining and rules graph struc-

tures. A case study is conducted using data from 1068 severe fatal crashes in China from

2015 to 2020, and 1452 interesting rules are generated using an association rule mining

approach. Several modular rules graph structures are constructed based on graph theory to

reflect the interactions and patterns between different variables. The results indicate that

multi-fatality crashes are highly associated with improper operations, passenger overload,

fewer lanes, mountainous terrain, and run-off-the-road crashes, representing the key vari-

ables of factors concerning driver, vehicle, road, environment, and accident, respectively.

Furthermore, crashes involving different severity levels, road categories, and terrain are ver-

ified to possess unique association rules and independent crash patterns. Moreover, the

proportion of severe crashes caused by a combination of human-vehicle-road-environment

factors (43%) is much higher than that of normal crashes (3%). This study reveals that the

hidden associations between various factors contribute to the overrepresentation and sever-

ity of multi-fatality crashes. It also demonstrates that the crash mechanisms involving multi-

fatality crashes and their interactions are more complex at the system level than those for

normal crashes. The proposed framework can effectively map the intrinsic link between mul-

tiple crash factors and potential risks, providing transportation agencies with helpful insights

for targeted safety measures and preventive strategies.

1. Introduction

Multi-fatality crashes that cause three or more deaths have been a critical problem for traffic

safety in China. The fatality rate of roadway crashes in China reached 23.3% in 2018, signifi-

cantly higher than that of South Korea (1.3%), the United States (1.2%), and Japan (0.8%) [1].

Reducing the casualties of roadway crashes, particularly multi-fatality crashes, has always been

a vital issue in the field of roadway safety. Moreover, extensive studies intended to address
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potential crash factors have focused on direct countermeasures [2]. The proposed safety mea-

sures include airbags, electronic stability controllers, energy-absorbing guardrails, and speed

enforcement systems [3–5]. Although these advanced technologies can intuitively reduce crash

risk at the initial stage, their safety enhancements encounter bottlenecks in long-term use [6].

In fact, the number of road fatalities worldwide has remained unacceptably high in recent

years. Furthermore, behavioral adaptations make eliminating key risk factors difficult with

general safety measures, which may even cause unintended negative effects under special traf-

fic conditions [7]. Therefore, efforts are required to investigate the underlying mechanisms

related to severe crashes, which is essential for improving the practical effectiveness of safety

measures.

Since crashes involve drivers, vehicles, roads, and the environment, it is important to not

only strengthen the passive protection of roadways and vehicles but also to better explore the

underlying variables that contribute to driving risk and crash severity [8]. Several studies have

investigated the causal factors of fatal crashes and their impact on crash characteristics. Con-

sidering methodology, parametric methods, such as negative binomial, empirical Bayes, and

logit-based models, are most commonly used to analyze the associations among variables of

fatal crashes [9–11]. By considering crash severity as a nominal or ordinal variable, several

principal causes of severe accidents, such as speeding, driver errors, vehicle failure, and

weather conditions, have been identified as key characteristics [12]. These studies have

attempted to unveil the potential relationships hidden in crash data to extend the road safety

theory. However, Weng et al. pointed out that the predetermined assumption of parametric

models makes it difficult to identify potential interactions between several factors [13]. Addi-

tionally, the correlations among variables may interfere with crash causation and result in

incorrect applicability [14].

Given the aforementioned shortcomings, other studies have been devoted to the safety anal-

ysis of serious crash casualties using advanced data mining tools. For example, Wang et al.

employed a classification and regression technique to identify the important factors affecting

driving risk in terms of driver, vehicle, and road environment [15]. Jiang and Ma combined

the XGBoost model with a geographic information system to investigate the influence of

macro-level factors, such as geospatial, regional economy, and road characteristics, on fatality

rates and discussed the relationships among these major factors [16]. Additionally, fault trees,

random forests, support vector machines, and Bayesian networks have been widely used for

crash prediction models [17–22]. However, according to established literature, the results

obtained by such models only rank several independent variables, which hardly reflects the

interactions among explanatory variables [14]. This undoubtedly limits the practical applica-

tion of multivariate crash analyses. In contrast, association rules mining (ARM) has been con-

sidered an effective method for discovering potential interactions between human/vehicle

features and highway/environment factors, which play a decisive role in the occurrence and

severity of fatal crashes. With an understandable rules framework, ARM advantageously iden-

tifies fuzzy patterns and heterogeneous effects among several variables in large databases [23].

Moreover, it has been widely used for multivariate analysis of crashes involving rainy weather

[24], hazardous material vehicles [25], pedestrian collisions [26], roundabouts [27], and run-

off-the-road (ROR) [28].

Although association rules have become a prevailing approach for multivariate analysis of

roadway safety, there are still some limitations in applying ARM in practice. The first limita-

tion is the interpretation of rules in ARM. The analysis of interactive associations among vari-

ables has gained hardship due to the proliferation of rules generated from existing crash

datasets. Most related studies displayed rules with high levels of several indicators while

neglecting an in-depth analysis of the overall rules set. However, the minority of rules selected
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can provide little instinctive and plausible advice to improve road safety [29]. The other limita-

tion of ARM is identifying the critical factors for several crash patterns. It is worth noting that

there exist several elevating variables hidden within the rules [28]. Individual elevating vari-

ables may not link to the rules satisfying the highest indicators of ARM, but they demonstrate

a significant lift on crash patterns when interacting with other variables. These key variables

could be elicited from the association rules, which have always been ignored. Graph network

theory and analysis is a mathematical method for exploring the interrelations between multiple

factors. It has been widely used in behavioral science to analyze social relations, telecommuni-

cation science, and transportation [30,31]. Quantitative network analysis is often used to deal

with a limited knowledge of the complex relations using graph properties such as topology

modularity and centrality measures, which contribute to feature clustering and factor ranking

[32]. Moreover, the graph-based visualization presents explicit explanations for complex rela-

tionships in association rules. Therefore, this study aims to address the limitations of ARM

with the novel rules graph structures (RGSs) based on graph theory.

Considering the aforementioned findings, research that employs rule mining tools to

explore hidden associations in severe multi-fatality crashes is limited. To the best of our knowl-

edge, although many researchers have identified the major variables that influence fatal

crashes, their interdependencies remain unclear. It seems appropriate to combine association

rules and graph theory to describe the relationships among different factors clearly. Further-

more, prevailing countermeasures for normal crashes may not be applicable to reducing seri-

ous casualties due to the complex mechanisms of severe accidents [33]. Since the responsibility

for any crash involves a range of variables, casualties can be effectively controlled by changing

some of them. Therefore, the main objective of this study was to discover the contributory var-

iables and interdependent characteristics of multi-fatality crashes by mining interesting rules.

Accordingly, a case study was conducted using 1068 roadway crashes that caused three or

more deaths in China from 2015 to 2020. With the utilization of novel rules graph structures,

the hidden patterns and interactions among crash factors in rules can be investigated better.

This interpretation will present meaningful insights into the selection of preferred counter-

measures to reduce roadway casualties.

2. Research framework

This study proposes the ARM and RGS frameworks for multivariate analysis of the contribu-

tory factors related to multi-fatality crashes. As shown in Fig 1, the framework consists of four

steps: (1) data preprocessing, (2) association rules mining, (3) rules graph construction, and

(4) multivariate association analysis. First, the textual records of multi-fatality crashes in China

are converted into numerical formats to create a dataset with comprehensive explanatory fac-

tors. Second, the Apriori algorithm is applied to discover interesting rules with appropriate

threshold values, and several criteria are established to remove redundant rules. Third, the

obtained rules are constructed into RGSs based on graph properties and network modularity.

