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Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer

refers to the use of the body’s immune system to target malignant cells in the body.

Such immune therapeutics have recently been very successful in treating a diverse

group of cancerous lesions. As a result, many new immune therapies have gained

Food and Drug Administration approval for the treatment of cancer, and there has been

an explosion in the study of immune therapeutics for cancer treatment over the past

few years. However, the immune suppression of glioblastoma and the unique immune

microenvironment of the brain make immune therapeutics more challenging to apply

to the brain than to other systemic cancers. Here, we discuss the existing barriers to

successful immune therapy for glioblastoma and the ongoing development of immune

therapeutics. We will discuss the discovery and classification of immune suppressive

factors in the glioblastoma microenvironment; the development of vaccine-based

therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into

the tumor microenvironment, leading to secondary immune responses; the emerging use

of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the

use of cerebral microdialysis for immunemonitoring and the use of sequencing to develop

patient-specific therapeutics. Armed with a better understanding of the challenges

inherent in immune therapy for glioblastoma, we may soon see more successes in

immune-based clinical trials for this deadly disease.

Keywords: glioblastoma, immunotherapy, virus, vaccination, checkpoint, sequencing, cell therapy

INTRODUCTION

GBM is an often-fatal brain malignancy that accounts for the majority of primary malignant brain
tumors (1, 2) and has a recurrence rate of more than 90% (3). The current standard treatment
for patients with GBM is maximal safe resection of the tumor followed by radiotherapy with
temozolomide (TMZ), but survival is poor, with a median survival of just over 14 months (4).
While other treatments, such as Gliadel wafers (5), bevacizumab (6), and tumor treatment fields
(7), have been cleared by the Federal Drug Administration (FDA) for the treatment of glioblastoma,
no other treatment has been accepted by the neuro-oncology community as standard of care, due
to the inability of these treatments to significantly affect overall survival.

Immunotherapy is a rising field of study wherein one’s own immune system is manipulated
to target cancer antigens. Though the first report of a connection between tumor regression and
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infection was by Chekhov in 1884 (8), the concept of immune
therapy for cancer is often attributed to the first use of
Coley’s toxin in 1893. William Coley, a “bone surgeon,”
inoculated sarcoma patients with heat-inactivated streptococcus
after observing a case of a patient having tumor regression after
accidental infection (9). Over a century later, there have been
several breakthroughs in the field of immune-oncology, leading
to the FDA approval of several new agents, including checkpoint
inhibitors.

Checkpoint inhibitors nivolumab, an anti-programmed
death-1 (PD-1) antibody, and ipilimumab, an anti-cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) antibody,
demonstrated increased survival in untreated melanoma
(10) and were FDA approved in 2015. Pembrolizumab, another
anti-PD-1 antibody, has shown benefit in non-small cell lung
cancer (11) and was FDA approved in 2017. Chimeric Antigen
Receptor (CAR) T-cell therapy and blinatumomab, a targeted
antibody against CD19, were approved for pediatric leukemias
in 2017. In parallel with these advances, numerous groups
have pursued strategies for immunotherapy in glioblastoma,
given its recalcitrance in the face of traditional therapies.
However, glioblastoma has remained a challenging disease to
treat with immune therapeutics, as it has been a challenge with
conventional therapeutics.

It was previously believed that the brain was immune
privileged (12), because it could not induce an adequate
immune response in the case of graft rejection. This led to
understandable skepticism regarding the use of immune therapy
for these lesions. However, new insight has revealed that the
CNS, in communication with the rest of the body, can mount
appropriate immune responses (13). Despite this, the success
of immune therapy is not guaranteed. Immune therapy for
glioblastoma is limited by the immunosuppressive mechanisms
in the glioblastoma microenvironment (14). Therefore, scientists
are working to determine the role that these different
immunosuppressive factors play in tumor formation and
progression.

This review aims to highlight the development of immune
therapy for primary brain malignancies. Specifically, we will
provide a detailed review of key players of immune suppression
in the tumor microenvironment and outline the development of
new immune treatments for glioblastoma. These new immune
therapeutics include: checkpoint inhibition, tumor vaccines,
adoptive cell therapies and convection enhanced delivery of
tumoricidal viruses. Finally, we will discuss areas of future
research for immune therapy, including advances in immune
biomarker development.

IMMUNOPHENOTYPING THE TUMOR
MICROENVIRONMENT

Immunophenotyping, or the description of the immune system’s
form and functioning in the tumor microenvironment, has
emerged as an important factor in understanding tumorigenesis,
tumor survival, and potential for utilizing the immune system
against glioblastoma. A variety of immune cell types are found

in this environment with complex, still incompletely understood
interactions (Figure 1).

Regulatory T Cells
Several cell types have been associated with the
immunosuppressive glioblastoma microenvironment.
Regulatory T Cells (Tregs), traditionally CD4+CD25+ FoxP3+
lymphocytes, help balance the immune system in a non-
pathologic context, preventing injury from excessive activity and
autoimmune disease (15). These cells induce a shift toward the
T-Helper-2 (TH2) immune phenotype and immunosuppressive
cytokine production. However, Tregs are found in the blood
of glioblastoma patients at a higher ratio to CD4+ non-Tregs
as compared to healthy controls (16). Glioblastoma cells have
been found to release chemokines that attract Tregs to the
tumor microenvironment (17) via the chemokine CCL2 (18).
Most Tregs found in the tumor microenvironment are naturally
occurring Tregs of thymic origin rather than induced Tregs (19).
While CD4+ Tregs have been under extensive investigation for
decades, the existence and role of CD8+ Tregs is less well studied
and is not well understood in glioblastoma. First described
by Damle in the 1980s, CD8+ Tregs are CD8+ T cells that
are immunosuppressive (20), similar to CD4+ Tregs Kiniwa
et al. would go on to describe CD8+ Tregs from an oncologic
perspective in prostate cancer (21). Subsequent groups would
describe these immunosuppressive cells in colorectal cancer (22),
hepatocellular carcinoma (23), non-small cell lung cancer (24),
and ovarian cancer (25). However, similar studies have not yet
been performed in glioblastoma.

