

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

# Transcriptomics *de novo* sequencing data of *Messastrum gracile* SE-MC4 under exponential and stationary growth stages



C. L. Wan Afifudeen<sup>b,c</sup>, Saw Hong Loh<sup>a,b</sup>, Li Lian Wong<sup>b,c</sup>, Ahmad Aziz<sup>a,b</sup>, Kazutaka Takahashi<sup>d</sup>, Mohd Effendy Abd Wahid<sup>b,e</sup>, Thye San Cha<sup>a,b,\*</sup>

<sup>a</sup> Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia

<sup>b</sup> Satreps-Cosmos Laboratory, Central Laboratory Complex, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia

<sup>c</sup> Institute of Marine Biotechnology, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia <sup>d</sup> Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan

<sup>e</sup> Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia

#### ARTICLE INFO

Article history: Received 15 September 2021 Revised 15 November 2021 Accepted 16 November 2021 Available online 19 November 2021

*Keywords:* Non-model microalga Cell proliferation Biodiesel Next generation sequencing data

## ABSTRACT

Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in *M. gracile* SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oilinducing culture conditions. Present data consist of next generation RNA sequencing data of *M. gracile* SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and *de novo* assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in *M.* 

DOI of original article: 10.1016/j.phytochem.2021.112936

#### https://doi.org/10.1016/j.dib.2021.107607

<sup>\*</sup> Corresponding author at: Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia.

E-mail addresses: wanafifudeen@gmail.com (C. L.W. Afifudeen), cha\_ts@umt.edu.my (T.S. Cha).

<sup>2352-3409/© 2021</sup> The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

# Specifications Table

| Subject                        | Molecular Biology                                                       |
|--------------------------------|-------------------------------------------------------------------------|
| Specific subject area          | Transcriptome Data                                                      |
| Type of data                   | Transcriptome data of non-model microalga Messastrum gracile SE-MC4     |
| How data were acquired         | 100 bp paired-end transcriptome sequencing of <i>M. gracile</i> SE-MC4  |
|                                | using BGISEQ-500 at Beijing Genome Institute, China.                    |
| Data format                    | Raw sequences: FASTQ                                                    |
|                                | Filtered and assembled: FASTQ                                           |
| Parameters for data collection | RNA extracted from in vitro cultivated M. gracile SE-MC4;               |
|                                | harvested at exponential and stationary growth phase                    |
| Description of data collection | Cell was grown under pure and homogenous cell culture (axenic           |
| -                              | environment). RNA was extracted from harvested cell for sequencing      |
|                                | purposes. Output from sequencing were assembled using Trinity           |
|                                | algorithm.                                                              |
| Data source location           | Institution:                                                            |
|                                | 1) Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti    |
|                                | Malaysia Terengganu, 21030 Terengganu, Malaysia                         |
|                                | 2) Institute of Marine Biotechnology, Universiti Malaysia Terengganu    |
|                                | City/Town/Region: Kuala Nerus, Terengganu                               |
|                                | Country: Malaysia                                                       |
|                                | Latitude and longitude (and GPS coordinates) for collected              |
|                                | samples/data: 5° 24′ 46.4" N 103° 05′ 10.2" E (Kuala Terengganu,        |
|                                | Terengganu)                                                             |
| Data accessibility             | Repository name: National Center for Biotechnology Information (NCBI)   |
|                                | Data identification number: BioProject ID PRJNA552165                   |
|                                | Direct URL to data:                                                     |
|                                | https://www.ncbi.nlm.nih.gov/bioproject/PRJNA552165                     |
| Related research article       | C.L. Wan Afifudeen, A. Aziz, L.L. Wong, K. Takahashi, T. Toda, M.E. Abd |
|                                | Wahid, T.S. Cha, 2021. Transcriptome-wide study in the green            |
|                                | microalga Messastrum gracile SE-MC4 identifies prominent roles of       |
|                                | photosynthetic integral membrane protein genes during exponential       |
|                                | growth stage. Phytochemistry. 192: 112936.                              |
|                                | DOI:https://doi.org/10.1016/j.phytochem.2021.112936                     |

# Value of the Data

- Transcriptome sequences data of *Messastrum gracile* under different growth stages can be used for growth and developmental studies for higher biomass productivity in microalgae.
- Transcriptome experts and biodiesel scientists can use this sequencing data for data mining (targeted gene) for gene transformation purposes to enhanced biomass productivity in microalgae for biodiesel.
- This data provide an insight on transcriptome profiles during rapid developmental process thus can be used in overexpression studies for high biomass cultivation of microalgae for biodiesel.