Moreover, a two-step analysis is conducted to investigate typical crash factors and patterns

using graph structures and high-value rules. With a large number of rules, the interpretation

method of rule sets is particularly critical for multivariate analysis. Therefore, the proposed

framework attempts to better understand the key crash factors hidden in the rules by con-

structing a graphical structure. The detailed method is described next.

3. Data

In China, for crashes resulting in three or more deaths, a special investigation group of the

Ministry of Emergency Management of China (MEMC) at the provincial or municipal level
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will be deployed to conduct comprehensive investigations on crash-related conditions. An in-

depth accident report will be publicly available within 60 days of a crash. These in-depth inves-

tigations provide a textual reconstruction of the crash situation, containing detailed informa-

tion about drivers, vehicles, roadways, and environment factors, which are suitable for the

multivariate analysis of accidents.

All crash reports available from MEMC between 2015 and 2020 were collected in this study

to determine the factors contributing to multi-fatality crashes and their interactions. Of the

total of 1068 crashes used for analysis, 35.3% are significantly serious crashes with more than

five fatalities, and 64.7% are severe crashes with 3–5 deaths. These reports include crashes that

occurred in 34 provinces and regions, covering all four geographical regions of China. The

crash types in the dataset include not only single-vehicle crashes, such as ROR, falling, and roll-

over, but also multi-vehicle crashes, such as rear-end, angle, and head-on collisions. As in-

depth investigations of high quality have been conducted by MEMC professionals and are

available to the public, the analysis based on them is reliable.

The following specific patterns are included in the reports for describing crash information:

1. Driver factors, including driver conditions (familiarity, fatigue, and impaired), driving vio-

lations, and behavior;

Fig 1. The framework of ARM & RGS method.

https://doi.org/10.1371/journal.pone.0276817.g001
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2. Crash information, containing crash location, crash type, fatalities, time period, and num-

ber of vehicles involved;

3. Vehicle factors, including the type of vehicle involved, vehicle condition, traveling speed,

and deformation of the vehicle;

4. Road conditions, including road category (reflecting the access control and median design

of roadways), alignment, road section, number of lanes, and posted speed limit;

5. Environmental conditions, including weather conditions, terrain, traffic conditions, light

conditions, and geography.

After careful examination and extraction, all valid textual information from the 1068 crash

reports is encoded as a numerical dataset that can then be applied to association rules mining.

The dataset includes 18 categories of variables with 84 sub-items. Table 1 lists the factor cate-

gories and descriptive statistics for the roadway multi-casualty dataset. All interpreted sub-

items are converted into Boolean type for further analysis.

4. Methodology

4.1 Association rule mining

An association rule approach is applied to analyze the occurrence and severity of fatal crashes con-

sidering different factors and their combinations. The association discovery is an advanced and

descriptive data mining tool with a rule-based framework for analyzing valuable interactions

between the variables in a database [34]. Compared to existing approaches, ARM does not need

to verify the predetermined hypothesis, demonstrates great robustness in extracting information,

and can cope with vacant data. This method is recognized as an effective tool for the multi-factor

analysis of crash causation owing to its flexibility in exploring hidden relationships [13].

In this study, the Apriori algorithm, the most widely used ARM technique, is applied to

investigate the crash data [35]. This algorithm utilizes a bottom-up hash tree structure with

level-wise search to mine frequent item-sets from data, which ensures the computational effi-

ciency. An association rule is extracted in the form X!Y, where X and Y are disjoint item-sets;

X is called the antecedent (left-hand-side, LHS), consisting of single or multiple items, and Y is

called the consequent (right-hand-side, RHS), containing only one item. In the Apriori algo-

rithm, multiple criteria with predefined threshold values are used to identify frequent item-

sets. The extraction and evaluation of rules are mainly based on several parameters, namely

support, confidence, and lift.

The support of a rule measures the percentage of antecedents and consequents that occur

together in the entire dataset, which can be calculated as

Supp X ! Yð Þ ¼ P X \ Yð Þ ¼
#ðX [ YÞ

N
; Supp Xð Þ ¼

#ðXÞ
N

ð1Þ

where N is the total number of crash records, and #(X[Y) is the co-occurrence of item-sets X
and Y.

Confidence indicates the probability that an item Y appears simultaneously when the set of

X factors appears, P(X|Y), which can be interpreted as the credibility of the association rule.

This can be calculated as

Conf X ! Yð Þ ¼
SuppðX ! YÞ

SuppðXÞ
¼

PðX [ YÞ
PðXÞ

ð2Þ
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Table 1. Descriptive statistics of crash data.

Variable Count % Variable Count %

Severity level Crash location

A (Casualties: 3–5) 691 64.7 Roadside 335 31.36

B (Casualties > 5) 377 35.3 Roadway 672 62.9

Time Barrier/shoulder 63 5.9

Workday 613 57.4 Environmental condition

Weekend 455 42.6 Rain 233 21.8

0:00–6:00 220 20.6 Snow 54 5.1

7:00–12:00 268 25.1 Wet/slippery surface 303 28.4

13:00–17:00 316 29.6 Deform

18:00–23:00 257 24.1 Disabled 827 77.43

Terrain Functional 203 19.0

Plain 575 53.8 Minor 37 3.5

Mountainous 493 46.2 Violation

Number of vehicles (Veh num) Unlicensed 114 10.7

Veh num = 1 236 22.1 Alcohol 138 12.9

Veh num = 2 583 54.6 Speeding 331 31.0

Veh num = 3 249 23.3 Improper lane usage 352 33.0

Vehicle type (Veh type) Insufficient distance 251 23.5

Light duty 304 28.5 Improper operations 250 23.4

Truck involved 452 42.3 Illegal overtaking 308 28.4

Bus involved 365 34.2 Dangerous driving 194 18.2

Light condition Passenger overload 30 28.1

Daylight 580 54.3 Overspeed > 20% 326 30.5

Dark 228 21.3 Overspeed < 20% 193 18.1

Dark without light 260 24.3 Low speed 19 1.8

Road segment Limit speed

Curve 126 11.8 > 80 km/h 423 39.6

Uphill 44 4.1 [60–80] km/h 375 35.1

Downhill 118 11.05 < 60 km/h 270 25.3

Up-curve 30 2.8 Driver condition

Down-curve 205 19.2 Fatigue/impaired 272 25.5

Radius < 500 m 175 16.4 Unfamiliar 192 18.0

Radius [500–1000]m 158 14.8 Normal 604 56.5

Radius > 1000 m 64 6.0 Road category

Grade� 4% 199 18.6 Freeway 307 28.7

Grade [2%,4%] 226 21.2 1st-class highway 187 17.5

Straight segment 545 51.1 2nd-class highway 418 39.2

Intersection 121 11.3 Lower lever road 125 11.7

Bridge/tunnel 84 7.9 Urban road 31 2.9

Ramp/interchange 60 5.6 Vehicle condition

Crash type Loss of control 208 19.5

Head-on 353 33.1 Tire/brake failure 291 27.2

Rear-end 284 26.9 Fire occurrence 75 7.0

Angle 134 12.54 Overweight 275 25.7

Sideswipe 21 2.0 Unknown 225 21.1

Hit an object 126 11.8 Traffic condition

Skidding 196 18.4 Free flow 309 28.9

(Continued)
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Support and confidence represent the probability for the co-occurrence of items covered by

the association rule, but directly reflecting the association strength between the LHS and RHS

items is difficult. In contrast, lift value links the occurrence of items in the association rule to

the expected occurrence under conditional independence [28]. It indicates the probability for

the occurrence of RHS changes in the presence of LHS and can be calculated as

Lift X ! Yð Þ ¼
Conf ðX ! YÞ

SuppðYÞ
¼

SuppðX [ YÞ
SuppðXÞ � SuppðYÞ

ð3Þ

When the lift of a rule is higher than one, a significant association exists between the LHS

and RHS items. A lift smaller than one indicates two mutually exclusive item-sets, and a lift

equal to one indicates that item-sets X and Y are independent of each other. Therefore, a

higher lift is assumed to imply a stronger association with the rule.