Macrophages and Myeloid Derived
Suppressor Cells
Monocyte-derived macrophages or microglia native to the CNS
can constitute as high as 12% of glioblastoma mass (26)
and have been associated with poor outcome in non-CNS
malignancies (27, 28). These tumor-associated macrophages can
be nonpolarized M0 macrophages, classical (M1) lineage or
M2 lineage. M1 macrophages upregulate cell surface molecules
associated with antigen presentation and recognition; release
proinflammatory cytokines such as TNF-α, IL-1β, and IL-12;
and directly phagocytose targets (29). The M2 macrophages,
however, help mediate immunosuppression and tumor invasion
(30). Studies have suggested that the M2 lineage has been found
in disproportionately high concentration in the glioblastoma
environment (31) and their prevalence has been associated
with glioma grade (32). This M2 immunosuppressive state is
maintained by multiple signals, including the TGF-beta pathway
and TH2 cytokines IL-4 and IL-10 (33). Conversely, interferon-
gamma activates the inflammatory M1 phenotype (34). RNA
sequencing of tumor associated macrophages in murine models
and human samples suggests that a majority of macrophages
found in glioblastoma are bone-marrow derived, rather than
resident microglia, and that they have enriched proliferation
and migration gene expression (35, 36). Recently, whole-genome
analysis and microRNA expression profiling performed on
human tumor tissue suggested that the macrophage population
represents a spectrum rather than strict lineages, with the
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FIGURE 1 | Normal Inflammation vs. Immunosuppression Mechanisms. Antigen presenting cells (APCs) phagocytose tumor antigens and present to cytotoxic T cells

as well as naïve CD4+ cells. Via coactivation signals, the APCS activate the cytotoxic T cells (A) and skew helper T cells to a proinflammatory Th1 lineage (B). The

activated cytotoxic T cells then recognize and attack malignant cells (C). T regulatory cells, M2 macrophages, and MDSCs are major mediators of immune

suppression. M0 macrophages may be skewed toward a pro-inflammatory M1 phenotype by IFN-γ (D), which directly phagocytose target cells and release

proinflammatory cytokines. (E) Glioblastoma cells also signal M0 macrophages to skew toward an M2 phenotype which release immunosuppressive cytokines.

Immune checkpoints induce anergy and apoptosis of CD8+ cytotoxic T cells (F) and CD4+ cells.

largest share most similar to M0 macrophages (37). Driving
differentiation of TAMs to an M1 phenotype could be a
new treatment approach. MiR-146, a microRNA found to
direct hematopoietic differentiation (38), was found to be
downregulated in glioblastoma macrophages and may direct
the M0 phenotype toward a pro-inflammatory M1 lineage.
Additionally, miR-142-3p is downregulated in glioma TAMs,
and administration of miR-142-3p in a murine glioma model
decreased infiltrating TAMs and extended median survival (39).
A shift toward an M1 phenotype has been associated with
response to therapy in a murine glioma model (40). However,
iatrogenic sources may also affect balance of M1 and M2
macrophages, with one study finding that radiation therapy
increased the proportion of M2 macrophages in in-vivo murine
glioma models due to increased radiosensitivity of the M1 line
(41).

Myeloid derived suppressor cells (MDSCs), precursors to
both macrophage lineages, are found in higher levels in the
serum of glioblastoma (42). This cell type is generally considered
to have an overall immunosuppressive phenotype, though
there have been reports of antitumor effects via nitrous oxide
release (43) and potential M1 macrophage characteristics (44).
However, in glioblastoma, these cells are immunosuppressive
(45). MDSCs promote Treg proliferation (46), create oxidative
stress that inhibits T cell proliferation (47), and deplete L-
arginine, inhibiting CD3 production and T cell proliferation
(48). Gielen et al describe a trend toward increased circulating
MDSCs in glioma patients dependent on tumor grade, as well
as increased arginase activity of these MDSCs compared to
healthy controls (49). Additionally, immature monocytes have
been found to express CTLA-4 (50) and PD-L1 (51), prominent
immune checkpoints, which are membrane proteins associated
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with modulating T cell activation and anergy. Targeting MDSCs
has shown benefit in pre-clinical models of non-CNS tumors
(52), and a phase I trial is currently underway to evaluate if this
strategy may be effective in glioblastoma (53).

Immune Checkpoints
In the physiologic state, immune checkpoints play an important
role in the constant balance of immune modulation in order
to prevent autoimmunity (54). In typical activation of T cells,
coactivation of two receptor-ligand pairs is required. Major
histocompatibility complex (MHC) I and II are key components
of antigen presentation and recognition that make up one half
of this co-stimulatory pathway. CD28/B7 interaction often acts
as the second signal. Antigen presenting cells (APCs) activate
cytotoxic T cells and T helper cells by presenting a tumor
antigen on the MHC complex and providing co-stimulation (55).
Cytotoxic T cells directly attack tumor cells that express a targeted
antigen while helper T cells propagate an antitumor immune
response via release of proinflammatory cytokines and induction
of immune memory B and T cells (56). Immune checkpoints
are regulators of the immune system that are expressed by T
effector cells, APCs, and myeloid-derived cells in the normal
immune system. When these checkpoints are engaged, they
decrease immune activity by promoting T-cell anergy and
apoptosis (57), preventing T-cell co-stimulation and activation
by antigen presenting cells (58), and promoting Treg suppression
of T effector cell functioning (59), among other mechanisms of
immunosuppression. However, in the tumor microenvironment,
tumor cells may utilize these pathways to suppress an effective
immune response targeted toward the tumor (14).

Cytotoxic T-lymphocyte associated protein type 4 (CTLA-4)
was described as an inhibitor of T cell activation by Walunas
et al. (60). CTLA-4 on APCs prevents CD28/B7 co-stimulation
by outcompeting CD28 to interact with B7, thus creating an
inhibitory response in the T effector cell (61). However, it
also exists on Tregs in a constitutively active form, potentially
increasing this cell type’s immunosuppressive potency (62). Since
the discovery and characterization of CTLA-4, multiple other
checkpoints have been discovered including PD-1 (63), LAG-
3 (64), TIM-3 (65), CD137 (4-1BB) (66), GITR (67), and
CD134 (OX40) (68). Thesemolecular signals have been identified
on infiltrating immune cells of many different malignancies,
including glioblastoma, and the cancer cells often express the
ligands for these checkpoints (69). Programmed cell death-1
(PD-1) is a cell surface immune checkpoint found on effector T
cells, while its ligand, PD-L1, can be expressed by glioblastoma
cells, with elevated PD-L1 being associated with poor overall
survival in glioblastoma patients, independent of other factors
(70–72). PD-L1 is additionally found on antigen presenting
cells and immunosuppressive immune cells such as Tregs. One
study found a correlation between PD-L1 expression and a
marker of regulatory T-cells, FoxP3, as well as between FoxP3
expression and patient survival in patients with glioblastoma
(73). Lymphocyte-activating gene-3 (LAG-3) is a cell membrane
protein found on NK cells, APCs, and some T lymphocytes
including Tregs (74). LAG-3 interacts with MHC class II
molecules with greater affinity than their typical partner, CD4,

and, in doing so, prevents CD4T helper cell proliferation and
cytokine release (60). Groups studying various malignancies have
suggested that these checkpointsmay work alone or in parallel for
immune evasion (75).

