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ABSTRACT
Background. Human milk microbiota plays a role in the bacterial colonization of the
neonatal gut, which has important consequences in the health and development of the
newborn. However, there are few studies about the vertical transfer of bacteria from
mother to infant in Latin American populations.
Methods. We performed a cross-sectional study characterizing the bacterial diversity of
67 human milk-neonatal stool pairs by high-throughput sequencing of V3-16S rDNA
libraries, to assess the effect of the humanmilk microbiota on the bacterial composition
of the neonate’s gut at early days.
Results. Human milk showed higher microbial diversity as compared to the neonatal
stool. Members of the Staphylococcaceae and Sphingomonadaceae families were
more prevalent in human milk, whereas the Pseudomonadaceae family, Clostridium
and Bifidobacterium genera were in the neonatal stool. The delivery mode showed
association with the neonatal gut microbiota diversity, but not with the human milk
microbiota diversity; for instance, neonates born by C-section showed greater richness
and diversity in stool microbiota than those born vaginally. We found 25 bacterial taxa
shared by both ecosystems and 67.7% of bacteria found in neonate stool were predicted
to originate from human milk. This study contributes to the knowledge of human milk
and neonatal stool microbiota in healthy Mexican population and supports the idea of
vertical mother-neonate transmission through exclusive breastfeeding.

Subjects Bioinformatics, Microbiology, Pediatrics
Keywords Human milk, Microbiota, Breastfeeding, Delivery mode, Neonatal gut microbiota,
Mexican mother, 16S rDNA, High-throughput DNA sequencing, Ion Torrent

INTRODUCTION
Human milk provides essential nutrients, bioactive substrates (Fernández et al., 2013),
as well as prebiotics like the human milk oligosaccharides (HMOs) (Ward et al., 2006),
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required for growth and development of the newborn and infant at least during the first six
months of life. The human milk also contains a rich community of bacteria that has been
proposed to originate from the neonate’s oral cavity, the breast surface (mother’s skin),
the lobules and lactiferous ducts in the lactating women (commonly called ‘‘Breastfeeding-
Associated Microbiota’’), or through an entero-mammary pathway. This last hypothesis
states that maternal gut bacteria are translocated by dendritic cells through the intestinal
epithelial barrier and are transported to the mammary glands via lymphatic circulation.
From there, these bacteria colonize the gut of the breastfed neonate (Sakwinska et al., 2016;
LaTuga, Stuebe & Seed, 2014; Fitzstevens et al., 2017; Donnet-Hughes et al., 2010; Fernández
et al., 2013; Jost et al., 2014). Most reported studies are of microbiota of milk collected
applying sanitization procedures to the mammary gland, and only few have studied the
bacteria communities of the entire human milk collected without sanitization (Ward et al.,
2013; Sakwinska et al., 2016).

The bacterial communities identified in the milk of healthy women are highly diverse
and complex. Despite the great interindividual variability, several taxa have been identified
as common constituents of milk microbiota, including Staphylococcuss spp., Streptococcuss
spp., Pseudomonas spp., Propionibacterium sp., and Lactobacillus spp., as well as obligate
anaerobic bacteria such as Bifidobacterium spp., Clostridium spp., and Bacteroides spp.
(Hunt et al., 2011; Jost et al., 2014; Fitzstevens et al., 2017). These bacteria also represent the
main groups involved in early gut colonization in healthy newborns (Nagpal et al., 2017).

Over the last few years, the vertical transmission of bacteria from the human milk to
the infant gut has gained great interest as an important source or inoculum for bacterial
colonization (Grönlund et al., 2007; Nagpal et al., 2017; Simpson et al., 2018). It is also
proposed that gut microbiota acquisition begins in utero (Aagaard et al., 2014; Collado et
al., 2016; Parnell et al., 2017; Stinson et al., 2019), being it another source of bacteria for the
neonate. Likewise, although there is evidence of translocation of specific bacterial taxa from
milk to the infant gut, the proportion of microbiota from the human milk that contributes
to the colonization during the first days after birth has not been extensively characterized
(Pannaraj et al., 2017).

The human milk microbial composition is influenced by factors that impact the early
development of the gastrointestinal microbiota in the neonate, which include mode of
delivery, diet, lifestyle, and geographical area where the mother lived during pregnancy
(Khodayar-Pardo et al., 2014; Cabrera-Rubio et al., 2016; Kumar et al., 2016; Mueller et al.,
2017). In Mexico, there are no published studies examining the bacterial ecosystems of
milk and/or neonate gut in a cohort. Most research done to date, has focused on Spanish
(Gomez-Gallego et al., 2016), Irish (Murphy et al., 2017), Canadian (Moossavi et al., 2019),
western Italian (Biagi et al., 2017), and United States Caucasian populations (Hunt et al.,
2011), whose ethnicities, lifestyles and environment exposures differ from the Mexican
population. We believe that in the Mexican population the neonate’s intestinal microbiota
diversity is determined mostly by the microbiota found in the milk of its mother, and the
delivery mode. In this context, the aim of this cross-sectional and comparative study was
to evaluate the association of the human milk bacteria and the delivery mode with the
neonate gut bacterial composition in a cohort of Mexican population based on the sharing
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of milk/ neonate gut bacteria. We also describe the predicted metabolic pathways in these
bacterial communities.

MATERIALS & METHODS
Study design and selection of subjects
This descriptive cross-sectional study included 67 mother-neonate pairs recruited at
General Hospital ‘‘Dr. José María Rodríguez’’, located in Ecatepec–de–Morelos, State of
Mexico (19◦36 ′35′′ N, 99◦ 3′36

′′

W), between November 2017 and January 2018. Donors
were healthy lactating women, and their healthy, full-term exclusively breastfed neonates.
Milk and stool samples were collected from each mother–neonate pair between 1–6 days
postpartum. Inclusion criteria to select the pairs were: (1) Mexican origin for at least two
generations, (2) gestational age between 37 and 41 weeks, (3) spontaneous vaginal delivery
or non-elective C-section, (4) birth weight greater than 2,500 g and less than 4,500 g, and
(5) Apgar score greater than 7 at 5 min after birth. Exclusion criteria: (6) probiotics and
alcohol consumption, (7) smoking, (8) diabetes, overweight and obesity before or during
pregnancy, and (9) antibiotics use during the last trimester of pregnancy and prior to
sample collection. Based on a questionnaire, sociodemographic and clinical information
were recorded (maternal age, gestational age at delivery, delivery mode, sex, and age of
newborn). Written informed consent was obtained from all donors before starting the
study in accordance with the Declaration of Helsinki 2013. The protocol was approved
by the Ethics Committee of the General Hospital ‘‘Dr. José María Rodríguez’’ (Project
identification code: 217B560002018006).