The rules used for the analysis shall preferably have a higher support, larger confidence

level, and greater lift. Therefore, the minimum thresholds of support (S), confidence (C), and

lift (L) are required to be prone to uninteresting rules. The thresholds of support and confi-

dence are usually selected between 1–20% and 30–80%, respectively, and require a lift higher

than 1.2 [25]. Most existing studies are mainly based on subjective selection, considering the

quantity and quality of filtering rules to define these predefined values [22,23,28,34]. This is

because higher indicators may lead to numerous redundant sets, while lower indicators do not

adequately investigate hidden associations. Therefore, the trial-and-error approach is applied

to determine relatively fair thresholds [25]. We first identify two sets of minimum support and

confidence values as 2% and 50%, and 10% and 80%, respectively. When using the first set (2%

support, and 50% confidence), the Apriori algorithm generates 63,974 rules, with the lift values

distributed from 0.3–5.2. The second set generates only 26 rules with a lift ranging from 0.99

to 1.02. Obviously, neither set of rules can provide meaningful information to form typical pat-

terns of multi-fatality crashes. To better achieve high-associated rules, we continuously iterate

the combination of support and confidence probabilities and determine a set of relatively high

thresholds as (S� 6%, C� 75%, and L > 1.3) for guaranteeing the credibility of the associa-

tion rules. The minimum 6% support implies that no rules will be considered effective if they

cannot satisfy appearing in at least 64 severe crashes (20% of the total 303 crashes). It is worth

noting that the predefined threshold values also directly influence the processing of the Apriori

algorithm, and appropriate thresholds effectively ensure the computational efficiency of the

overall framework in this study.

4.2 Removal of redundant rules

After the generation of rules with thresholds, redundant or invalid rules still exist in the rule

set. Furthermore, this study adopts another method to remove redundant rules and ensure the

comprehensiveness of the analysis as follows:

Table 1. (Continued)

Variable Count % Variable Count %

Severity level Crash location

Rollover/overturn 307 28.7 Stable flow 217 20.31

Falling/immersion 147 13.8 Congestion 127 11.9

Lanes number Oversaturation 107 10.0

Lanes num� 2 532 49.8 Unknown 308 28.8

Lanes num > 2 536 50.2

https://doi.org/10.1371/journal.pone.0276817.t001
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1. The lift increase (LIC) tests are performed to ensure that the additional item in rules results

in an increase in rules interest [26]. If a rule with n+1 items does not lead to a LIC com-

pared to that for the base rule of n items, the rule is considered redundant. Eq 4 represents

the LIC of a rule as

LIC Xnþ1 ! Y
� �

¼
LiftðXnþ1 ! YÞ
LiftðXn ! YÞ

ð4Þ

where Xn+1 and Xn are the LHSs of the rules with n+1 and n items, respectively; moreover,

Xn� Xn+1. Rules with more items are selected over simpler ones if the LIC condition satis-

fies the minimum threshold of 1.03.

2. Significance tests are conducted to ensure the generalizability of the filtered rules. Hahsler

and Hornik indicated that the confidence of a rule is systematically affected by the fre-

quency of LHS items [36]. Therefore, the selected rules are further verified if the one-sided

Fisher’s exact test reaches the expected p-value, which is corrected for multiple tests using

the Bonferroni correction [37]. The null hypothesis of the test is that no association exists

between the antecedents and consequents. Rules are considered significant if the results

reach a significance level of p< 0.01; otherwise, they are excluded.

3. The selected rules are ensured to be practically meaningful for analysis. Some rules with

high support may occur frequently in the dataset; however, such rules may not provide any

valuable information for safety analysis, e.g., the rule “time: 13:00–17:00! Light: daylight”

or “Limit speed > 80 km/h! Road category: freeway”. Such rules with strong causality but

lacking importance are excluded by comparing the relationship between the LHS and RHS

items.

4.3 Rules graph structures construction

Association rules essentially reflect the potential links of information or probabilities within

the dataset. Such interactive associations can be directly indicated by a graphic network, simi-

lar to a tree-based structure or Bayesian network [20]. Graph network theory and analysis is a

mathematical method for exploring the interrelations between multiple factors. The external

observations and internal relations of the rules can be accurately identified based on a network

topology with nodes and links. Several scale-free graphical features can be generated to reflect

the importance of the factors in rule sets, which compensates for the inadequacies of typical

rule tools in single-factor ranking. For example, Weng et al. applied the degree distribution of

a rules graph to evaluate the importance of factors in work-zone crashes [13].

In this study, graph theory is used to construct RGSs from the rule set. In simple terms,

each factor in the rule set is cast as a node, and the link between any two factors is cast as

directed edges to represent the associations between them. In the form of weighted structures,

the centrality of nodes can be calculated using graph properties to reflect the importance of

each factor in the rule set. Following related studies [13,38,39], the graph properties selected in

this study are as follows:

1. Degree represents the number of edges connected to a node, also reflecting the adjacent

nodes. The nodes with more connected links are generally considered more valuable in a

directed graph. For a rules network, the in-degree and out-degree, which denote the num-

ber of pointed-in and pointed-out links, respectively, characterize the frequency of factors

in the RHS and LHS for all rules. These can be used to describe the connected relationships

within crash factors.
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2. Closeness indicates the average distance between a node and other nodes, calculated as the

reciprocal of the sum of the lengths of the shortest paths between the node and all other

nodes in a graph [22]. Clearly, the higher the value of closeness, the stronger is the centrality

of the node. This can be normalized as

C xð Þ ¼
N

Sydðy; xÞ
ð5Þ

where d(y,x) is the distance between nodes x and y and N is the number of nodes in the

graph. For the RGSs in this study, the closeness of a node can be used as the ranking for the

contributions from different factors.

3. PageRank is a measure of node importance and centrality, which was initially an algorithm

used to rank webpages [40]. Due to its applicability in directed networks, it has been widely

used in other fields, such as social network analysis and traffic demand prediction. The key

idea of the algorithm is that the importance of a node depends not only on its centrality but

also on the connectivity of the neighboring nodes weighted by out-degree [39]. The PageR-

ank of node X is calculated as

PR Að Þ ¼ 1� dð Þ þ d
PRðV1Þ

OðV1Þ
þ � � � þ

PRðVnÞ

OðVnÞ

� �

ð6Þ

where Vn is the nth adjacent node of node A, O(Vn) is the out-degree of node Vn, and

parameter d is a damping factor (set to 0.85). In Eq (6), PageRank is defined recursively and

can be calculated using an iterative algorithm. In an RGS, PageRank can identify key factors

that are closely associated with other factors.

4. Modularity reflects the clustering relationships between nodes within the graph structure.

Through hierarchical division, a complex network can be divided into a number of subordi-

nate modules or communities, which demonstrates the potential structural composition

within the network [41]. The nodes in the same module are more closely related and can be

regarded as having similar attributes. The detection of modularity structure is based on the

hierarchical agglomeration algorithm proposed by Blondel, and the modularity of the net-

work can be measured using the modularity coefficient Q [42]. The modularity Q is defined

as

Q ¼
1

2m

X

vw

½Avw �
kvkvw

2m
�dðcv; cwÞ ð7Þ

where m is the number of modules; v and w are the vertexes of the network; ki is the degree

of vertex i; Avw is an element of the adjacency matrix of the network, and if v and w are con-

nected, Avw = 1, otherwise Avw = 0; ci is the module to which vertex i belongs; the δ function

δ(i,j) is 1 if i = j and 0 otherwise. The forms of different modularity structures can be com-

pared by the coefficient Q. In practice, a value of Q higher than 0.3 indicates a significant

community structure of the network. The rules and factors within the same module imply

similar crash characteristics and are used as references for grouping rules in this study.