CHECKPOINT INHIBITION

Checkpoint inhibition describes the use of a treatment to
interfere in the interaction between an immune checkpoint
molecule and its target, receptor, or ligand (Figure 2). This
is intended to cause a net immune stimulating effect by
inhibiting an inhibitory signal. After the discovery of CTLA-
4’s immunosuppressive function, antibody-mediated CTLA-4
blockade caused tumor regression in murine models (54).
Following several promising phase II trials (76–78) the first
phase III study of a checkpoint inhibitory showed anti-CTLA-
4 improved survival in metastatic melanoma in 2010 (79). The
Checkmate 067 trial demonstrated that anti-PD-1 and anti-
CTLA-4 either alone or in combination imparted increased
survival in untreated melanoma. Notably, patients whose tumors
displayed increased PD-L1 expression had significantly improved
survival on this therapy than those with low PD-L1 expression
(10). Similar trends in response to anti-PD-1 therapy related to
PD-L1 expression have been described by multiple groups in
non-small cell lung cancer (80). However, PD-1 and CTLA-4
pathways may cause immune suppression in parallel, with one
trial finding that treatment with either anti-PD-1 or anti-CTLA
checkpoint inhibition in melanoma results in upregulation of
the other pathway to continue immune evasion, suggesting a
potential limitation to monotherapy (81).

Work by groups led by Lesniak and Lim extended these
positive findings to glioblastoma in murine models by showing
survival benefit in glioma-implanted mice treated with PD-
1 blockade in combination with CTLA-4 blockade (82) and
with radiation therapy (83). In response to the promising
results of checkpoint blockade in non-CNS cancer and what
was believed, at the time, to be high expression of PD-L1
in glioblastoma (84) the Checkmate 143, Checkmate 498, and
Checkmate 548 trials explored checkpoint inhibition in GBM.
The checkmate 498 (85) and 548 (86) trials focused on the
use of nivolumab on MGMT unmethylated and methylated
newly diagnosed GBM, while Checkmate 143 investigated its
use in recurrent GBM (87). Checkmate 143 has completed
with no overall survival benefit of nivolumab treatment
in this patient population (88). Filley et al. proposed that
the negative result may be due to several different factors,
including the profound immune suppressive microenvironment
of glioblastoma, systemic immune suppression of glioblastoma
patients and the antibody’s inability to cross the blood-
brain barrier (89). Additionally, they postulate that checkpoint
inhibition may be less effective at reactivating immune cells
rather than preventing immunosuppression in the immune
environment in recurrent glioblastoma. Furthermore, steroid
use at 4mg of dexamethasone per day or higher was quite
prevalent in the treated population, and the investigators
did not obtain pathological confirmation of tumor recurrence
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FIGURE 2 | Immune checkpoint inhibition. (A) Immune checkpoints hinder T-cell activation and promote an immunosuppressive state. However, these checkpoint

molecules can be neutralized by targeted antibodies. (B) After the checkpoint molecules are negated by these blocking antibodies, T effector cells are better able to

recognize and attack tumor cells.

prior to halting therapy. This could have led to premature
discontinuation of immune therapy, given the difficulty in
distinguishing inflammatory treatment response from tumor
progression in glioblastoma patients (90). However, there are a
variety of other trials investigating the combination of checkpoint
inhibition with other therapies, such as vaccination, discussed
below, which are still ongoing (85). Potential therapeutic
benefit of LAG-3 blockade was shown in a phase I/II
trial in metastatic breast cancer (91) and a phase I trial
for renal cell carcinoma (92) with a study in pancreatic
cancer terminated due to drug production difficulties (93).
In response, several phase I studies of LAG-3 blockade
are underway, including for a variety of solid tumors (94)
and hematologic malignancies (95). One of these studies
is currently investigating the use of anti-LAG3 checkpoint
inhibition, along with PD-1 and CD137 blockade in recurrent
glioblastoma, though results have not yet been released
(96).

TUMOR VACCINATION

Vaccines have been extensively studied as a potential therapy
for gliomas. In general, vaccines expose the immune system
to a weakened or killed antigen to build immune memory
against any future exposure to that antigen (97). Cancer vaccines
work via similar mechanisms. Theymanipulate immunememory
following a primary encounter with a cancer associated antigen
to activate T-cells and induce an inflammatory response which is
targeted against the tumor.

Dendritic Cell Vaccines
Dendritic cells (DCs) were first described as novel stellate cells
found in lymphoid tissue in 1973 by Steinman and Nussenzweig
(98). Our current understanding is that they are intermediate
antigen presenting cells (APC) to both CD4+ and CD8+ T-cells
as well as activators of natural killer cells (NK-cells) and NK-
T-cells in the setting of MHC (96, 99). MHC expression can be
downregulated in the glioblastoma microenvironment, reducing
the efficiency of antigen presentation (100–102). This makes
effective antigen presentation even more critical for successful
immune therapy in the brain.

The general process of autologous DC vaccine development
requires isolation of DCs from a subject’s blood, pulsation of the
immune cells with the cancer associated antigen for stimulation,
and, finally, treatment of the subject with the newly formed
vaccine (103) (Figure 3). Preclinical investigations in mice
revealed that peripherally injected DC vaccines could induce
cytotoxic T-lymphocyte (CTL) responses in the CNS without
causing major adverse effects such as autoimmune responses
(104). Further studies in glioma mouse models confirmed
that DC vaccines could target and kill these tumors without
significantly harming normal brain tissue (105, 106). In a Phase
I clinical trial for DC vaccine use in glioma, Wheeler, Wu,
and team pulsed immature DCs of 9 glioma patients with
tumor peptides eluted from cultured autologous tumor cells
(107). Patients underwent initial tumor resection followed by
conventional radiotherapy (RT) prior to elution of MHC-I
peptides from the tumor sample and DC extraction from host
venous blood. They observed that 4 of the 7 patients that were
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FIGURE 3 | DC vaccine development.(A) The general process of DC vaccine development and immunization requires tumor lysate isolation. Patients first undergo

resection of the tumor for production of lysate as well as patient leukapheresis to collect dendritic cells. (B) The tumor associated antigen, mRNA, or lysate is used to

pulse mature or immature DCs obtained through patient leukopharesis. (C) Primed DCs are then administered as a vaccine to patients peripherally.

given the vaccine had a positive cytotoxic T-cell response. After
vaccination, 4 tumors were re-resected and 2 of them exhibited
CD8+ T-cell and memory T-cell infiltration (103). This research
illustrated the ability of ex-vivo educated DCs to augment the
proinflammatory response against tumor.