Sample collection
All samples were obtained by one member of the research team wearing sterile gloves.
Each milk-neonatal stool sample pair was collected the same day in the morning up to
2 h after the neonate was breastfed. Milk for the study was manually collected (5–10 mL)
into a sterile polypropylene tube without breast sanitization to give a more representative
analysis of the bacteria ingested by the suckling neonate. At the same time, fecal samples
were taken after 20 min at most, directly from diapers into sterile containers with the help
of sterile tongue depressors. All samples were immediately transported to the laboratory
using cold packs and dispensed in aliquots of one mL of milk or 200 mg of stool and stored
at −20 ◦C until processing for DNA extraction within 24 h of receipt.

DNA extraction
Prior to DNA extraction, one mL of milk was centrifuged at 10,000 g, 15 min at 4 ◦C in
a refrigerated centrifuge (Eppendorf 5415R) and fat was removed using a sterile dental
cotton roll. Aqueous supernatant was removed by decantation, the pellet resuspended
in 1.0 mL sterile PBS pH 7.4, then recentrifuged at 10,000 g for 15 min. The obtained
pellet was resuspended in 300 µL of PBS pH 7.4 and processed for DNA extraction using
FavorPrep Milk Bacterial DNA Extraction Kit (Cat.: FAMBD001, Favorgen, Biotech Corp,
Taiwan) following the manufacturer’s instructions. Fecal DNA was extracted from 200 mg
stool samples using a QIAamp DNA Stool Mini Kit (Cat.: 12830-50, Qiagen, Netherlands),
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following the manufacturer’s instructions. In both cases 300 µL of PBS pH 7.4 was used as
negative control for DNA extraction. The DNA concentration in samples was measured at
260/280 absorbance using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA),
no absorbance was detected for the negative controls. The DNA integrity was evaluated by
electrophoretic fractionation in 0.5% agarose gel. DNA was stored at −20 ◦C until library
preparation and sequencing.

Preparation of the 16S rDNA library and high-throughput sequencing
For each DNA sample, a ∼281 bp amplicon containing the V3 hypervariable region of
the 16S RNA gene was amplified using V3-341F forward primer (set of barcodes 1–100)
complementary to positions 340–356 of the Escherichia coli 16S rDNA molecule rrnB
GenBank J01859.1, and the V3–518R reverse primer complementary to positions 517–533
of same molecule (Fierer et al., 2008; Murugesan et al., 2015) (Table S1). All PCR reactions
were performed in a final volume of 25 µL 1X SYBR Green PCR Master Mix (Bio-Rad
Laboratories Cat# 1725270), 0.3 µM of each primer, and 10–25 ng of each DNA template.
The PCR conditions were as previously reported with exception that 30-cycles were used
(Murugesan et al., 2015). The∼281 bp amplicon was not observed for the negative controls
thus they were not sequenced. For library preparation equal mass amounts of each 1–100
barcoded amplicons were quantified by gel densitometry and pooled. The mixture was
purified using E-Gel iBase Power System (Invitrogen). The libraries size and concentration
were confirmed using the Agilent 2100 Bioanalyzer system and High Sensitivity DNA
Kit (Agilent, USA). High-throughput sequencing was performed using Ion OneTouch
2, Ion PGM Template OT2 200 Kit v2 DL (Life Technologies, California, USA), Ion 318
Chip Kit v2 and Ion Torrent PGM System as previously described (Chávez-Carbajal et al.,
2019). After sequencing, reads were filtered by the PGM software to exclude low quality and
polyclonal sequences. The quality control of sequences was performed using (FastQC, 2019)
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and all reads were trimmed
to 200 nt length using Trimmomatic v0.36. Filtered and demultiplexed FASTQ files were
converted into FASTA files, concatenated into a single file, and then processedwithmultiple
QIIME (Quantitative Insights intoMicrobial Ecology) v1.9.0 scripts (Caporaso et al., 2010).
DNA sequences were classified into Operational Taxonomic Units (OTUs) using closed
based picking parameters with a 97% similarity level against Greengenes database v13.8.
The sequence and corresponding mapping files for all samples used in this study were
deposited in the NCBI BioSample repository (accession number: PRJNA548324).

Microbial abundance and diversity analyses
The relative abundance of bacterial communities at phylum and family taxonomic levels
was determined for humanmilk or neonatal stool samples usingQIIMEpipeline v1.9.0. The
linear discriminant analysis effect size program (LEfSe v1.0) was used to detect significant
differences in the relative abundances of bacterial taxa among milk and stool samples,
and vaginal and C-section delivery mode samples. We used the LDA (linear discriminant
analysis) to estimate the effect size of each taxa between groups with LDA–scores ≥ 2.5
(Segata et al., 2011). To characterize the microbial diversity patterns, we calculated alpha
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and beta diversities. Prior to calculate alpha diversity, the OTU table was rarefied at 10,000
sequences per sample (samples with <10,000 were omitted) using a ‘‘single_rarefaction.py’’
QIIME script for the four alpha diversity metrics: observed species (number of unique
OTUs), Chao1 index (bacterial richness estimator), and the community diversity Simpson
(dominance) and Shannon (evenness) indexes were determined using phyloseq and ggplot2
packages in R environment (v3.4.4). The Effect-size was measured using the Hedges’ g
statistic and calculated with STATA SE 10.1 software. For beta diversity, the dissimilarity
was estimated using weighted and unweighted UniFrac analyses. A two-dimensional scatter
plot was generated using principal coordinate analysis (PCoA) with QIIME.

Shared OTUs, core microbiota and microbial source tracking
analysis
To determine the number of OTUs in themicrobial community shared between the human
milk and the neonatal stool samples the shared_phylotypes.py QIIME script was run, then
a Venn Diagram was generated using the Bioinformatics and Evolutionary Genomics
web tool (Shade & Handelsman, 2012). Next, we used the compute_core_microbiome.py
QIIME script to identify which taxa are shared in at least 50% of mother-neonate pairs,
and a heatmap of counts was made in R environment (gplots and RColorBrewer packages).
We performed Source Tracker analysis to predict the origin of OTUs in each neonatal stool
sample using the corresponding humanmilk as potential source, to estimate the proportion
of bacteria present in the neonatal stool attributable to the human milk. This analysis was
made in QIIME platform using Source Tracker (v0.9.5) software (Knights et al., 2011). A
file with the mean of all these data was used to show the proportion of OTUs present in
the neonatal stools corresponding to ‘‘human milk’’ or ‘‘unknown source’’ which indicate
other possible sources not evaluated. Data were visualized as pie chart plots for each sample
and for total samples.