5. Results and analysis

After the redundancy elimination and significance tests, 1452 rules are extracted from 2917

rules that met the minimum thresholds. A two-step analysis is then conducted. First, the RGS

is constructed to verify the crash patterns and key factors of multi-fatality crashes. Second, the
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rules involving high-frequency RHS items and rules with high-value indicators are further

analyzed to explore the hidden interactions between different contributory factors.

5.1 Analysis of RGSs

Based on the generated rule sets, the Gephi interactive network visualization platform is used

to create four directed rule network structures according to different graph structure proper-

ties, as shown in Fig 2. Each graphic structure contains 1515 nodes and 5340 edges, of which

Fig 2. Modular RGS based on different graph properties. (a) In-degree, (b) Out-degree, (c) Betweenness, and (d)

PageRank.

https://doi.org/10.1371/journal.pone.0276817.g002
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63 nodes represent crash factors occurring in the rules, with sizes proportional to the node

properties. The remaining 1452 nodes represent independent rules connecting the LHS and

RHS items. The RGSs are internally clustered into six modules, which are distinguished by dif-

ferent colors in Fig 2. The modular structure is generated by the Force Atlas algorithm built

into the Gephi platform, which guarantees the computational efficiency of the framework. The

optimal 6-mod structure obtained the outperformed modularity coefficient Q of 0.441> 0.3

compared to other structures. As mentioned above, modularity is used to measure the strength

of the network division. This means that nodes of the same color are tightly associated, while

other nodes of different modules are sparsely linked. The correlations between different crash-

related factors can be intuitively reflected in the graph-based visualization.

Fig 2(A) and 2(B) represent the in-degree and out-degree of different nodes in the network,

which represent the frequency of the factors in the RHS and LHS, respectively. The higher the

in-degree, the more rules that point to the node. Note that “Lanes num� 2, Location: road-

side, Terrain: mountainous, and Vehicle type: truck” are the most common backgrounds for

fatal crashes. Moreover, the out-degree indicates the co-occurrence of node characteristics and

specific crash types. Factors involving lower geometric design, risky driving behavior, and vio-

lations showcase higher values, meaning that these variables decisively lead to serious

causalities.

Fig 2(C) and 2(D) show the closeness and PageRank for different variables. Although both

indicators reflect the connectivity and centrality of nodes, their distribution characteristics are

not the same. The value of closeness reflects the comprehensive node strength such that larger

nodes gather at the center of Fig 2(C). Correspondingly, the larger nodes in Fig 2(D) are gener-

ally scattered in different modules (such as "Rain" in module 3 and "Rear-end" in module 6).

This implies that nodes with a high PageRank play a pivotal role in their modules.

As a hierarchical framework of severe crashes, Table 2 lists the contribution of the top eight

individual factors to the network structure under a system-level typology. The indicators are

divided into five high-level constructs and ranked based on the closeness of the nodes. The

most critical nodes are “Improper operation,” “Passenger overload,” “Lanes num� 2,” “Ter-

rain: mountainous,” and “Location: roadside” for driver, vehicle, roadway, environment, and

crash factors, respectively. This finding is consistent with the results of previous studies

[12,33].

The graph structure has a high modularity Q of 0.448, which indicates significant homoge-

neous effects within independent modules, and can be used for clustering the rule set. Accord-

ing to the PageRank in Fig 2(D), variables with the same color tend to have similar features:

1. Modules 1 and 2 are spatially close within the graph structure and represent the patterns of

mountain and ROR crashes, respectively.

2. Module 3 is relatively small in scale and represents the crash type caused by loss of control.

3. Modules 4 and 6 indicate the patterns of head-on and rear-end crashes with high-value fac-

tors of {2nd-class highway, Head-on, Improper lane usage} and {Freeway, Rear-end, Lanes

num> 2}, respectively.

4. Module 5 primarily reflects the casualties caused by truck overloading on plain highways.

The differences between the modules are also reflected in the graphical properties of the

internal nodes. Modules 1 and 2 include fewer crash factors with a higher mean value of node

properties, indicating the homogeneous effects of aggregated elements within mountainous

crash patterns. In contrast, modules 4 and 6 contain approximately half of the factors, but the

strength of each node is low, which demonstrates the complexity and diversity of accident
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causation for rear-end and head-on patterns. The representative rules are explained in detail

along with the modules in the following sections.

5.2 General analysis of association rules

RGSs indicate the relationships among characteristics, but clarifying the association between

the antecedents and consequents is difficult. In this study, a group of matrix-based visualiza-

tions is performed to refine the association. The rule set is divided into 20 groups using the K-

means clustering tool. Fig 3 presents a balloon plot to visualize the relations between the repre-

sentatives of grouped antecedents and the consequents of all 1452 rules. A large circle size indi-

cates a high support value, and the darker the color, the higher is the lift value. In addition, the

bubbles in the figure are reordered such that the aggregated lift value decreases from the top

left to the bottom right. Note that the variables contained in the high-lift and high-support

groups are different from each other.

The factors involved in the high-lift groups (top-right corner of Fig 3) are almost present in

modules 1 and 2. Improper operation, vehicle-related defects, low radius, and crash dynamic

factors (skidding, rollover, and ROR) significantly increased the lift of single-vehicle crashes

on mountain roads. Correspondingly, groups with high support represent frequent item-sets

in severe crashes, which are mostly composed of driver errors and environmental conditions.

The representative group with the highest support is {0:00–6:00, Dark without light, Speeding},

Table 2. Contributions of factors to the graph structures based on closeness.

Driver factors Contribution (%) Roadway factors Contribution (%)

Improper operation 22.24 Lanes num� 2 19.23

Improper lane usage 19.41 2nd-class highway 14.83

Illegal overtaking 15.31 Grade > 4% 14.45

Speeding 11.96 Down-curve 13.82

Insufficient distance 9.91 Radius < 500 m 12.38

Dr: fatigue/impaired 8.85 Lanes num > 2 9.24

Dr: unfamiliar 7.43 Lower-lever highway 8.63

Dangerous driving 4.89 Freeway 7.42

Environment factors Contribution (%) Vehicle factors Contribution (%)

Terrain: mountainous 20.04 Passenger overload 17.31

Traffic: free flow 17.71 Veh type: truck 17.18

Surface: wet/slippery 16.11 Tire/brake failure 15.91

Light: daylight 16.03 Overweight 12.59

Weather: rain 7.84 Overspeed > 20% 11.88

Light: dark without light 7.65 Veh type: bus 10.19

Traffic: stable flow 7.54 Veh type: light-duty 9.87

Terrain: plain 7.08 Loss of control 5.07

Crash factors Contribution (%)

Location: roadside 19.77

Location: roadway 17.82

Crash: head-on 15.66

Crash: rear-end 13.43

Crash: rollover/overturn 13.07

Crash: falling 10.28

Crash: skidding 7.24

Crash: angle 2.73

https://doi.org/10.1371/journal.pone.0276817.t002
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which corresponds to RHS items, including plain terrain, on-road crashes, and illegal overtak-

ing. The preliminary results show that serious fatal crashes are more likely to be caused by

poor lighting conditions, and dangerous driving aggravates the casualty risk in plain areas.

Fig 4 visualizes the relationship between the lift, support, and confidence levels of the 1452

rules. Each scatter represents an association rule, and its color intensity reflects confidence.

The support of 75.04% of rules is between 6% and 10%, and 70.16% of rules have a confidence

value over 80%, which ensures the credibility of the rule set. According to Hong et al., all

refined rules in this study are considered high promotion rules (range from 1.30 to 4.91), and

strong association rules (lift > 2) account for more than 50% of rules. The lift of rules shows a

certain inverse relationship with the support, and the rules with a higher lift tend to show

lower support, which is consistent with the results of the group matrix in Fig 3. The separated

relationship between the high lift and high support groups inspires to further explore the dif-

ferences and connections among high-value rules.