CD133, also known as prominin-1, is a transmembrane
glycoprotein receptor that has been proposed to play a vital role
in cell proliferation due its association with the WNT signaling
pathway, but its overall function still remains undefined (108).
CD133+ cells have been recognized in a study by Singh et al.
as potential brain tumor initiating cells. The study showed that
only the CD133+ human brain tumor cells possessed the ability
to initiate phenotypically identical tumor growth in non-obese
diabetic severe combined immunodeficient mouse brains with
just 100 cells injected. The CD133- cells on the other hand were
not able to cause tumor growth even with as many as 105 cells
injected into the mouse brains (109). CD133 is now a common
marker used to identifymalignant cancer stem cells in GBM (110)
as well as in endometrial (111), colon (112), lung (113), prostate
(114), ovarian (115), skin (116), and breast (117) cancer. CD133+
cancer stem cells in GBM have been shown to be resistant
to radiotherapy and chemotherapeutic drugs (118) as well as
contribute to the recurrence of the tumor after radiation (119). A
promising DC vaccine trial (120) targeting CD133 was reported
in June 2017 at the American Society of Clinical Oncology annual
meeting (121). This Phase 1 trial of the ICT-121 DC vaccine was
carried out in patients with recurrent glioblastoma who express
the HLA-A2 phenotype. In this trial, the patient’s DCs were
pulsed with CD133 to create the vaccine. The vaccine was then
administered to the patient once a week for 4 weeks for the
initial induction phase, followed by once every 2 months for the
maintenance phase. They reported that the ICT-121 DC vaccine
was considered safe and tolerable. Eight out of the 20 patients
enrolled were surviving at the time of the report, and cytokine
mRNA expression suggested the presence of an active immune
response to the CD133 epitopes.

Multiple clinical trials have since been performed to evaluate
the safety and efficacy of dendritic cell vaccines in patients. Liau

et al. reported Phase I clinical trial results of the use of DCVax-
L, a DC vaccine generated with autologous tumor lysate, in
newly diagnosed and recurrent glioblastoma patients (122) and
they found that the treatment was safe. De Vleeschouwer and
team reported in their Phase I/II study feasibility study using
a tumor lysate pulsed DC vaccine with RT and concomitant
TMZ in 2010, and they demonstrated a 18.3 month median
survival with this approach (123). Dr Liau’s team has recently
reported early results from a Phase III trial of DCVax-L, which
completed enrollment in November of 2015. In this study,
patients underwent tumor resection for vaccine preparation, they
received standard concurrent radiation and chemotherapy with
TMZ, and they were subsequently randomized into two groups:
a group receiving DCVax-L, and a placebo group (124). Of note,
all patients were given the opportunity to receive DCVax-L at
the time of progression/recurrence without breaking the blind
regarding their initial treatment. As a result, at the time of
publication, 86.4% of patients enrolled in the study had received
DCVax-L at initial diagnosis or recurrence. The early median
survival results show that patients who received the vaccine
survived 23.1 months, which does appear promising, but we will
be unable to determine the true impact of the treatment until
enough events of progression and/or death have occurred to
report the unblinded randomized results.

To improve the therapeutic index of these trials, some
groups are combining dendritic cell vaccines with other
immunomodulatory therapies. Sampson and team in 2014,
investigated DC migration to vaccine site-draining lymph nodes
following tetanus diptheria toxoid (Td) pre-conditioning in
mouse models as well as in patients with newly diagnosed GBM
(125). This led to human CMV pp65-LAMP mRNA-pulsed
autologous DCs now being used in the Phase II ELEVATE trial
(126). Patients with newly diagnosed GBM who have undergone
resection and standard TMZ and RT are separated into 3
groups to understand how pre-conditioning the body can affect
migration of the pulsed DC vaccine. Groups are given unpulsed
DCs, Td, or Td accompanied with the immunosuppressive drug,
basiliximab as pre-conditioning for the CMV pp65-LAMP DC
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vaccine. Basiliximab is a chimeric CD25 monoclonal antibody
that has been shown to decrease Treg expansion in transplant
patients, and it is being added to the trial to attempt to prevent
Treg expansion after TMZ therapy (127).

Peptide Vaccines
Although DC vaccines have the potential to be effective in
patients with GBM, their development poses a challenge to
those that may not have the facilities to safely extract and pulse
DCs with tumor components, therefore limiting the ability to
rapidly scale these therapies for broad utilization. Similar to
DC vaccines, peptide vaccines are made from tumor associated
antigens, but instead of creating the vaccine in a personalized
manner, peptide vaccines are “off-the-shelf ” therapies that can
be centrally produced. Peptide vaccines are thus more rapidly
available for distribution to various medical centers, making
them an attractive approach for multicenter trials for glioma
immune therapy (128).

A well-studied target for peptide vaccines is the epidermal
growth factor receptor (EGFR), a receptor tyrosine kinase that is
highly expressed in high grade gliomas compared to normal brain
tissue. In GBM, there are frequent mutations in EGFR, with the
most common being the EGFR variant III (EGFRvIII) truncated
mutant. EGFRvIII does not have a ligand-binding domain like
the wild-type receptor, and it is therefore constitutively active,
driving tumorigenesis (129, 130). This makes EGFRvIII a very
attractive target for immune therapy, as it is a tumor-specific
target driver of the malignancy, and it is expressed on the cell
surface.

EGFRvIII peptide vaccine was generated by the fusion of
a synthetic peptide that represents a truncated amino acid
chain of EGFRvIII with keyhole limpet hemocyanin (KLH),
a highly immunogenic peptide (Figure 4). Early investigations
of EGFRvIII peptide vaccines in murine models resulted in
a CTL mediated immune response to the EGFRvIII antigen
(131).