Metagenome prediction with PICRUSt
We used Phylogenetics Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt, v1.1.1) (Langille et al., 2013) to predict the metabolic function of the
metagenomes from 16S rRNA gene data set, with Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthologs classification database at hierarchy level 3 pathways. Statistical
Analysis of Taxonomic and Function software (STAMP v2.1.3) was used to determine
significant differences in abundance of OTUs and metabolic pathways.

Statistical methods
The epidemiological data were reported as mean± standard deviation (SD), or frequencies
and percentages. Two-tailed student’s t -test, Mann-Whitney U, or Wilcoxon signed–
rank nonparametric test were assessed to compare groups using SPSS v23.0 software
(SPSS, Inc). ANOSIM and Adonis were used for category comparisons of phylogenetic
distance matrices (UniFrac). Linear regression was used to know the relationship between
microbiota diversity as the dependent variable and maternal and neonatal age included
as covariates; p< 0.05 was considered statistically significant. The Benjamini −Hochberg

Corona-Cervantes et al. (2020), PeerJ, DOI 10.7717/peerj.9205 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.9205


(BH) correction method was used to estimate the false discovery rate (FDR) and filter the
data where a q-value <0.05 was considered statistically significant.

RESULTS
Participating women were from a poor urban polluted area
We characterized the human milk microbiota of 67 lactating relatively healthy Mexican
women aged 14 to 41 years-old, and the gut microbiota present in the stool of their
respective neonates aged <6 days-old, fed exclusively with humanmilk. In this cohort, most
women were housewives living in ‘‘Ecatepec–de–Morelos’’ (19◦29′4.56′′ N, 99◦7′6.96′′W),
an overcrowded municipality area (8,860 inhabitants/km2) of the ‘‘Estado–de–México’’
a state located in the central part of Mexico (INEGI, 2019). At 2,248 m over sea level,
‘‘Ecatepec–de–Morelos’’ has a subtropical highland climate (Köppen: Cwb), and 75.2%
of the population lives in a situation of moderate to extreme poverty (CONEVAL, 2019).
Participating women had mostly a high school or college educational level. With respect
of neonates, most of them were females born by vaginal delivery (Table 1).

Proteobacteria was the most abundant phylum in the mother-neonate
pair
We characterized the bacterial diversity in the human milk and stool samples collected
from the mother–neonate pairs by high-throughput DNA semiconductor sequencing of
V3-16S rDNA libraries. In general, we obtained 9,575,537 raw sequence reads with a mean
length of 169.3 bp (±46.1) for the total of 134 samples analyzed; 4,240,314 for human milk
and 5,335,223 for neonatal stool with a phred33 average value of 31. A mean length 170
bases were selected for analyses (Fig. S1). The alpha rarefaction curves show that the deep
of sequencing among samples was sufficient to process the data (Table S2).

We found that Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes accounted
for 97.19% of sequences in human milk (Fig. 1A) and 98.03% in neonatal stool (Fig. 1B).
The phylum Proteobacteria was more abundant in human milk (55.40% ± 32.1) than in
neonatal stool (36.70% ± 31.0) being this the only phylum with a statistical significance
difference (p= 0.001, q= 0.041). Although with no statistically significant difference,
the relative abundance of Firmicutes was larger in neonatal stool (32.10% ± 33.2) than
human milk (25.80% ± 28.9) (p= 0.243, p= 1.00); the phylum Actinobacteria was more
abundant in neonatal stool (18.73%± 23.5) than humanmilk (13.20%± 11.7) (p= 0.088,
q= 1.00); while the relative abundance of Bacteroidetes was higher in neonatal stool
(10.50% ± 21.5) than in human milk (2.79% ± 9.9) (p= 0.009, q= 0.185). In addition,
the phyla Acidobacteria, Cyanobacteria, Fusobacteria, Chloroflexi and Armatimonadetes
with less than 1% of relative abundance, were grouped as ‘‘Others’’, and they accounted
for 2.83% (± 1.12) in human milk and 1.94% (± 0.47) in neonatal stool. These differences
had no statistical significance (p= 0.598, q= 1.00) (Figs. 1A, 1B).

In addition to the phylum, we analyzed the bacterial composition at family level in
both groups (Fig. 1C and Table S3). We found 14 predominant families with a relative
abundance ≥ 1% in at least 97% of samples. The relative abundance of Staphylococcaceae,
Sphingomonadaceae, Rhodobacteraceae, Bradyrhizobiaceae, and Propionibacteriaceae
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Table 1 Sociodemographic and clinical characteristics of the study population.

Maternal Data n (%)

Years of agea 22.12± 5.7
Birthplace

State–of–Mexico 41 (61.2)
Mexico City 14 (20.9)
Other (Oaxaca, Puebla, and Veracruz states) 12 (17.9)

Main activity
Housewife 60 (89.6)
Student 1 (1.49)
General employee 6 (8.96)

Educational levelb

Elementary school 17 (25.4)
High school 21 (31.3)
College 25 (37.3)
None 4 (5.97)

Parity
Uniparous 27 (40.3)
Multiparous 40 (59.7)

Neonate’s delivery mode
Vaginal 46 (68.7)
C-Section 21 (31.3)

Neonatal data n (%)
Age at sample collection, daysc

<3 61 (91.0)
4–6 6 (9.0)

Sex
Female 40 (59.7)

Vaginal 28 (41.8)
C-section 12 (17.9)

Male 27 (40.3)
Vaginal 18 (26.9)
C-section 9 (13.4)

Notes.
aExpressed as mean± standard deviation, n—sample number, State–of–Mexico (19.6049◦N 99.0606◦O), Mexico City
(19.4285◦ N 99.1277◦O), Other states: Oaxaca (17.0654◦N 96.7236◦O), Puebla (19.0379◦N 98.2035◦O), Veracruz (19.181◦N
96.1429◦O).

bEquivalent based on U.S. Department of Education (McFarland et al., 2018).
cPostpartum days.

was higher in human milk with respect to neonatal stool. In contrast, Pseudomonadaceae,
Clostridiaceae, and Bifidobactericeae showed higher relative abundance in neonatal stool.
On the other hand, Streptococcaceae, Weeksellaceae, and Lachnospiraceae were equally
abundant in both groups. The relative abundance of some of these families showed higher
inter-individual variation among members in each group (Table S3).
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Figure 1 Relative abundance of predominant bacterial taxa (phyla and families) in humanmilk and
neonatal stool. Abundance of each phylum in human milk (A) and neonatal stool (B). Comparison be-
tween groups was calculated using parametric t -test for paired samples followed by BH correction: Pro-
teobacteria (p= 0.001, q= 0.041); Firmicutes (p= 0.243, q= 1.00); Actinobacteria (p= 0.088, q= 1.00);
Bacteroidetes (p = 0.009, q = 0.185); Others (p = 0.598, q = 1.00). (C) Relative abundance of dominant
bacterial families for each group.