5.3 High-value rules

Table 3 lists the 45 high-interest rules extracted according to lift, support, and confidence in

decreasing order as well as the LIC and module attributes of these rules. LIC items are

highlighted in bold thereby emphasizing the key role of specific items. The high-value rules

based on different indicators exhibit structural differences with modularity clustering. All high

Fig 3. Group matrix-based visualization of 1452 rules.

https://doi.org/10.1371/journal.pone.0276817.g003
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lift rules point to mountainous features represented by modules 1 and 2, whereas high support

rules appear only in modules 4, 5, and 6, which are dominated by driver-related factors.

Higher lift values indicate stronger associations between the LHS and RHS items. The high

lift rules in Table 3 involve 14 sub-items. In addition to geometric design factors, the sub-items

include the traffic environment (free flow and limit speed < 60 km/h), vehicle elements (bus

involved, brake failure, and passenger overload), and driver factors (improper operations).

According to rules a1 to a7 in Table 3, item-set {Down-curve, Rollover, Improper operations}

represents the most significant crash patterns in mountainous areas. A small curve radius and

critical gradient significantly increase the odds of serious casualties in mountainous areas

(lift > 4.32), which is consistent with previous studies [27]. Moreover, the risk of single-vehicle

crashes is significantly increased with the item-set {Improper operations, Passenger overload,

Roadside, Traffic: free flow} (rules a7 to a11). This combination of factors increases the proba-

bility of single-vehicle crashes by a lift of 4.41 and a confidence level of 85.71%. In addition,

LIC items, such as overturn and brake failure, increase the lift of the down-curve rules by

approximately 20%, implying that vehicle defects and improper driving maneuvers signifi-

cantly increase the driving risk in mountainous roadways.

Higher support reflects a higher proportion of the dataset and represents the most common

patterns in multi-fatality crashes. Most high support rules are associated with double-vehicle

Fig 4. Distribution of lift, support, and confidence.

https://doi.org/10.1371/journal.pone.0276817.g004
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Table 3. Rules sorted by top indicator (lift, support, and confidence).

No LHS RHS S(%) C(%) L LIC Mod

Top lift rules
a1 Down-curve, Lanes num� 2, Traffic: free flowa Radius<500m 7.33 80.65 4.91 1.24 1

a2 Down-curve, Limit speed<60km/h, Traffic: free flow Radius<500m 6.01 80.39 4.90 1.19 1

a3 Grade > 4%, Lanes num� 2, Traffic: free flow Radius<500m 6.30 79.63 4.85 1.19 1

a4 Down-curve, Improper operations, Lanes num� 2 Grade > 4% 6.01 80.39 4.74 1.34 1

a5 Down-curve, Rollover/overturn, Limit speed<60 km/h Grade > 4% 6.74 79.31 4.63 1.30 1

a6 Down-curve, Rollover/overturn, Lanes num� 2 Grade > 4% 6.89 82.46 4.59 1.29 1

a7 Down-curve, Location: roadside, Improper operations Veh num = 1 6.74 100 4.57 1.43 2

a8 Mountainous, Location: roadside, Passenger overload Veh num = 1 6.89 85.45 4.50 1.47 2

a9 Veh: bus, Mountainous, Improper operations Veh num = 1 6.74 86.79 4.43 1.80 2

a10 Location: roadside, Improper operations, Traffic: free flow Veh num = 1 7.92 85.71 4.43 1.35 2

a11 Location: roadside, Passenger overload, Limit speed< 60 km/h Veh num = 1 6.16 85.71 4.41 1.45 2

a12 Radius < 500 m, Limit speed < 60 km/h, Tire/brake failure Down-curve 6.30 93.48 4.39 1.37 1

a13 Grade > 4%, Rollover/overturn, Limit speed < 60 km/h Down-curve 6.16 93.33 4.33 1.37 1

a14 Down-curve, Limit speed < 60 km/h, Tire/brake failure Grade > 4% 8.06 79.39 4.32 1.51 1

a15 Veh num = 1, Radius< 500 m Grade > 4% 6.30 81.13 4.32 1.27 1

Top support rules
a16 Crash: rear-end Lanes num>2 27.86 82.25 1.45 / 6

a17 Crash: rear-end Roadway 27.13 80.09 1.34 / 6

a18 Improper lane usage Veh num = 2 26.98 75.41 1.38 / 4

a19 Veh: truck, Terrain: plain Roadway 25.22 82.69 1.38 1.10 5

a20 Veh: truck, Lanes num > 2 Roadway 24.93 81.73 1.36 1.09 4

a21 Crash: head-on Veh num = 2 24.19 80.10 1.47 / 4

a22 Severity: A, Veh: truck, Veh num = 2 Roadway 23.46 84.21 1.40 1.06 4

a23 Crash: rear-End, Freeway Lanes num>2 22.14 97.42 1.71 1.18 6

a24 Severity: A, Improper lane usage Roadway 21.99 82.87 1.38 1.15 4

a25 Location: roadway, Improper lane usage Veh num = 2 20.82 79.33 1.45 1.19 4

a26 Insufficient distance Roadway 20.67 94.63 1.58 / 6

a27 Location: roadway, Improper lane usage Veh: truck 20.53 78.21 1.45 1.16 5

a28 Deform: disabled, Improper lane usage Veh: truck 20.53 76.09 1.41 1.29 5

a29 Veh: truck, Crash: rear-end Roadway 20.38 85.80 1.43 1.14 6

a30 Speeding Lanes num>2 20.38 79.43 1.40 / 6

Top confidence rules
a31 Mountainous, Crash: falling Roadside 7.77 100 3.31 1.12 2

a32 Deform: disabled, Crash: falling, Lanes num� 2 Roadside 7.77 100 3.31 1.06 2

a33 Veh num = 1, Passenger overload, Lanes num� 2 Roadside 7.62 100 3.31 1.07 2

a34 Down-curve, Passenger overload, Improper operations Mountainous 7.33 100 3.31 1.07 2

a35 Veh num = 1, Road category: low-level highway Roadside 6.60 100 3.31 1.25 2

a36 Mountainous, Radius<500 m, Traffic: free flow Lanes num�2 8.80 100 2.32 1.07 1

a37 Down-curve, Location: roadside, Improper operations Veh num = 1 6.74 100 4.57 1.35 2

a38 Crash: rear-end, Speeding, Limit speed>80 km/h Lanes num>2 8.21 100 1.76 1.13 6

a39 Illegal overtake, Limit speed>80 km/h, Freeway Lanes num>2 7.18 100 1.76 1.07 6

a40 Veh: truck, Surf: wet/slippery, Freeway Lanes num>2 6.74 100 1.76 1.07 6

a41 Speeding, Limit speed>80km/h,

Dr: fatigue/impaired

Lanes num>2 6.30 100 1.76 1.26 6

a42 Veh num� 3, Insufficient distance, Freeway Rear-end 7.48 100 2.95 1.23 6

a43 Veh: truck, Insufficient distance, Freeway Rear-end 10.41 100 2.95 1.20 6

(Continued)

PLOS ONE Multivariate analysis of multi-fatality crashes using association rules mining and rules graph structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0276817 October 27, 2022 15 / 27

https://doi.org/10.1371/journal.pone.0276817


rear-end or head-on collisions on the roadway. In contrast to the co-occurrence of geometric

design factors in the top lift rules, behavioral factors, such as insufficient distance, improper

lane usage, and speeding, typically appear as antecedents in the high support groups and are

strongly associated with truck crashes and plain terrain (rules a18 and a24–a30). These rules

account for more than 20% of actual cases, indicating that illegal operations are the most com-

mon cause of serious fatal crashes, which is consistent with the results reported by Xu et al.