John Sampson, Amy Heimberger, and team conducted
initial trials using rindopepimut, a peptide vaccine targeting

EGFRvIII, in glioblastoma patients. They observed that the
drug is tolerated at maximal doses with minimal adverse effects
as determined by the Phase I VICTORI trial (132). In the
Phase II ACTIVATE trial, they administered rindopepimut to
newly diagnosed GBM patients who had undergone surgical
resection and were receiving TMZ treatment. They showed a
significant increase in both PFS and mOS at 14.2 and 26 months,
respectively, with minor adverse reactions (133) which suggested
that rindopepimut was both safe and beneficial to use with the
standard GBM treatment of TMZ.

TMZ, however, can causemyelosuppression and lymphopenia
in patients undergoing the treatment (134). ACT-II, a Phase II
clinical trial of rindopepimut, revealed that EGFRvIII peptide
vaccine could still be beneficial in conjunction with the standard
treatment of TMZ in newly diagnosed GBM patients. However,
they showed that at higher doses of TMZ, patients were at risk
for greater toxic effects (135). Additionally, targeted tumor cells
lost expression of EGFRvIII, demonstrating the specificity of the
drug for its target (120).

The positive results observed in both the ACTIVATE and
ACT-II clinical trials allowed for an expansion to a multicenter
Phase II investigation of the drug known as ACT-III. Sixty-five
newly diagnosed GBM patients were treated with rindopepimut
and concomitant TMZ and the results continued to show
increased PFS and mOS, as well as increased anti-EGFRvIII
antibody titers in 85% of the patients (136). The vaccine then
became part of a global, double-blind Phase III clinical trial
in newly diagnosed GBM cases [ACT-IV (137)].Unfortunately,
ACT IV was terminated in 2016 as the control group had a higher
mOS than the vaccinated group. It is believed that, in part, the
heterogenous expression of EGFRvIII in GBMmay have played a
role in the failure of the trial (138).

The ReACT Phase II clinical trial used a combination
of rindopepimut with the VEGF monoclonal antibody,
bevacizumab, in patients with recurrent GBM, as bevacizumab
has been shown to improve PFS in recurrent GBM (139). This
trial showed a positive trend toward increased PFS in recurrent
GBM patients (140).

FIGURE 4 | Peptide vaccine. (A) In the peptide vaccine, rindopepimut, EGFRvIII peptide is fused with highly immunogenic KLH (PEPvIII-KLH) for vaccine preparation.

(B) The vaccine is administered intradermally and the antigen is recognized by APCs. (C) APCs present to T-cells and CTLs. (D) T-cells activate B-cells which then

produce antibodies to EGFRvIII in the tumor. CTLs cross the blood brain barrier and target GBM cells with EGFRvIII on the surface. This activation of T-cells and CTLs

results in anti-tumor response.
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Aside from targeting EGFRvIII, ongoing clinical trials are
utilizing vaccines targeting multiple antigens, such as the
11 tumor-associated peptides targeted by the IMA950 trial.
In this study, the peptide vaccine is given together TMZ
and either Poly-ICLC (141) a vaccine with broad innate
and adaptive immune enhancing effects, or RT (142). This
multi-peptide approach could overcome the antigen loss
often seen when targeting a single tumor-associated antigen
(120).

Heat Shock Protein Vaccination
Heat shock proteins (HSPs) can broadly activate both the
innate and adaptive immune systems as well as enhance MHC-
I and MHC-II presentation of antigens (143). Tumor cells
have increased HSP expression because of their high metabolic
rate, which can leave the cells riddled with misfolded and
aberrant proteins, resulting in cellular stress (144). HSPs make
complexes with cellular stressors such as antigens and traffic
them to APCs, where they can ultimately induce an anti-tumor
immune response, making them an attractive component in
cancer vaccine development. The vaccine is generated following
resection of a patient’s tumor. HSPs released from the resected
tumor cells are believed to form complexes with tumor associated
antigens. The HSP-tumor peptide complexes are isolated from
the tumor, ex vivo, verified via Western Blot, and purified to
make the vaccine. Then, they are peripherally administered back
to the patient, where it is hoped that these HSP complexes
will help prime CTL against the tumor (145) (Figure 5). Initial
investigations utilizing HSP peptide complex-96 (HSPPC-96),
an HSP that can bind tumor-associated antigens, as a tumor
vaccine revealed that this treatment was safe and there was
significant peripheral immune response to the treatment (146).
This phase I trial, led by Andrew Parsa and Orin Bloch, disclosed
a significant immune response specific to the tumor site in 11 of
the 12 recurrent GBM patients they treated with the vaccine with
minimal adverse effects. The mOS for those 11 responders was 47
weeks post-surgery and vaccination compared to 16 weeks of the
single non-responder (128). In a follow-up Phase II trial, the team
revealed the safety and efficacy of the vaccine when used with
concomitant standard TMZ therapy (147). The group further
demonstrated that PD-L1 expression on migrating myeloid cells
induced systemic immunosuppression that could diminish the
effect of the vaccine. Their 2009 Phase II HeatShock trial in
newly diagnosed GBM demonstrated that MGMT methylation,
Karnofsky performance score (KPS), and PD-L1 expression
were prognostic factors for vaccine effectiveness (148). Mark
Gilbert and team are currently recruiting newly diagnosed
glioblastoma patients for a Phase II clinical trial investigating
the effect of HSPPC-96 vaccine treatment together with standard
radiotherapy and TMZ as well as pembrolizumab, an anti-PD-
1 checkpoint inhibitor, to elucidate whether the HSPs from
these individuals can enhance pembrolizumab efficacy (149).
Dr. Fangusaro is also investigating this approach in pediatric
subjects diagnosed with either HGG or ependymoma. They aim
to determine if the vaccine is both efficacious and safe in the
pediatric population (150).

FIGURE 5 | HSP vaccine. (A) The glioblastoma is resected. (B) HSPs bound

to the tumor antigen are released by ex-vivo tumor cell lysis. (C) The desired

HSPs are isolated and peripherally administered back to the patient as a

vaccine. (D) Once injected, the HSP-tumor peptide complexes are taken up

by antigen presenting cells, likely facilitated by CD91, and these peptide

complexes are presented on MHC Class 1 molecules for recognition by CTLs

(E) CTLs cross the blood brain barrier and target GBM cells. This activation of

T-cells and CTLs results in anti-tumor response.