Full-size DOI: 10.7717/peerj.9205/fig-1

There is a significant difference in the abundance of some bacterial
taxa between human milk and neonate stool
We used LEfSe analysis to identify differences in the abundance of bacterial taxa between
humanmilk and neonatal stool microbiota, using an LDA score cutoff of 3.5. Fourteen taxa
were predominant in the humanmilk samples and six taxa in neonatal stools. Identified taxa
in human milk included ten genera Staphylococcus, Kaistobacter, Paracoccus, Pseudomonas,
Bradyrhizobium, Methylobacterium, Acinetobacter, Propionibacterium, Corynebacterium,
and Microbacterium; three families Phyllobacteriaceae, Sphingomonadaceae, Gemellaceae,
and the order Streptophyta (average p= 1.91E−5 and q= 1.07E−3). Likewise, in the
stool samples, we found members of three families Pseudomonadaceae, Clostridiaceae,
and Enterobacteriaceae; and three genera Bifidobacterium, Clostridium, and Bacteroides
(average p= 4.26E−5 and q= 9.67E−5) (Fig. 2 and Table S4).

The Human milk microbiota diversity was higher than the diversity in
neonatal stool
We estimated the alpha diversity of the microbiota in human milk and neonatal stool
samples andMann–WhineyU test to find significant differences between both groups (Figs.
3A–3D and Table S5). To estimate microbial richness, we used the Chao1 index (Effect
size 0.894, p< 0.001) and Observed number of species (Effect size 0.861, p< 0.001) which
revealed a difference between both groups showing higher richness in milk microbiota.
With respect to the diversity and dominance, the Shannon (Effect size 0.745, p< 0.001) and
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Figure 2 Linear discriminant analysis (LDA) effect size (LEfSe) comparison of differentially abundant
bacterial taxa between humanmilk and neonatal stool.Horizontal bars represent the effect size for each
taxon: light blue color indicates taxa enriched in neonatal stool group, and crusta color indicates taxa en-
riched in milk group. LDA score cutoff of 3.5 was used to discriminate bacterial taxon. Statistically signifi-
cant values are shown in Table S4.

Full-size DOI: 10.7717/peerj.9205/fig-2

Simpson (Effect size 0.584, p= 0.006) indexes showed higher bacterial diversity in human
milk samples compared to the neonatal stool microbiota. Only the Simpson index did not
show significant difference after the FDR correction (Table S5). Next, the beta diversity
based on unweighted UniFrac analysis revealed two clusters separating both groups of
samples as is illustrated by the three 2D images of the analysis (ANOSIM, R= 0.289,
p= 0.001) (Figs. 3E –3G). To confirm these statistical differences between both bacterial
communities Adonis test was calculated (R2

= 0.949, p= 0.001) and Weighed UniFrac
analysis was also performed (Fig. S2).

The delivery mode is associated with the neonatal gut microbiota but
not the human milk microbiota diversity
We observed that the bacterial diversity and richness of the neonatal fecal microbiota are
associated with the delivery mode, nevertheless a similar effect was not observed for the
human milk microbiota (Table S6). The observed species (Effect size 0.071, p= 0.003),
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Figure 3 Bacterial diversity of humanmilk and neonatal stool microbiota. Alpha diversity based on (A)
observed number species (p< 0.001), (B) Chao1 (p< 0.001), (C) Shannon (p< 0.001) and (D) Simpson
(p = 0.006) indexes. Mann–Whitney U -test was used to find significant differences. Beta diversity analy-
sis. Two-dimensional scatter plots were generate using PCoA based on unweighted UniFrac distance met-
ric. (E) PC3 vs PC2, (F) PC1 vs PC2, and (G) PC1 vs PC3. Both groups significantly differed according to
ANOSIM similarity test (R= 0.289, p= 0.001) and Adonis statistical test (R2

= 0.949, p= 0.001). Human
milk samples (n= 67) are plotted as red dots and neonatal stool (n= 67) as blue dots. Statistically signifi-
cant values are in Table S5.

Full-size DOI: 10.7717/peerj.9205/fig-3

Chao1 richness indexes (Effect size 0.067, p< 0.006) and Shannon diversity indexes (Effect
size 0.086, p= 0.046) were significantly higher in stool samples from neonates delivered
by C-section compared to those born by vaginal delivery (Figs. 4A –4D and Table S6).
Likewise, the beta diversity analysis revealed that the fecal microbiota of C-section delivered
neonates were different to those born vaginally (ANOSIM: R= 12.52, p= 0.006; Adonis:
R2
= 0.0401, p= 0.001) (Fig. S3).
We also used LEfSe analysis to identify bacteria with relative abundance, significantly

different between groups. We found a significant larger number of taxa (thirteen genera
and three families) in the stool of neonates born by C-section compared with those born by
vaginal delivery (three genera, two families and one order). Among these, Staphylococcus
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Figure 4 Alpha diversity in neonatal stool samples from neonates born by C-section (n=19) or vaginal
delivery mode (n = 41). (A) Observed number species (p = 0.003), (B) Chao1 (p = 0.006), (C) Shan-
non (p= 0.046), and (D) Simpson (p= 0.082) indexes. The diversity indexes were calculated using Mann
−Whitney U test where p < 0.05 was considered significant (Table S6). Labels beside the graphics indi-
cates the delivery mode.