[33].

Notably, the top confidence rules in Table 3 all have a 100% confidence level, which implies

that the antecedent term is a sufficient condition for the consequent term [13]. Poor lighting

conditions, slippery surfaces, and violations significantly increase the probability of serious

rear-end crashes on high limit speed highways (rules a38–a45, lift> 1.67), whereas illegal over-

crowding greatly increases the probability of ROR crashes (rule a33, lift = 3.31). Another inter-

esting finding is that, as the subrule of rule a30, the LIC of rule a41 reaches 1.25, implying a

more vital interdependence between fatigue driving and overspeed. Traffic agencies should

focus on high-value rules to implement more effective safety measures.

5.4 Association rules involving high-frequency RHS items

To further explore the potential patterns of multi-fatality crashes, high-frequency RHS item-

sets with mutually exclusive properties are extracted (Table 4), namely {Severity: A} & {Sever-

ity: B}, {Terrain: mountainous} & {Terrain: plain}, and {Road category: freeway} & {Road cate-

gory: 2nd-class highway}. These paired RHS items belong to the high-frequency items in

Table 1 and correspond to separated modules with different crash patterns. The characteristics

of the rules are visualized by graph structures in Fig 5 to demonstrate the interactions in each

LHS and RHS. The labels in the graphs represent crash factors, and the nodes represent differ-

ent independent rules. Their color and size reflect the support and lift of the rules, the same as

shown in Fig 2. The following subsections analyze these specific rule sets in terms of incident

characteristics and rule values.

5.4.1 {Severity: A} & {Severity: B}. The rule sets with {Severity: A} and {Severity: B} as the

consequents belong to Modules 4 and 2, respectively. Fig 5(A) effectively reflects the patterns

of the 20 rules involving different crash severities. The crashes of severity level A are strongly

associated with light-duty cars and trucks along with illegal driving behaviors, such as fatigued

driving, improper lane usage, and insufficient distance. The main factors involved in severity

level B are crash dynamics, including passenger overload, improper operations, single-vehicle,

and bus involvement, as well as environmental factors, including mountainous roads, lanes

num� 2, limit speed < 60 km, and roadside location. The significant differences between the

two sets are the type of vehicle involved (bus vs. truck), crash location (roadside vs. on-road-

way), crash type (single vehicle vs. double-vehicle), and driver-related errors.

ROR crashes involving buses significantly affect the over-representation of high-severity

crashes with lift values ranging from 2.45 to 2.71 (rules b11–b18). The item-set {Bus, Down-

curve, Roadside} has the highest lift and confidence of 2.71 and 95.74%, respectively. This

Table 3. (Continued)

No LHS RHS S(%) C(%) L LIC Mod

a44 Insufficient distance, Limit speed>80km/h, Freeway Roadway 11.14 100 1.67 1.53 6

a45 Dark without light, Deform: disabled, Insufficient distance Roadway 6.30 100 1.77 1.09 6

a LIC items are highlighted in bold.

https://doi.org/10.1371/journal.pone.0276817.t003
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Table 4. Rules involving high-frequency RHS items.

No RHS LHS S (%) C(%) L

b1 Severity: A Veh type: light-duty, Insufficient distance 7.04 92.31 1.43

b2 Veh type: truck, Roadway, Dr: fatigue/impaired 8.65 90.77 1.40

b3 Roadway, Veh num = 2, Dr: fatigue/impaired 12.46 90.43 1.40

b4 Roadway, Insufficient distance, Dr: fatigue/impaired 10.56 90.00 1.39

b5 Veh type: light-duty, Crash: rear-end 10.12 89.61 1.39

b6 Veh type: truck, Roadway, Dr: fatigue/impaired 12.90 87.13 1.35

b7 Veh type: truck, Veh num = 2, Crash: rear-end 12.32 86.60 1.34

b8 Roadway, Improper lane usage, Lanes num� 2 11.73 85.11 1.33

b9 Terrain: mountainous, Improper lane usage, Roadway 9.73 86.90 1.32

b10 Veh num = 2, Roadway, Improper lane usage 17.60 84.51 1.31

b11 Severity: B Veh type: bus, Down-curve, Roadside 6.60 95.74 2.71

b12 Veh type: bus, Roadside, Limit speed< 60 km/h 6.01 93.18 2.64

b13 Veh type: bus, Terrain: mountainous, Roadside 6.60 91.84 2.60

b14 Veh type: bus, Veh num = 1, Terrain: mountainous 9.82 91.78 2.59

b15 Veh type: bus, Veh num = 1, Improper operations 8.06 91.67 2.57

b16 Veh type: bus, Veh num = 1, Roadside 7.62 91.23 2.45

b17 Veh type: bus, Roadside, Lanes num� 2 7.33 90.91 2.45

b18 Terrain: mountainous, Roadside, Passenger overload 9.53 90.28 2.37

b19 Down-curve, Improper operations, Passenger overload 6.60 90.00 2.36

b20 Veh num = 1, Crash: falling 13.34 86.67 2.35

b21 Terrain: mountainous Down-curve, Improper operations, Passenger overload 6.01 100.0 2.17

b22 Improper operations, Roadside, Tire/brake failure 6.01 98.18 2.17

b23 Grade > 4%, Tire/brake failure, Roadside 7.04 98.04 2.17

b24 Roadside, Day: workday, Free flow 7.18 98.00 2.12

b25 Radius< 500 m, Roadside, Improper operations 7.04 97.96 2.12

b26 Veh type: truck, Veh num = 2, Down-curve 7.04 97.92 2.12

b27 Radius< 500 m, Grade > 4%, Day: workday 6.74 97.78 2.12

b28 Down-curve, Rollover/overturn, Tire/brake failure 6.45 97.73 2.12

b29 Veh num = 1, Passenger overload 7.77 97.62 2.12

b30 Down-curve, Radius< 500 m, Tire/brake failure 7.62 97.30 2.12

b31 Terrain: plain Time: 7:00–12:00, Roadway, Lanes num > 2 8.50 84.06 1.56

b32 Intersection 7.33 83.33 1.55

b33 Dr: fatigue/impaired, Time: 0:00–6:00, 7.62 81.25 1.51

b34 Veh num = 2, Day: workday, Limit speed > 80 km/h 10.12 79.31 1.47

b35 Day: workday, Roadway, Light: dark 10.12 76.67 1.42

b36 Time: 0:00–6:00, Roadway 10.26 76.09 1.41

b37 Roadway, Light: dark, Lanes num > 2 10.85 75.51 1.40

b38 Time: 7:00–12:00, Lanes num > 2 12.02 75.23 1.40

b39 Road category:freeway Crash: rear-end, Traffic: oversaturation, 6.30 95.56 2.78

b40 Grade < 4%, Crash: rear-end, Insufficient distance 7.77 92.98 2.71

b41 Mountainous, Crash: rear-end, Insufficient distance 8.21 91.80 2.68

b42 Traffic: oversaturation, Veh num� 3 6.45 91.67 2.67

b43 Veh num� 3, Lanes num > 2, Tire/brake failure 6.45 89.80 2.62

b44 Speeding, Dr: fatigue/impaired, Lanes num > 2 7.18 89.09 2.60

b45 Veh type: truck, Insufficient distance, Lanes num > 2 10.85 88.10 2.57

b46 Speeding, Dr: fatigue/impaired 7.48 87.93 2.51

b47 Veh num� 3, Crash: rear-end, roadway 6.30 86.00 2.51

b48 Crash: rear-end, Speeding 9.97 83.95 2.45

(Continued)
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indicates that the proportion of extreme fatalities caused by a bus rushing out of roadside at a

downhill curve section is as high as 95.74, which is 2.71 times the average proportion. Com-

pared with the related lower frequency of other rules, rule b20 indicates that 13.34% of crashes

in the dataset are caused by single-vehicle falling from roadside, accounting for 37.8% of

crashes with severity level B. Moreover, the curve alignment of mountain roads may greatly

increase the driving difficulty of overcrowded buses, resulting in leaving the carriageway and a

large number of casualties. Relatively poor dynamic conditions and a lack of safety measures

are the key causes of single crashes in large vehicles [43,44].