## 1. Data Description

This report consist of complete *M. gracile* transcriptome data under cell exponential growth stage (cell proliferation) and stationary growth stage (cell growth limitation). A total of 314.82

#### Table 1

Sequencing quality data of TWAS from M. gracile SE-MC4 using BGISEQ-500 platform.

| Sample        | Total Raw<br>Reads (Million) | Total Clean<br>Bases(Gb) | Q20 (%) | Q30 (%) | Clean Reads (%) |
|---------------|------------------------------|--------------------------|---------|---------|-----------------|
| 1D _F2_R1     | 52.47                        | 4.99                     | 96.38   | 87.90   | 95.12           |
| 1D _F2_R2     | 52.47                        | 4.97                     | 96.42   | 87.98   | 94.79           |
| 1D _F2_R3     | 52.47                        | 4.96                     | 96.47   | 88.27   | 94.50           |
| 12D_F2_R1     | 52.47                        | 4.98                     | 96.41   | 88.09   | 94.82           |
| 12D_F2_R3     | 52.47                        | 4.95                     | 96.30   | 87.89   | 94.29           |
| 12D_F2_R2     | 52.47                        | 4.97                     | 96.16   | 87.46   | 94.70           |
| Total/Average | 314.82                       | 59.64                    | 96.57   | 88.46   | 95.03           |

*Note:* Samples 1D\_F2\_R1/R2/R3 represent three biological replicates for exponential growth (day 1) phase cultures. Samples 12D\_F2\_R1/R2/R3 represent three biological replicates for stationary (day 12) growth phase cultures.

#### Table 2

Sequence accession numbers (BioProject, BioSample) and directory links.

| Samples                                                                 | Accession number                                                                             | Links                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>M. gracile</i> SE-MC4                                                | PRJNA552165(BioProject ID)                                                                   | https://www.ncbi.nlm.nih.gov/bioproject/PRJNA552165                                                                                                                                                                                                                                  |
| 1D_F2_R1<br>1D_F2_R2<br>1D_F2_R3<br>12D_F2_R1<br>12D_F2_R2<br>12D_F2_R3 | SAMN12670086<br>SAMN12670087<br>SAMN12670088<br>SAMN12670089<br>SAMN12670090<br>SAMN12670091 | https://www.ncbi.nlm.nih.gov/biosample/ SAMN12670086<br>https://www.ncbi.nlm.nih.gov/biosample/ SAMN12670087<br>https://www.ncbi.nlm.nih.gov/biosample/ SAMN12670088<br>https://www.ncbi.nlm.nih.gov/biosample/ SAMN12670099<br>https://www.ncbi.nlm.nih.gov/biosample/ SAMN12670091 |

*Note:* Samples 1D\_F2\_R1/R2/R3 represent three biological replicates for early exponential growth (day 1) phase cultures. Samples 12D\_F2\_R1/R2/R3 represent three biological replicates for early stationary (day 12) growth phase cultures.

 Table 3
 Sequencing quality data of WTS from M. gracile SE-MC4.

| Sample        | Total Number | Total Length | Mean Length | N50 | N70 | N90 | GC (%) |
|---------------|--------------|--------------|-------------|-----|-----|-----|--------|
| 1D _F2_R1     | 50,032       | 31,620,070   | 631         | 940 | 537 | 268 | 71.42  |
| 1D _F2_R2     | 49,281       | 31,029,976   | 629         | 934 | 541 | 268 | 71.28  |
| 1D _F2_R3     | 51,229       | 32,659,375   | 637         | 955 | 550 | 269 | 71.64  |
| 12D_F2_R1     | 46,263       | 29,294,862   | 633         | 952 | 549 | 266 | 71.58  |
| 12D_F2_R2     | 46,429       | 29,723,323   | 640         | 971 | 554 | 269 | 71.58  |
| 12D_F2_R3     | 47,847       | 29,451,981   | 615         | 921 | 524 | 258 | 71.70  |
| Total/Average | 53,307       | -            | 623         | 928 | 537 | 265 | 71.53  |

*Note:* Samples 1D\_F2\_R1/R2/R3 represent three biological replicates for early exponential growth (day 1) phase cultures. Samples 12D\_F2\_R1/R2/R3 represent three biological replicates for early stationary (day 12) growth phase cultures.

million reads (total base 59.64 Gb) were produced from six samples with an average Q30 (Phred score) of 88.46% (Table 1). Raw sequences were filtered and produced an average of 95.03% of clean reads.