Full-size DOI: 10.7717/peerj.9205/fig-4

was the most abundant genus in the neonates delivered by C-section, and the family
Pseudomonadaceae was the most abundant in neonates born by vaginal delivery (Fig. S4).
Finally, we evaluated the association of maternal and neonatal age on the bacterial diversity
applying a lineal regression analysis. For the human milk the richness (Chao1) (Fig. S5A)
and the diversity (Shannon) (Fig. S5B) have a slight tendency to decrease as the age of
the mother increases; same indexes slightly increased with the days after delivery for the
neonatal stool (Figs. S5E, S5F), and for the human milk, the richness does not have an
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Figure 5 Analyses of shared OTUs in humanmilk/ neonatal stool and its abundance. (A) Venn
diagram showing unique and shared OTUs between human milk and neonatal stool samples. (B)
Heatmap shows shared OTUs counts between taxa of human milk and neonatal stool groups. Included
counts were present in at least 50% of paired samples and calculated by the compute_core_microbiome.py
Qiime script. Color Key from green to red indicates increasing absolute abundance in natural logarithm
of counts. Green color indicates lowest abundance while red color highest abundance, with taxa along the
Y -axis and samples along X-axis.

Full-size DOI: 10.7717/peerj.9205/fig-5

apparent change (Fig. S5C) while the diversity has a tendency to increase with the days
after delivery (Fig. S5D).

Specific bacterial taxa are transferred from human milk to the
neonatal gut from the first day of life
As a first approach to explore the transferring of bacteria from human milk to the neonatal
gut, we focused our attention to OTUs shared between each homologous mother—neonate
pair. In general, from the 11,930 observed OTUs only 4,755 (39.85%) were shared. We
found that 3,847 OTUs (32.24%) from human milk were not found in the neonate stool,
while 3,328 OTUs (27.89%) from neonate stool were not found in the human milk
(Fig. 5A). Relevant shared taxa between human milk and neonatal stool were the families
Pseudomonadaceae, Clostridiaceae, Sphingomonadaceae, and Bradyrhizobiaceae, and the
genera Clostridium gasigenes, Bacteroides spp., Bifidobacterium spp., Staphylococcus spp.,
Enterococcus spp., Streptococcus spp., and Propionibacterium acnes (Fig. 5B and Table S7).

Next, we used microbial source tracking analysis to estimate the proportion of bacteria
in the neonatal stool which originated from the human milk (Fig. S6). Data showed that
neonates received 67.8% (±36.5) of bacteria from human milk, while the remaining 32.2%
(±36.5) came from unknown sources (p< 0.006, Wilcoxon signed–rank test) (Fig. 6A).
The taxonomic analysis of the bacteria in the fecal samples identified as ‘‘Unknown Source
Group’’ showed a high significant relative abundance of the orders Clostridiales followed by
Bacteroidales, Lactobacillales, and Enterobacteriales, which was different to the abundance
found in ‘‘Human Milk Group’’ (Fig. 6B).
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Figure 6 Probable origin of bacteria in the neonatal stool. (A) Microbial source tracker analysis show-
ing the proportion of bacteria identified in the neonatal stool classified by source (p < 0.001, Wilcoxon
signed-rank test). (B) Relative abundance of most common bacterial orders found in the neonatal stool
classified by Qiime source tracker analysis as ‘‘Human milk’’ and ‘‘unknown source’’.

Full-size DOI: 10.7717/peerj.9205/fig-6

The predicted functional metagenome shows greater carbohydrate
metabolism in neonate gut and greater lipid metabolism in human milk
microbiota
We determined the functional metabolic pathways present in the humanmilk and neonatal
stool microbiota by PICRUSt analysis using the OTU table. At level three of analysis (the
most specific) 10 KEGG pathways out of 92, showed statistically significant difference
between human milk and neonate stool microbiota (average p= 3.80E−03, average
q= 8.74E−03) (Fig. 7 and Table S8). The functional pathways were related to energy
metabolism, bacterial colonization, and immune function. The human milk showed a high
abundance of bacterial metabolic pathways associated to fatty acid metabolism, whereas
the fecal microbiota from neonates had a higher abundance of pathways involved in
carbohydrate metabolism, vitamin B6 metabolism, bacterial colonization, and immune
function.

DISCUSSION
Humanmilk provides all required nutrients for infant nourishment; in addition, it contains
a community of bacteria transferred through breastfeeding that plays a fundamental role in
the development of the infant gutmicrobiota. In this cross-sectional study, we characterized
the profile of the human milk microbiota from healthy Mexican mothers and the fecal
microbiota of their neonates, finding that human milk contributes with the 67.7% of
the bacteria within the first six days postpartum. Previous studies have reported both
similarities and differences when comparing bacterial profiles of paired samples (human
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Figure 7 Prediction of functional microbial metabolic pathways using PICRUSt analysis (KEGG level
three). The abundance of 10 statistically significant metabolic pathways between human milk (crusta
color) and neonatal stool (light blue color) bacterial communities. All statistically significant pathways
(q< 0.05) are included in Table S8.

Full-size DOI: 10.7717/peerj.9205/fig-7

milk/neonatal stool) in different populations (Table 2). In our work we found high
levels of Proteobacteria (55.4%) and Firmicutes (25.8%), represented by members of the
Pseudomonadaceae and Staphylococcaceae families, present in 71.6% and 82.1% of milk
samples respectively (Table S3).

Pseudomonadaceae family, for example, has been reported in human milk with an
abundance of up to 61% during the first 30–days postpartum in a Canadian population
(Ward et al., 2013), and an abundance of 17% during the 6 weeks postpartum in an Irish
population (Murphy et al., 2017), while the Staphylococcaceae family has been reported
with an average abundance of 20% in several reports (Table 2). We believe that the
presence of Staphylococcaceae is a common feature of human milk microbiota, regardless
of the geographical location. Conversely, the Sphingomonadaceae, and Rhodobacteraceae
families represented by the Kaistobacter and Paracoccus genera respectively, were abundant
in humanmilk samples in our study, nevertheless, these two taxa have been poorly reported
in other studies on humanmilk microbiota in healthy women (Table 2). To our knowledge,
there is no available information about the possible functional role of these bacteria in
human milk on regard of the neonate gut, but the Sphingomonadaceae family, has been
also detected in high abundance in nipple skin and nipple aspirate fluid samples in healthy
women (Chan et al., 2016; Hieken et al., 2016). It is suggested this family contributes to the
maintenance of healthy breast tissue and protects against breast cancer through stimulation
of the host immune cells (Chan et al., 2016) (Table 3). A relevant findingwas the low relative
abundance in our milk samples of Bifidobacteriaceae (0.73%), Streptococcaceae (3.73%)
families and genus Lactobacillus (0.21%); since these taxa have been reported in high
abundance as part of a predominant ‘‘core microbiota’’ in human milk from healthy
women in other studies (Fernández et al., 2013; Jiménez et al., 2015; Kumar et al., 2016).
For example, in the CHAMACOS study performed in Mexican American women suffering
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of overweight and obesity (Davé et al., 2016), and in Peruvian healthy women (Lackey et al.,
2019), Streptococcus was the dominant genus (73.8% and 49.6% respectively), however in
our study, this taxa barely reached a relative abundance of 2.3%. We think that for human
milk there is a ‘‘core microbiota’’ plus additional resident bacteria which are unique for
each population, whose variability is influenced by the genetic composition, geographical
area, lactation stage, diet, lifestyle, and environmental conditions that surround themother.