5.4.2{Terrain: mountainous} & {Terrain: plain}. Due to the differences in road align-

ment and collision dynamics, the mountainous and plain rules of modules 2 and 5, respec-

tively, exhibit completely distinct characteristics. Overall, 18 high-value rules are identified for

these two groups with 21 elements, as shown in Fig 5(B). Vehicle brake failure, roadside fac-

tors, and down-curve alignment are the most frequent items for mountain terrain, resulting in

an average lift value of 2.12 (rules b21–b30). Correspondingly, a higher support of the plain

group implies a higher frequency in the dataset. Rules b33–b37 indicate that fatigue driving on

high limit speed highways without lighting at night increases the probability of plain crashes

by 1.4–1.51 times, which accounts for at least 10% of the crash data.

All rules related to mountainous terrain as RHS have the confidence of over 97.3%, which

can be regarded as a sufficient condition for mountain serious accidents. Among them, road-

side location, single-vehicle, overcrowding, and improper operations also co-occurred in the

{Severity: B} rule set, suggesting that mountain crashes tend to cause more severe fatalities.

Undoubtedly, small-radius curves combined with critical slopes considerably increase the risk

of driving malfunction and potential vehicle defects (rule b21, lift = 2.17). Additionally, brak-

ing failure of vehicles on long and steep downhill has always been the leading cause of signifi-

cant casualties on Chinese mountainous highways (rules b22 and b23). In addition to roadway

reconstruction and safety measures, on-board safe speed for brake temperature is another

advanced technology for vehicle risk perception [45].

Notably, although the crashes in plain areas account for 52.90% of all records, there are

only eight rules as RHS because most rules cannot satisfy the threshold of lift and confidence.

In sharp contrast, the number of rules with {mountain terrain} as a consequent reaches 180,

and the least lift value is greater than 1.6. Therefore, generalizing the patterns of severe crashes

in plains at a relatively high confidence level is difficult.

5.4.3. {Freeway} & {2nd-class highway} (road category). The rules with freeway and

2nd-class highway as consequents are mostly derived from modules 6 and 4. On-roadway

Table 4. (Continued)

No RHS LHS S (%) C(%) L

b49 Road category: 2nd-class highway Crash: head-on, Roadway, Surf: wet/slippery 6.01 89.13 2.25

b50 Crash: head-on, Roadway, Improper lane usage 12.32 81.55 2.06

b51 Crash: head-on, Deform: disabled, Illegal overtake 6.89 81.03 2.05

b52 Veh type: truck, Crash: Head-on, Illegal overtake 6.01 80.39 2.03

b53 Crash: head-on, Improper lane usage, Limit speed < 60 km/h 6.60 80.39 2.03

b54 Veh type: truck, Improper lane usage, Limit speed [60–80] km/h 8.21 77.78 2.03

b55 Terrain: mountainous, Crash: head-on, Improper lane usage 8.36 76.00 2.01

b56 Crash: head-on, Overload 6.01 75.93 1.98

b57 Veh type: truck, Improper lane usage, Limit speed < 60 km/h 8.18 75.69 1.98

b58 Veh num = 2, Crash: head-on, Illegal overtake 7.92 77.89

https://doi.org/10.1371/journal.pone.0276817.t004
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location, mountain terrain, and truck crashes are the co-occurrence items of these two groups.

According to the frequency in Fig 5(C), the patterns related to freeways include rear-end, mul-

tiple-vehicle collision, speeding, insufficient distance, and fatigued driving. Moreover, the

characteristics of 2nd-class highways include head-on crashes, driving on the wrong side,

truck accidents, and illegal overtaking. The collision type (rear-end and head-on) is the most

Fig 5. Graph structure for specific rule set. (a) Severity: A & Severity: B, (b) Mountainous & Plain (terrain), and (c)

Freeway & 2nd-class highway (road category).

https://doi.org/10.1371/journal.pone.0276817.g005
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evident difference due to the full access control of expressways and the non-existence of the

median for 2nd-class highways in China.

For 2nd-class highway crashes, the features with the highest lift and confidence are the

roadway frontal crashes caused by slippery pavement (rule b49). For this rule, the percentage

of 2nd-class highway crashes is 89.13%, and the lift value is greater than 2.25. Slippery pave-

ment, which is related to reduced friction, significantly affects the lane keeping and braking

distance of vehicles as well as may directly lead to skidding and opposite collisions [46]. More-

over, inappropriate maneuvers, including illegal overtaking and improper lane usage, are evi-

dently the most contributing driver factors (rules b51–b55, b57, and b58).

In addition to the features mentioned, rules b39 and b42 emphasize the adverse impact of

multi-vehicle crashes caused by traffic interruptions on highway traffic safety (lift > 2.67).

Unlike periodic congestion, traffic oversaturation is typically caused by traffic emergencies or

near-crash events. Sudden blocking causes a sharp capacity drop and seriously affects traffic

continuity and safety in bottleneck area [47,48]. Reasonable inducement measures and effec-

tive evacuation are critical to reducing such events. Furthermore, rule b43 indicates that vehi-

cles with defective brakes can result in severe fatalities, even on adequately protected freeways.

6. Discussion

This study utilized the association rule technique to discover the contributing factors and

interdependent characteristics of roadway multi-fatality crashes in China. The RGS for pattern

recognition and association visualization is explored in conjunction with graph theory, which

facilitates the ranking of factors. From the perspective of methodology, combining the Apriori

algorithm with RGS can effectively identify crash patterns and mechanisms previously hidden

in crash data.

With the modularity structure in Fig 2, the obtained 1452 rules are divided into six clusters,

including ROR crashes, vehicle out-of-control, frontal collisions, and rear-end collisions, as

well as the terrain characteristics of mountainous and plain areas. According to Table 3 and

the graph structure, modules 1 and 2 represent the crash characteristics in mountainous areas.

These two groups include fewer crash factors and showcase stronger node properties with

higher lift values, illustrating the interactions among the ROR, single-vehicle, severe fatalities,

and mountain crashes. Several crash patterns can be extracted from modules 1 and 2:

1. Road alignment and driving behavior: Mountainous roads on sharp horizontal curves with

steep grades are more likely to cause serious fatalities. Moreover, driver maloperation and

fatigued driving directly increased the probability of such crashes.

2. Vehicle factors and crash dynamics: Vehicle defects (loss of control or brake failure) are

highly related to the overrepresentation of rollover or falling accidents, and illegal overload-

ing aggravated the severity of ROR crashes.

3. Traffic environment and driver factors: Single-vehicle crashes are more likely to occur

under free-flow traffic conditions on mountainous roads. This association is even stronger

for driver-related errors (e.g., unfamiliarity or fatigue) at high posted speed limits.

Based on the identified patterns of multi-fatality crashes, several novel findings can be con-

cluded in terms of regional differences, crash characteristics, road categories and driving

behavior. Compared with the concentrated patterns of mountainous crashes, the causations of

plain accidents are more complex and diverse. Modules 4–6 characterize the types represented

by two-vehicle or multi-vehicle crashes in plain area, with rear-end and head-on collisions

being the most frequent. For different road types, high-class highways with adequate
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protection measures are more likely to result in severe fatalities with improper maneuvers and

unfavorable roadside conditions. In terms of low-level highways, head-on crashes along with

improper maneuvers, such as illegal overtaking, driving on the wrong side, and unfamiliar sur-

roundings are the main factors affecting traffic safety. Furthermore, rear-end crashes involving

trucks are highly associated with fatigued driving, insufficient following distance, overspeed,

and traffic oversaturation. Note that these novel conclusions illustrate higher confidence and

represent the most common patterns for severe crashes.