ADOPTIVE CELL THERAPY (ACT)

Adoptive cell therapy (ACT) has recently emerged as a promising
immunotherapeutic regimen against various malignancies. ACT
refers to the collection and manipulation of a patient’s
lymphocytes to target and kill cancer cells, first described when
Delorme et al. observed that transferred lymphocytes could
inhibit proliferating sarcomas in rat models (151).The first report
of this approach for human use was in 1988 by Rosenburg et al.
They used tumor-infiltrating lymphocytes (TILs) in combination
with interleukin-2 to treat metastatic melanoma. In this study,
they found objective regression in 60% of patient tumors. TIL
treatment is now considered a highly effective therapy against this
disease (152). Since then, ACT has advanced and now embodies
a broad scope including several treatment modalities: tumor-
infiltrating lymphocyte (TIL) immunotherapy, T-cell receptor
(TCR) therapy, and chimeric antigen receptor (CAR) T-cell
therapy.
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TIL Therapy
The use of TILs, infiltrative lymphocytes with increased tumor-
specificity that reside within the peritumoral space, for cancer
therapy was introduced by the Surgery Branch at the NIH.
This treatment involves TIL harvest at the time of tumor
resection, expansion and stimulation with IL-2, and reinfusion
of stimulated TILs into the body (153). Rosenburg et al.
demonstrated the success of this treatment in metastatic
melanoma (154). TIL therapy resulted in a complete response in
approximately 20% of metastatic melanoma patients, with 40–
50% of patients exhibiting transient response (155, 156). Solid
tumor regression using TILs has also been reported in ovarian
cancer and renal cell carcinoma (157). Additionally, TILs have
recently gained popularity because these cells can be modified to
recognize tumor-specificmutations creating neo-epitope reactive
TILs (158). This treatment was applied in patients with colorectal
cancers using TILs specifically targeting the Kras G12D mutant
(159). Next generation sequencing to identify tumor-specific
mutations shows promise in generating a genetically precise
model of tumor-targeted TILs (160, 161) TIL therapy may be a
promising mode of treatment for glioblastoma, but TIL therapy
for the treatment of CNS malignancies has to be carefully
investigated for its potential toxic effects and risk of cytokine
release syndrome (162). Overall, recent technological advances
in ACT expansion methods and preconditioning show progress
for this field, but difficulties pertinent to treating central nervous
system malignancies remain.

TCR Therapy
TCR therapy uses patient T-cells obtained from the peripheral
blood which are modified to express tumor-specific α and
β chains for enhanced antigen-recognition in treating solid
tumors (163). TCRs express naturally occurring receptors that
can recognize surface antigens as well as intracellular tumor
antigens on antigen presenting cells by binding to the MCH
complex (164, 165). The most notable clinical applications
include the use of TCR therapy to target melanoma-associated
antigen recognized by T-cells 1 (MART-1), melanoma-associated
antigen A3 (MAGE-A3), and New York esophageal squamous
cell carcinoma antigen (NY-ESO-1) (166–168). These trials
demonstrated at least partial responses in patients withmetastatic
melanoma and synovial sarcoma and continue to show promise
(148–150, 169). An ongoing trial is recruiting patients with
diverse cancers including melanoma, synovial sarcoma, breast
cancer, and non-small cell lung cancer patients for TCR directed
NY-ESO-1 therapy (170, 171). While TCRs targeted to these
specific antigens have not been tested in GBM, these antigens
do present in gliomas as well, and due to their efficacy in other
cancers warrant further investigation (172, 173).

CAR T-Cell Therapy
In CAR T-cell therapy, T-cells obtained from peripheral blood of
patients are genetically engineered to express synthetic chimeric
antigen receptors (CARs) on their cell surface which are specific
for antigens expressed on a tumor’s cell surface (174). These
cells are then expanded in vitro and returned to the patient
via infusion to subsequently proliferate in the body (175).

Further modification and enhancement of CARs has generated
a new generation of these synthetic T-cells. First-generation
CARs are designed simply with an antigen recognition domain.
However, second-generation CARs and beyond have additional
co-stimulatory domains such as CD28 and 4-1BB which lower
the barrier to activation and optimize receptor function (176)
(Figure 6). CART-cell therapy has had success in treating various
blood cancers by targeting an antigen, CD19, which is expressed
among B-cells (177). Specifically, successful clinical trials led by
Grupp et al. treating acute lymphoblastic leukemia (ALL) using
CD19-targeted CAR T-cells led to its FDA approval in 2017
(178). However, disease recurrence has been observed in various
clinical trials using CD19 CAR T-cell therapy to treat leukemias
and lymphomas due to a phenomenon of antigen loss, where
cancer cells no longer express CD19 (179). CD19-targeted CAR
T-cell therapy has since been modified to address antigen loss by
altering CARs to express antigen receptors that bind CD22 or
CD123, which are antigens also expressed by these neoplastic B-
cells (180). Additionally, Kochenderfer et al. developed a CAR
T cell therapy targeted to B-cell maturation protein (BCMA),
present in a majority of multiple myeloma (MM) cells, which
resulted in a complete response in 50% of patients for this
ongoing trial (181).

With the overt success of ACT treatment against blood
cancers, questions have arisen about the potential efficacy of
CAR-T-cells against solid tumors. Some in the field are skeptical
that CAR T-cell therapy will demonstrate the same efficacy in
solid tumors because the majority of solid tumor antigens exist
inside the cell, away from CAR T-cell binding (182). However,

FIGURE 6 | Chimeric Antigen Receptor (CAR) T-cells each directed at a

specific GBM-specific tumor antigen. Each CAR T-cell therapy developed for

the treatment of glioblastoma utilizes a CAR directed toward one antigen such

as HER2, EGFRvIII, or IL-13Rα2. (A) Engagement of tumor-specific CAR

T-cells with target cell surface antigen present on tumor cells causes CAR

T-cell activation. (B) Second and third generation CAR T-cells are synthesized

with co-stimulatory molecules such as 41BB, CD28, and CD3 which lower the

CAR T-cell barrier to activation. (C) Fully activated CARs attack target cells

causing tumor cell lysis. (D) Cells negative for the CAR T-cell target

demonstrate the heterogeneity of the tumor and represent a barrier to treat as

these cells not targeted continue to proliferate.
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investigators have made progress in generating CAR T-cells
that target proteins overexpressed in many solid cancers with
promising results in preclinical models of pancreatic cancer (183)
neuroblastoma (184) and lymphoma (185) among others. As a
result, phase I and phase I/II trials are underway targeting a
variety of antigens in solid tumors (186).