The characterization of the neonate fecal microbiota showed less diversity than the
human milk microbiota, as well as a high dominance of bacterial groups (Fig. 3), which
suggest that in the first six days of life, only few selected taxa contribute to the initial
colonization of the gut microbiota. The high dominance of Pseudomonadaceae (24.5%) in
77.6% of neonate fecal samples, suggests a possible selection process occurred in the infant
gut (Fig. 5B). We think these bacteria come mostly from human milk and constitute an
inoculum for the gut colonization at early age (Fig. 6B). It has been already described the
presence of Pseudomonas aeruginosa in the gut of healthy newborns during the first week of
life without any manifestation of disease (Borderon et al., 1990). Although the presence of
Pseudomonas spp. in several body niches have been documented in healthy subjects (Dekio
et al., 2005; Urbaniak et al., 2014; Ozkan et al., 2019), a potential functional role remains
undefined. We can speculate these bacteria are selected for its ability to migrate and bind
to the mucosal barrier of the epithelial cells (Ruch & Engel, 2017).

Several studies have reported the presence of common bacteria between human milk
and infant stool. In fact, during the first month of life, breastfed infants share up to
28% of their fecal bacteria with their mother’s milk bacteria as reported for Spanish,
Canadian, Finnish, American and Italian populations (Martín et al., 2012; Azad et al.,
2013; Jost et al., 2014; Pannaraj et al., 2017; Ferretti et al., 2018). In this study, despite
differences in the bacterial diversity between the milk and stool samples, we observed
the presence of 25 shared taxa in at least 50% of mother–neonate pairs, which can be an
indicator of vertical transmission. These 25 taxa represent 40% of all detected bacterial
OTUs (Fig. 5); such as Staphylococcus, Pseudomonadaceae, and Propionibacterium acnes
(currently named Cutibacterium acnes, Rocha Martin et al., 2019). Previous studies have
revealed that during breastfeeding period, Staphylococcus can reach the mammary gland
from the gut (entero-mammary translocation) or the source can be the maternal skin
(retrograde flow), constituting the most dominant bacteria in human milk (Jiménez et
al., 2008; Fernández et al., 2013; Urbaniak et al., 2014; Jiménez et al., 2015; Urbaniak et al.,
2016). Other species which are normally present on adult skin such as Propionibacterium
acnes, Streptococcus, and Corynebacterium (Jiménez et al., 2008; Grice & Segre, 2011) were
also abundant in human milk samples in our study. This is not surprising considering
that skin bacteria have access to the mammary ducts through the nipple (Ramsay et al.,
2004) and can spread within the mammary glands, independently of lactation (Urbaniak
et al., 2014), probably for this reason, these bacteria have been also observed in human
milk collected aseptically (Hunt et al., 2011). Some of breastfeeding related taxa mentioned
above, such as the family Bifidobacteriaceae have been reported as pioneers of the infant gut
due to its ability to metabolize human milk oligosaccharides (HMOs) to proliferate (Yu et
al., 2013), in other cases the presence of the HMOs promote the growth of microorganisms
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Table 2 Selected studies of paired humanmilk–infant gut microbiota profiles in different populations.

Population TS n D Method Predominant
taxon humanmilk

Predominant
taxon infant stool

Reference

Mexican CS 67 0–6 Ion Tor-
rent/(V3)

Staphylococcus,
Kaistobacter,
Paracoccus,
Pseudomonas.

Pseudomonadaceae,
Bifidobacterium,
Clostridium,
Bacteroides.

This study

Hispanic-
Latino-
White

LG 90 1–7 Illumina/
(V3–V4)

Moraxellaceae,
Staphylococcaceae,
Streptococcaceae,
Pseudomon-
adaceae

Bifidobacteriaceae,
Enterobacteri-
aceae.

Pannaraj et al. (2017)

Peruvian CS 42 30–90 Illumina/
(V1–V3)

Streptococcus,
Staphylococcus,
Rothia.

Escherichia/Shigella,
Streptococcus,
Veillonella,
Enterococcus

Lackey et al. (2019)

Spanish CS 20 7–90 qPCR,
culture

Staphylococcus, Bi-
fidobacterium, Lac-
tobacillus.

S. epidermidis, Bi-
fidobacterium bre-
vis, B. longum, Lac-
tobacillus casei,
L. gasseri, L. gas-
tricum, L. salivaris.

Martín et al. (2012)

Spanish CS 23 7, 14, 35 qPCR,
culture

Staphylococcus epi-
dermidis, S. au-
reus, Staphylococ-
cus spp., Enterococ-
cus faecalis, E. fae-
cium, Streptococ-
cus.

Staphylococcus epi-
dermidis, S. aureus,
others Staphylococ-
cus, Enterococcus,
Streptococcus

Jiménez et al. (2008)

Irish LG 10 7–14 Illumina/
(V3–V4)

Pseudomonas,
Staphylococcus,
Streptococcus, Eliz-
abethkingia.

Bifidobacterium,
Gardnerella sp.,
Bacteroidetes.

Murphy et al. (2017)

Swiss CS 21 3–6, 9-17 Pyrosequencing Pseudomonas, Ral-
stonia, Streptococ-
cus, Staphylococcus.

Bifidobacterium,
Bacteroidetes,
Parabacteroidetes

Jost et al. (2014)

Italian CS 8 90 Illumina/
Metagenome

Corynebacterium,
Kroppenstedtii,
Staphylococcus epi-
dermidis.

E. coli, Bifidobac-
terium, Veillonella,
Bacteroides.

Asnicar et al. (2017)

Italian CS 36 2–3 (milk),
20 (stool)

Illumina/
(V3–V4)

Streptococcaceae,
Paenibacillaceae,
Lachnospiraceae,
Bifidobacteriaceae.

Bifidobacterium,
Enterobacteri-
aceae, Strepto-
coccaceae, Bac-
teroidaceae.