Additionally, the analysis of high-value rules leads to an interesting conclusion that rules

combining drivers, road environment, and crash factors tend to have higher confidence and

lift. For example, the combination of curve alignment (road environment), roadside location

(crash dynamic), and improper operation (driver behavior) is strongly correlated with single-

vehicle crashes (confidence = 100% and lift = 4.57). This finding also demonstrates that the

hidden associations between various factors contribute to the frequency and severity of multi-

fatality crashes.

Fig 6(A) shows the complicated relationship of severe fatal crashes in this study to further

explore the interactions among variables at the system level of driver-vehicle-road-environ-

ment factors. Although the promotion for each factor exceeds 60% in the dataset, only 12.3%

of crashes are caused solely by driver factors, and almost no severe crashes are caused solely by

road environment or vehicles. A Venn diagram of common accidents proposed by Lum and

Reagan is also shown in Fig 6(B) to compare the mechanisms between serious and normal

accidents [49]. The proportion of severe accidents caused by human-vehicle-road-environ-

ment (43%) is much higher than that of general accidents (3%). This findings firstly demon-

strates that the crash mechanisms involving multi-fatality crashes and their interactions are

more complex than those for normal crashes from a system-level perspective, which supports

the conjecture from previous studies [33].

Fig 6. Contributing factors of multi-fatality crashes and normal crashes.

https://doi.org/10.1371/journal.pone.0276817.g006
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The results of the association rules are consistent with the differences between severe and

normal crashes under different conditions. Regarding road environment, some studies have

reported that high-level highways are more prone to fatal crashes owing to their high posted

speed limits [50]. However, overturning or falling on low-level highways often causes multiple

fatalities due to the lack of roadside protection. The potential causes of this phenomenon may

be related to the high proportion of mountainous areas and certain highway construction stan-

dards in China. Similarly, in terms of vehicle factors, the proportion of bus-involved crashes

caused by passenger overloading in multi-fatality crashes is far higher than that in general acci-

dents. Additionally, there are significant differences between serious fatal and common acci-

dents affected by traffic conditions. Previous studies have found that the proportion of normal

accidents under free-flow conditions is much lower than that under unstable flow or conges-

tion conditions [47]. However, RGS and association rules indicate that severe single-vehicle

crashes are more likely to occur under free-flow traffic conditions caused by overspeed and

driver negligence.

Therefore, several preventive measures can be implemented based on the potential issues

presented in this study. Avoidance of inconsistent geometric designs, such as down-curve or

sharp curve alignment, and linear guidance facilities may be effective in reducing roadside

crashes [46]. Specifically, because of the potential safety improvement, it is recommended to

correct superelevation transition sections by the roadside conditions when roadways are

repaved, which can minimize the operating speed reduction from tangents to horizontal

curves, and avoid low-operating speed curves following long tangents [51]. For accident-prone

locations, the installation of integral energy-absorbing guardrails is advisable, especially on

low-level highways, to reduce potential vehicle rollover and falling.

In terms of the strong association between vehicle overloading and severe casualties, strict

supervision policies must be implemented to regulate the overloading of large buses and heavy

trucks. Traffic agencies can strengthen vehicle condition testing and enhance on-board speed

monitoring facilities to improve the operational quality of buses considering the potential risk

of braking or steering failure [52,53]. In terms of environmental factors, according to a recent

study by FHWA, an improvement in surface friction can reduce nearly 70% of accidents

caused by slippery roadways [54]. Thus, advanced permeable pavements and skid-resistant

pavements are appropriate strategies for implementation in pluvial regions. Also, the severity

and frequency of crashes during the nighttime can be mitigated if designers provide enough

lighting and induction facilities on segments that have poor visibility at night [55].

Considering that 97.8% of multi-fatality crashes are associated with driver factors, increas-

ing traffic safety propaganda for drivers is prudent to emphasize the adverse effects of

improper driving behaviors. The installation of safety devices such as rumble strips and road-

way reflectors at the shoulders and the median, could help keep the driver alert [56]. Roadway

engineers should identify their crash-hotspots for the installation of the rumble strips and

warning signs to remind drivers who may be driving towards such directions. Given that

speeding is the most frequent factor involved in crash rules, an automated section speed con-

trol system can be established as an effective measure to increase drivers’ compliance with

speed limits [57,58].

With regards to the interactions between multiple factors, the utilization of integrated

countermeasures in system-level is judicious. With the rapid development of intelligent trans-

portation systems, some active technologies, such as connected and autonomous vehicles

(CAV) and advanced driving assistance system (ADAS), have emerged to improve the road

capacity and driving safety [59–61]. The previous study assessed the safety benefit of CAV and

found 12–47% reduction in traffic conflict at 25% market penetration rate [62]. At the same

time, it is suggested to promote ADAS to help drivers deal with unexpected events in

PLOS ONE Multivariate analysis of multi-fatality crashes using association rules mining and rules graph structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0276817 October 27, 2022 22 / 27

https://doi.org/10.1371/journal.pone.0276817


unfamiliar conditions [63]. The combination of advanced active safety measures and the pro-

posed crash patterns may reduce the risk of multiple fatalities. It is worth noting that the

impact of CAV platoon strategy on driving behavior is still controversial, and the patterns

between different variables under mixed traffic still need further investigation.

7. Conclusions

Severe roadway multi-fatality crashes are a vital issue for road safety in China. In this study, a

case study is conducted using data from 1068 severe fatal crashes in China from 2015 to 2020,

and 1452 interesting rules are generated using the Apriori algorithm. Several modular RGSs

are constructed to reflect the interactions and patterns between different crash factors. Based

on the results and discussion, the following conclusions are drawn:

1. Multi-fatality crashes result from complex interactions among drivers, vehicles, roadways,

environment, and crash factors; moreover, improper operation, passenger overloading,

fewer lane numbers, mountainous terrain, and ROR crashes are the key variables for each

aforementioned factor, respectively.

2. The patterns of different crash characteristics are quite different. The main characteristics

of ROR crashes in mountainous areas include inappropriate alignment designs, vehicle

defects, and driving violations. The combination of driver errors, overspeed, specific traffic

conditions, poor lighting conditions, and slippery surfaces significantly contributes to

severe double- and multi-vehicle crashes.

3. The factors involving multi-fatality crashes and their interactions are more complex than

those involving normal crashes at the system level. A combination of multiple factors con-

tributes to the excessive frequency and severity of multiple crashes. Therefore, the utiliza-

tion of integrated countermeasures is judicious.

The contributions of this paper are reflected in three aspects. First, using ARM, many inter-

esting rules are obtained to investigate the contributory factors of serious roadway fatalities

and the hidden interactions among them. Second, with rule visualization analysis, targeted

safety countermeasures are proposed from the perspective of road design, engineering mea-

sures, safety technology, and supervision strategy. Finally, this study explores the applicability

of graph structures to the interpretation of association rules and verifies the feasibility of mod-

ular networks in pattern division, providing interpretable information for traffic safety

analysis.

Notably, the relatively high thresholds for lift and confidence lead to few interesting rules

with plain terrain as consequent. As a potential issue for further study, we aim to conduct a

causation analysis for plain roadway crashes. Furthermore, considering the gradual deploy-

ment of ITS in the near term, the patterns of mixed CAV traffic conditions related to traffic

safety and their intrinsic associations need to be deeply explored. In addition, network-based

visualization of association rules can be further explored using meaningful graph attributes

and node properties. Therefore, further insight is required to form a more comprehensive

graph structure approach for association interpretation. Based on graph theory, RGS can pro-

vide an understandable perspective for traffic analysis.
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