For GBM, CAR T-cells generated to target one of three
GBM-specific antigens—HER2, IL-13Rα2, or EGFRvIII—are
being studied in clinical trials. HER2 is a tyrosine kinase
receptor overexpressed in many cancers, including up to 80%
of GBMs (187) (Figure 6). In 2010, a phase 1 trial was started
at Baylor using CAR T-cells targeting HER2. Of note, these
CARs were generated with a CD28 signaling domain and pre-
selected for their ability to naturally recognize cytomegalovirus
(CMV), which may augment therapeutic potency of these cells
by also targeting CMV-related peptides in the glioblastoma
microenvironment. A total of 16 recurrent HER2+ GBM patients
were enrolled for treatment by this second generation HER2-
CAR CMV-T cell which led to a partial response in 1 patient
lasting more than 9 months. Of the 16 patients, 7 presented
with stable disease for up to 29 months. Blood samples revealed
that HER2-CARs were detected in only 7 patients at 6 weeks
post-treatment, and levels continued to decline, suggesting these
CARs were unable to expand in vivo (188). Although this therapy
showed early signs of efficacy, one challenge is prolonging the
life of these CAR T-cells. Beginning in 2018, City of Hope is
leading a phase 1 clinical trial by Dr Badie and colleagues that
aims to treat HGG patients with autologous memory-enriched
T-cells transduced via lentivirus to express HER2 and 41-BB co-
stimulant (189) as 41-BB has been reported to improve CAR T-
cell persistence (190). The addition of this costimulatory signal
has led to improved cytotoxicity to the target tumor cells (191,
192) as well as decreased T cell exhaustion (193) in in vitro
models.

IL-13Rα2 is another promising antigen expressed in
approximately 75% of GBMs but not at significant levels in
normal brain cells (194) (Figure 6). From 2008 to 2011, Badie
and others at City of Hope held a pilot safety and feasibility
trial which enrolled 3 HGG patients for treatment using first
generation CAR T-cells directed at IL13Rα2 via intracranial
delivery directly to the resection cavity. Patients were not
excluded based on lack of IL13Rα2 antigen positivity. Overall, all
3 HGG patients showed decreased IL13Rα2 tumor expression
following therapy, and the post-relapse mean survival was 11
months (195). City of Hope then began using second generation
IL-13Rα2-41BB co-stimulated CAR T-cells to treat recurrent
or refractory HGG patients using intracavitary, intratumoral,
or intraventricular infusions (196). While this study is still
recruiting and final results have not been reported, a case study
from this trial demonstrated complete response of recurrent
multifocal GBM lasting for 7.5 months (197). This patient
was treated with intracavitary infusion until leptomeningeal
disease progression was found, at which point CAR T-cells were
administered by intraventricular infusion which led to transient
complete response, though notably, recurrence ultimately
occurred in the form of distal metastases that expressed
lower levels of IL13Rα2. The promising results of this work,

though limited by small patient numbers, encourage further
investigation.

Lastly, the EGFR variant, EGFRvIII, is a tumor-specific
truncated version of the EGFR receptor, making it an attractive
glioblastoma cell-surface target for CAR T cells. There are
currently six ongoing trials that utilize CAR T-cells directed at
EGFRvIII. Beginning in 2011, Rosenberg et al. of the National
Cancer Institute led the first clinical trial directed at EGFRvIII,
which is still ongoing (198). Early success has been reported in a
phase I clinical trial of EGFRvIII-targeted CARs led by Donald
O’Rourke and colleagues at the University of Pennsylvania.
Of the 10 patients, 7 patients underwent reresection after
therapy. Tissue from 3 of these patients demonstrated reduction
of EGFRvIII expression, and 2 had complete elimination of
detectable expression. Additionally, they noted that 3 patients
demonstrated lymphocytic tumor infiltrates with broad T cell
clonotype diversity. However, progression occurred in almost
all cases despite antigen loss. As of 2017, one patient survived
greater than 18 months with no further treatment while another
two patients are alive, albeit with signs of disease progression.
Importantly, the tumor microenvironment of surgical specimens
from CAR T-Cell treated tumors in this trial displayed marked
upregulation of PD-L1, IDO, and TGF-β, as well as FoxP3+Tregs
(199). This suggests that tumors adapt to treatment with this CAR
T-cell and are capable of immune escape by activating various
immunosuppressive pathways. Further investigations with in
vivo animal models suggest that a durable anti-tumor response
to CAR T cell therapy can be elicited by targeting this reciprocal
immunosuppression with other immune-modulatory therapies
(200–202) (Figure 6).

There are many complexities to treating GBM with CAR T-
cells. Barriers to durable responses include the lack of long-
term CAR T-cell persistence; ineffective delivery of cells to the
infiltrating tumor; and GBM’s characteristic immunosuppressive
properties. Several of these barriers are being addressed in
ongoing trials. For example, Memorial Sloan Kettering has
created “Armored” CAR T-cells which constitutively secrete IL-
12, a potent pro-inflammatory cytokine for cytotoxic T cells.
In vitro work has shown that this IL-12 expression induces
enhanced proliferation, persistent cytotoxicity, and decreased
apoptosis of CAR T-cells (203).

VIRAL THERAPEUTICS

Viral therapy has undergone extensive research over two decades,
with some promising results in both pre-clinical and early clinical
trials. Viral therapies use replication competent, albeit attenuated
or genetically modified, viral species, taking advantage of both
oncolytic and non-oncolytic mechanisms for high grade glioma
targeting (Figure 7).

Delivery of these viral therapeutic agents provides a practical
challenge given the blood-brain barrier and the need to provide
sufficient concentrations of agent at the site of action while
minimizing risk of systemic toxicity. Convection enhanced
delivery (CED) has been utilized to overcome these delivery
challenges. CED, first described by Oldfield et al. in 1994,
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FIGURE 7 | Prototypical mechanism of oncolytic viral therapy. The modified virus is infused into the tumor environment. (A) Normal cells exposed to viruses may have

introduction of viral genetic information, but the viruses are modified to not replicate. (B) Viral particles then recognize enter cell based on specific surface proteins,

such as CD155 in PVSRIPO and αVβ3/5 in Delta-24-RGD oncolytic adenovirus. (C) Oncolytic viral particles in tumors are replication-competent and recruit tumor cell

replication machinery. (D) Viral replication results in cell lysis and release of viral particles to continue targeting tumor cells. (E) Macrophages detect and target virally

infected cells, recruiting other APCs and effector T cells for secondary immune response against released tumor antigens.

utilizes catheters to directly infuse a therapeutic agent to
the central nervous system (204). This technique has been
applied to glioblastoma treatment in a limited group of
clinical trials, including the PRECISE trial. The PRECISE
trial is, to date, the only completed phase III evaluation of
convection enhanced delivery for the treatment of glioblastoma.
The trial utilized cintredekin besudotox, a chimeric cytotoxin
composed of a mutated Pseudomonas aeruginosa toxin attached
to recombinant interleukin-13. Delivered by CED, this cytotoxin
targets cells expressing the IL-13 receptor. They reported
increased progression-free survival but not an increased overall
survival compared to implanted Gliadel wafers in recurrent
glioblastoma (205). This trial’s failure may be attributed to less
than 70% of catheters being placed according to protocol. Also,
the statistical power study was designed such that although
the CED group met the overall survival cutoff needed for
significance, the control group had a significantly longer survival
than expected, decreasing the difference in results of the two
arms. These limitations highlight the difficulty of designing
trials for CED in glioblastoma patients. However, other in vivo
preclinical and early clinical studies have demonstrated feasibility
of CED with other chemotherapeutic agents (206–209).