Biagi et al. (2017)

African
(Kenya,
Ethiopia

CS 377 30–90 Illumina/
(V1–V3)

Corynebacterium,
Streptococcus.

Veillonella, Lacto-
bacillus.

Lackey et al. (2019)

Notes.
Abbreviations: n, number of samples; TS, type of study; CS, Cross sectional study; LG, longitudinal study; D, days after delivery where samples were taken; Method,
method of analysis of 16S rRNA gene.
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Table 3 Reports of function of most abundant taxa found in this study in both, humanmilk and neonatal stool.

Taxa Immune function Reference Colonization andmetabolism Reference

Associated with growth inhibition and spread
of S. aureus.

Shu et al. (2013) Involved in early gut colonization in breastfeed
infants. Best natural producer of propionate
and lactate.

Rocha Martin et al. (2019)

Propionibacteriummitigates intestinal inflam-
mation via Th17 cell regulation and mainte-
nance of T-cells and IL-10 in infants fed with
breast milk.

Colliou et al. (2017),
Morrow et al. (2013)

Propionibacterium

Protective factor against the development of
necrotizing enterocolitis in preterm infants.

Colliou et al. (2017)

Prepares the gut environment for late coloniz-
ers such as Faecalibacterium and Coprococcus,
which depend on the presence of SCFA.

Morrow et al. (2013)

Modulation and maintenance of the immune
response.

D’Auria et al. (2013) Colonizer of the breast ductal system and
mammary tissue.

Chan et al. (2016)

Sphingomonadaceae
Potent stimulator of NK cells and cytokine
release through its glycosphingolipids.

Long et al. (2007) Ability to degrade aromatic hydrocarbons
mainly associated with breast cancer.

Urbaniak et al. (2014)

Promotes the protection against chemically
induced colitis through the development of
FOXP3+ T Reg cells in mice.

Atarashi et al. (2011) Associated with carbohydrate metabolism by
pentose metabolism.

Cynkin & Delwiche (1958)

Protection against IgE-mediated disease. Kamada et al. (2013),
Morrison & Preston, 2016Clostridiaceae

Promotes the generation of Th17 cells in mice
by stimulating IL-6 and IL-23.

Atarashi et al. (2011)
Butyrate producer. Morrison & Preston (2016)

Development of the neonatal immune sys-
tem.

Lundell et al. (2009) First colonizer of the gut tract in the first
month by overexpression of adhesion-related
genes.

Martín et al. (2012)

Staphylococcus
Super antigen function stimulates the sys-
temic secretion of IgA in neonates, protecting
against allergies.

Martín et al. (2012) Ability to degrade high concentration of
oligosaccharides in human milk.

Duncan et al. (2002),
Urbaniak et al. (2016)

The pili and extracellular polysaccharides
promote the modulation of the infant im-
mune system without causing an adverse in-
flammatory response. Induction of T-reg cells
via butyric acid and propionic acid in mouse
models and cell lines.

Turroni et al. (2010) Exceptional capacity to participate in the sac-
charolytic fermentation of carbohydrates,
which end−products that positively affect host
cells and gut bacterial community.

Tanaka & Nakayama (2017)

Bifidobacterium
Decrease the incidence of allergies. Bottacini, Van Sinderen & Ventura (2017) Early gut colonizer, with high capacity to per-

sist and to colonize.
Turroni et al. (2010)
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as Staphylococcu s (Hunt et al., 2012), while others like Propionibacterium, Staphylococcus,
and Streptococcus use lactose as energy source (Chassard, de Wouters & Lacroix, 2014).
These bacteria, have also capacity to metabolize lactate to propionic acid, conditioning the
gut environment for later colonizers as Faecalibacterium,Coprococcus, andRoseburia, which
rely on the presence of short chain fatty acids (SCFA) for growth (Duncan et al., 2002).
On the other hand, in our study some of the abundant bacterial taxa found in the human
milk such as Rhodobacteraceae, Sphingomonadaceae and Phyllobacteriaceae families, were
observed in low abundance in the corresponding stool; suggesting these bacteria are likely
not abundant colonizers of the distal colon, at least in our samples. We believe members
of these families may have a transient presence in this environment or they may reside in
other anatomical parts of the GI tract. We hypothesize that the presence of these taxa is
important for immunological stimulation during the early days of colonization.

In Mexico, mothers habitually do not thoroughly cleanse their breasts before
breastfeeding. For this reason and because we wanted to know the bacterial composition
transferred from mother to neonate during the process of breastfeeding, in our study the
mothers did not clean their breast prior to sample collection. There are other published
studies on the characterization of ‘‘Breastfeeding-associated microbiota’’ where the human
milk was collected without an aseptic cleaning procedure (Ward et al., 2013; Urbaniak
et al., 2014; Sakwinska et al., 2016). Based on our results, we think that in addition to
intrinsic bacteria from the human milk, skin–associated taxa are an additional source of
bacteria in the studied neonates. On the other hand, the microbial source tracker analysis
indicated that breastfeeding microbiota was the main source of bacteria in most of the fecal
samples of neonates, where only eight samples showed a total predominance of bacteria
identified as ‘‘unknown source’’ (Fig. 6A and Fig. S6). The source of these ‘‘unknown’’
bacteria may be the maternal gastrointestinal tract and the intrauterine environment such
as placenta and amniotic fluid, which are mainly dominated by members of the orders
Clostridiales, Bacteroidales, Lactobacillales, and Enterobacteriales (Parnell et al., 2017).
Likewise, the delivery mode could also contribute to the abundance of these taxa. The fetal
gut is exposed to these bacteria because large quantities of amniotic fluid are swallowed
during the last stage of pregnancy (Neu & Rushing, 2011); in fact, a recent study showed
a high degree of similarity between meconium bacteria and those found in amniotic fluid
(Ardissone et al., 2014). We can speculate that this microbial profile changes gradually after
the birth due to the incorporation of new bacterial members mainly transferred through
breastfeeding.