Transcriptome sequences were deposited to NCBI under BioProject ID PRJNA552165 with six different BioSample which were SAMN12670086, SAMN12670087, SAMN12670088, SAMN12670089, SAMN12670090, and SAMN12670091 accordingly (Table 2). Filtered sequences were *de novo* assembled using Trinity to form 53,307 gene transcripts with mean length of 623 bp, N50 of 928, and average of 71.53% GC content (Table 3). Distribution of gene transcripts based on length show that most transcripts were between 200 and 300 bp (9876 to 10718 gene transcripts) in all six samples (Table 4). Furthermore, exponential growth samples produce between 37171 and 38254 gene transcripts while stationary growth samples produce between 34344 to 35344 gene transcripts. Details on experimental design and sequence are described in experimental design, materials and methods section.

Table 4

Sequencing quality data of WTS from M. gracile SE-MC4.

| Unigenessize bp | 1D_F2_R1 | 1D_F2_R2 | 1D_F2_R3 | 12D_F2_R1 | 12D_F2_R2 | 12D_F2_R3 |
|-----------------|----------|----------|----------|-----------|-----------|-----------|
| 300             | 10625    | 10534    | 10718    | 9918      | 9876      | 10670     |
| 400             | 6082     | 5908     | 6023     | 5237      | 5277      | 5538      |
| 500             | 3880     | 3769     | 3801     | 3365      | 3376      | 3310      |
| 600             | 2729     | 2651     | 2725     | 2394      | 2401      | 2511      |
| 700             | 2105     | 2091     | 2162     | 1932      | 1877      | 1908      |
| 800             | 1723     | 1757     | 1777     | 1615      | 1576      | 1622      |
| 900             | 1425     | 1423     | 1422     | 1292      | 1302      | 1303      |
| 1000            | 1182     | 1229     | 1318     | 1105      | 1106      | 1113      |
| 1100            | 1038     | 1093     | 1090     | 1046      | 991       | 1031      |
| 1200            | 928      | 906      | 912      | 847       | 860       | 839       |
| 1300            | 774      | 785      | 813      | 710       | 774       | 748       |
| 1400            | 724      | 709      | 718      | 656       | 675       | 627       |
| 1500            | 575      | 576      | 637      | 572       | 552       | 546       |
| 1600            | 493      | 453      | 546      | 473       | 481       | 437       |
| 1700            | 477      | 426      | 455      | 424       | 405       | 414       |
| 1800            | 403      | 421      | 425      | 402       | 394       | 380       |
| 1900            | 310      | 319      | 358      | 328       | 310       | 298       |
| 2000            | 305      | 298      | 342      | 281       | 304       | 280       |
| 2100            | 282      | 260      | 268      | 240       | 237       | 242       |
| 2200            | 223      | 230      | 223      | 211       | 285       | 207       |
| 2300            | 197      | 183      | 197      | 185       | 185       | 196       |
| 2400            | 171      | 142      | 194      | 143       | 157       | 175       |
| 2500            | 139      | 150      | 155      | 150       | 146       | 145       |
| 2600            | 126      | 126      | 136      | 109       | 119       | 111       |
| 2700            | 109      | 109      | 110      | 90        | 102       | 97        |
| 2800            | 117      | 71       | 111      | 98        | 94        | 88        |
| 2900            | 85       | 74       | 79       | 76        | 91        | 82        |
| 3000            | 69       | 57       | 74       | 54        | 71        | 66        |
| >=3000          | 438      | 421      | 465      | 391       | 410       | 360       |
| Total           | 37734    | 37171    | 38254    | 34344     | 34434     | 35344     |

# 2. Experimental Design, Materials and Methods

# 2.1. Sample preparation

*M. gracile* SE-MC4 cell was retrieved from microalgae stock culture collection at Universiti Malaysia Terengganu [1]. Fresh *M. gracile* SE-MC4 inoculum was initiated from a single colony solid medium and transferred into axenic F2 liquid medium. Fresh cells were then introduced to nitrate starvation (treatment) and nitrate sufficient (control) culture medium. Cells were grown until reach stationary growth stage. Cells from exponential (Day 1) and stationary (Day 12) were harvested using centrifuge for TWAS [2]. RNA was extracted from cells using GF-1 Total RNA Extraction Kit (Vivantis, Malaysia) and all procedures were followed as mention in manufacturer guide manual [3,4].