The delivery mode has been one of the most studied perinatal factors due to its potential
effect on milk microbiota, as well as on the neonatal gut microbiota composition. Studies
conducted in Spanish, Italian (Khodayar-Pardo et al., 2014; Cabrera-Rubio et al., 2016;
Toscano et al., 2017) and Chinese (Li et al., 2017) populations, have reported significant
differences in milk microbial profiles between mothers who delivered vaginally and those
who delivered by C-section. Conversely, in a report by Urbaniak and coworkers (2016),
no differences were identified in a Canadian population. In our study, we did not find
association between human milk microbiota composition and the delivery mode, which
can be explained because in our cohort we had only women with non-elective C-sections;
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the reported changes in the milk microbial communities appear to be more pronounced in
women undergoing elective, than non-elective C-sections (Cabrera-Rubio et al., 2012). The
same group also reported that milk microbiota of women who gave birth by non-elective
C-section was comparable to women who delivered vaginally (Cabrera-Rubio et al., 2016).
They suggest that physiological (e.g., hormonal) changes produced in the mother during
the labor process, may influence the composition of the bacterial community. On the
other hand, in our work the delivery mode had an impact on the infant gut microbiota
composition. C-section delivery was associated with larger infant gut microbiota diversity
and richness. Unlike our findings, most reports have shown lower diversity and abundance
of gut microbiota during the first month of life in newborns born by C-section (Penders
et al., 2006; Lee et al., 2016). Regarding Staphylococcus, Propionibacterium, Clostridium,
and Corynebacterium genera, several authors have found higher abundance in meconium
obtained from C-section neonates in accordance with our findings (Dominguez-Bello et
al., 2010; Liu et al., 2015). The abundance of Bacteroides and Bifidobacterium genera on the
other hand, has been reported to be decreased in C-section delivered infants (Montoya-
Williams et al., 2018). In accordance with this, we observed a tendency of depletion for these
genera in the C-section stool samples of this work, but without statistical significance. Our
results suggest that the delivery mode markedly modulates the gut microbiota composition
in the newborn from the first days of life, being exposed to bacteria from the mother’s skin
and vaginal canal microbiota, as well as non–maternal sources at the hospital environment.

The metagenomic predictions analyses of our data disclosed higher abundance of
bacterial metabolic pathways related to fatty acids metabolism, peroxisomes, and PPAR
signaling pathways, in humanmilk in comparison to neonatal stool samples. Lipids provide
the major portion (45%–55%) of the total energy content of human milk, contributing to
up to 90% of the energy required by exclusively breastfed infants during the first 6 months
of life (Brenna & Lapillonne, 2009; Koletzko et al., 2011); with the peroxisomes being one
of the main specialized cellular organelles where fatty acid metabolism occurs (Wanders,
Waterham & Ferdinandusse, 2016). Therefore, the high content of lipids present in human
milk, could not only depend on the mother’s endogenous mammary alveolar fatty acids
synthesis, but also it may depend on the contribution of short chain fatty acids as acetate
and lactate, produced by some bacteria of the milk microbiota (Henrick et al., 2018). It
is known that butyrate and propionate participate not only in the regulation of lipid
metabolism, but also have a role in the regulation of immune responses and inflammation
through activation of the peroxisome proliferator-activated receptors (PPAR) (Nepelska et
al., 2017; Hasan, Rahman & Kobori, 2019).

Neonates showed a high abundance of metabolic pathways in the gut microbiota related
to carbohydrate metabolism. Several studies have reported that Bifidobacteria—whose
abundance is significantly larger in our neonate samples—can metabolize a wide variety
of carbohydrates, such as lactose, the main sugar of human milk (Table 3). In addition,
Bifidobacteria can also degrade lactate anaerobically to pyruvate, to generate energy through
the pentose phosphate pathway (Wolfe, 2015). This metabolic adaptation of Bifidobacteria
to sugar–rich environments such as human milk, is due to its 5.5% of genomic sequences
associated to the metabolism of carbohydrates (Milani et al., 2015). Likewise, in the
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neonatal stool, an abundance of genes involved in the vitamin B6 (pyridoxine) metabolism
was detected. The production of B-vitamins has been also associated to bacteria such
as Bifidobacterium and Acinetobacter (Magnúsdóttir et al., 2015). Beyond its role as a
necessary cofactor in the folate cycle, vitamin B6 also plays an important role in amino
acid metabolism, the synthesis of neurotransmitters and the hormone melatonin (Rossi,
Amaretti & Raimondi, 2011). Metabolic pathways involved in bacterial colonization and
proliferation, such as bacterial secretion system and bacterial chemotaxis as well as antigens
presentation, were also over-represented in neonatal stool. Besides the interaction of
bacteria with the host, these functions are essential for the gradual colonization of the
immature neonatal gut. Adhesion to the intestinal mucosa is an important feature for
bacteria who colonize the gut (González-Rodríguez et al., 2013). Our study provides the
first results on human milk microbiota obtained under physiological conditions in healthy
Mexican mothers, and its association on the early colonization of the neonatal gut, as well
as the effect of delivery mode on the human milk and neonatal stool microbiota.

This study has the following limitations with respect to the environmental variables, we
could not obtain thematernal information related to dietary habits during pregnancy, which
could be relevant to the human milk microbial profiles. Although the core microbiome
and microbial source trackers analysis showed evidence about the shared bacterial taxa
and the vertical transfer of the microbiota from mother to child, the presence of common
taxa does not necessarily validate the vertical transmission, since the species could a have
a different origin, or identified taxa in different niches (human milk and neonate gut)
not necessarily are the same. Therefore, this result must be confirmed evaluating whether
shared bacteria belong to the same strain. Similarly, the origin of these bacteria is equally
important, especially to know which strain comes from the mother gut and which come
from the breast skin, as well as to determine the magnitude of these contributions in
the gut colonization of the newborn. However, we neither collected stool nor breast skin
samples from the mother. Additionally, there is a possibility that the specialized kit method
used to extract DNA from each type of sample (human milk, stool) affects the microbial
composition.

CONCLUSIONS
Our study provides evidence that the human milk is one of the main sources of
bacteria that colonize the neonatal gastrointestinal tract from the first days of life.
This gut colonization is characterized by a high dominance of bacterial taxa, mainly by
members of the phyla Firmicutes (Clostridium gasigenes, Streptococcus, Staphylococcus,
and Enterococcus), Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and
Bradyrhizobiaceae), Actinobacteria (Bifidobacterium, and Propionibacterium acnes) and
Bacteroidetes (Bacteroides), which may be transferred through lactation, while other taxa
in minor proportion such as Clostridiales could come from other sources. Likewise,
perinatal factors such as delivery mode suggest an association with the gut microbiota
composition in the neonates. Finally, we found a higher abundance of predicted bacterial
metabolic pathways associated with lipid metabolism in human milk, while in the neonates
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the functional pathways are more associated to carbohydrate metabolism and bacterial
colonization. This study contributes to the knowledge on human milk and neonatal stool
microbiota in healthyMexican population and supports the idea of verticalmother-neonate
transmission through exclusive breastfeeding.
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