# 2.2. RNA sequencing and de novo assembly

Library preparation and sequencing were conducted as mention in Wan Afifudeen et al., [5]. Library preparation was built based on BGISEQ-500 PE100 strategy. Firstly, mRNA was enriched using Oligo dT selection and rRNA removal via depletion process. Then, RNA was fragmented into small length before cDNA formation via reverse transcript process. After that, adaptors were ligated into the cDNA and further amplified before denatured and cyclized into DNA Nanoballs (DNBs). DNBs were then sequenced using BGISEQ-500 platform (Beijing Genome Institute, China) [6]. Raw sequence was trimmed and filtered before assembled using Trinity v2.06 to form con-

tigs or gene transcripts [7]. Phred value of Q20 and reads longer than 200 bp were used as baseline for reads selection for assembly.

#### 2.3. Sequence deposition

RNA sequence data were deposited to NCBI under submission portal platform via https: //www.ncbi.nlm.nih.gov/submission/. Submission of RNA sequence data was made under Bio-Project ID PRJNA552165 (Table 3).

## **Ethics Statement**

Work does not involved any human subjects, animal experiments or collection of data via social media platform.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

#### **CRediT Author Statement**

**C. L. Wan Afifudeen:** Conceptualization, Methodology, Software, Data curation, Writing – review & editing; **Saw Hong Loh:** Conceptualization; **Li Lian Wong:** Conceptualization; **Ahmad Aziz:** Conceptualization; **Kazutaka Takahashi:** Conceptualization; **Mohd Effendy Abd Wahid:** Conceptualization; **Thye San Cha:** Conceptualization, Writing – review & editing.

# Acknowledgments

This research was supported by Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA), Science and Technology Research Partnership for Sustainable Development (SATREPS) through the project for Continuous Operation System for Microalgae Production Optimized for Sustainable Tropical Aquaculture (COSMOS), and the SATREPS-COSMOS Matching Fund from the Ministry of Higher Education Malaysia (MOHE) (VOT 53222).

Equipment used in this study was obtained with financial support from the Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA), Science and Technology Research Partnership for Sustainable Development (SATREPS) through the project for Continuous Operation System for Microalgae Production Optimized for Sustainable Tropical Aquaculture (COSMOS).

# References

- K.Y. Teh, C.L.W. Afifudeen, A. Aziz, L.L. Wong, S.H. Loh, T.S. Cha, *De novo* whole genome sequencing data of two mangrove-isolated microalgae from Terengganu coastal waters, Data Brief 27 (2019) 104680, doi:10.1016/j.dib.2019. 104680.
- [2] C.L. Wan Afifudeen, S.H. Loh, A. Aziz, K. Takahashi, M.E. Abd Wahid, T.S. Cha, Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate -repletion and -starvation cultivations, Sci. Rep. 11 (2021) 382, doi:10.1038/s41598-020-79711-2.
- [3] K. Anne-marie, W. Yee, S.H. Loh, A. Aziz, T.S. Cha, Effects of Excess and limited phosphate on biomass, lipid and fatty acid contents and the expression of four fatty acid desaturase genes in the tropical selenastraceaen messastrum gracile SE-MC4, Appl. Biochem. Biotechnol. 190 (2019) 1438–1456, doi:10.1007/s12010-019-03182-z.

- [4] K. Anne-Marie, W. Yee, S.H. Loh, A. Ahmad, T.S. Thye, Influence of nitrogen availability on biomass, lipid production, fatty acid profile, and the expression of fatty acid desaturase genes in *Messastrum gracile* SE-MC4, World J. Microbiol. Biotechnol. 36 (2020) 17, doi:10.1007/s11274-019-2790-y.
- [5] C.L. Wan Afifudeen, A. Aziz, L.L. Wong, K. Takahashi, T. Toda, M.E. Abd Wahid, T.S. Cha, Transcriptome-wide study in the green microalga *Messastrum gracile* SE-MC4 identifies prominent roles of photosynthetic integral membrane protein genes during exponential growth stage, Phytochemistry 192 (2021) 112936, doi:10.1016/j.phytochem.2021. 112936.
- [6] S.S.T. Mak, S. Gopalakrishnan, C. Caroe, C. Geng, S. Liu, H.S. M. Sinding, et al., Comparative performance of the BGISEQ-500 versus Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing, Giga Sci. 6 (2017) 1–13, doi:10.1093/gigascience/gix049.
- [7] M.G. Grabherr, J.B. Haas, M. Yassour, J.Z. Levin, A.T. Dawn, A. Ido, A. Xian, F. Lin, R. Raychowdhury, Z. Qiandong, C. Zehua, M. Evan, H. Nir, G. Andreas, R. Nicholas, D.P. Federica, W. Bruce, N. Friedman, A.R., Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data, Nat. Biotechnol. 29 (2013) 644–652, doi:10.1038/ nbt.1883.