CED has been established as a viable technique for infusing
viral therapeutics into the brain. Numerous groups have
investigated a variety of genetically modified viruses in vitro and
in non-human in vivo models via direct oncolytic activity or as
a vector. Candidates include herpes-simplex virus (210) measles
(211, 212) JC virus (213) Zika virus (214) adenovirus (192, 215–
217) and pox virus (218) , among others. The combination
of viral therapy with traditional chemoradiation is also under
investigation (219, 220). Following the encouraging results of
Delta-24-RGD oncolytic adenovirus in an immunocompetent

murine glioma model (221) a phase I trial of the virus infused
via CED into recurrent malignant gliomas was completed.
The authors reported a subset of patients achieving long-
term survival. This study was designed with two groups, one
undergoing viral therapy alone, the other undergoing therapy
followed by resection 2 weeks later in order to study the tumor
tissue after undergoing treatment. They found that in the tumors
resected 2 weeks after treatment, there was still active viral
replication, while this was not seen in tumors resected at 6 weeks
and 2.5 years post treatment. Additionally, at time of tumor
resection, after receiving adenoviral therapy, the group resected 4
weeks after therapy displayed enhanced immune cell infiltration
and decreased TIM-3 expression. As TIM-3 expression on T-
cells is considered a marker for T cell exhaustion, this finding
suggests improved T cell functioning in the treated tumor
microenvironment. Based on the increased immune response at
4 weeks relative to 2 week samples in this trial, the investigators
concluded that tumor regression reflects a delayed secondary
immune response rather than direct oncolytic activity (222).

The recombinant polio-rhinovirus chimera (PVSRIPO),
developed at Duke University, takes advantage of the poliovirus
receptor CD155 found on many neoplastic cells. Preclinical
studies demonstrated tumor regression in murine models of
breast and prostate cancer treated by PVSRIPO (223). Similarly,
treatment of preclinical murine glioma models with this viral
therapy has led to tumor regression (224, 225). A phase I trial
of PVSRIPO infused via CED in biopsy-confirmed recurrent
glioblastoma showed a modest improvement in overall survival,
but significant improvement in long term survival, with 21% of
patients surviving at 24 and 36 months (226). While this study
is limited by the use of historic controls, it warrants further
study.
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FUTURE DIRECTIONS AND BIOMARKER
DEVELOPMENT

Even in the most successful trials of immune therapy for cancer,
these treatments tend to be effective only in a subset of the
treated patients. This highlights a need for better biomarkers
that might predict which patients will be responders to immune
therapy or could direct clinicians to other treatments that might
augment the responses of predicted non-responders. In other
cancers, there has been some limited progress in the identification
of biomarkers of response to immune therapy. Wargo et al.
illustrated the complexity of monitoring immune therapy
response in melanoma patients, noting changing biomarker
expression in longitudinal tissue samples over the course of
treatment with serial checkpoint inhibitor monotherapy (77).
Interferon-γ pathway loss has been associated with resistance
to CTLA-4 blockade in melanoma (227) making it a potential
biomarker of immune evasion and poor response to therapy. PD-
L1, however, has hadmixed reports as a tissuemarker of potential
therapeutic response. High expression has been associated
with improved response to checkpoint inhibition in metastatic
Merkel cell carcinoma (228) and squamous cell carcinoma (229).
However, it does not appear to be predictive in non-small
cell lung cancer (230) and metastatic urethral cancer (231).
Additionally, Wolchok et al. reported from a phase III study of
PD-1 and CTLA-4 blockade in melanoma that PD-L1 appeared
to be prognostic of improved overall survival rather than
predictive of checkpoint blockade therapeutic response (232).
In all, current understanding of biomarkers is inconsistent and
incomplete.

In glioblastoma patients, immunophenotyping has, thus far,
been limited in that it typically relies on repeat tissue sampling.
While stereotactic biopsies have relatively low morbidity, repeat
biopsies are not considered standard practice in glioma clinical
trials. This lack of sampling raises additional challenges, as it
is quite difficult to determine if a glioblastoma patient has had
response to immune therapy on imaging alone. Inflammatory
responses to immune therapy often cause contrast enhancing
lesions in the brain that can be difficult to distinguish from
tumor progression on MRI (86). These limitations necessitate
the identification of biomarkers to determine candidates for
immune therapy and to track response reliably. The Checkmate
143 trial measured PD-L1 expression of patients entering the
trial in an attempt to identify responders, but the full results of
this trial have not yet been reported. Other trials have reported
biomarkers in tissue pathology following tumor resection after
treatment. Lang et al. reported increased TIM-3 expression on T-
cells after treatment with Delta-24-RGD, suggesting improved T
cell functioning (226). O’Rourke et al. reported upregulation of
PD-L1, IDO, and TGF-β, as well as FoxP3+ Tregs in resected
tumors following EGFRvIII CAR T-cells, potentially reflecting
tumor adaptation and immune evasion (181). However, less
invasive serum biomarkers have also been used effectively. In
the phase 3 ACT-IV Trial for rindopepimut, investigators used
serum titers for antibodies to EGFRvIII to monitor degree of
host immune response to the vaccine after administration (119).
In other studies, PD-L1 expression on circulating macrophages,

and pathological response to therapy have been used to
determine whether a response has occurred. In the phase II
trial of autologous head shock protein peptide vaccination for
glioblastoma, Bloch et al found that patients with low PD-L1
expression on peripheral myeloid cells had on overall survival
of almost 45 months compared to 18 months in those with high
expression (130). Non-invasive serum biomarkers such as soluble
PD-L1 (233) cytokines (234) and peripheral mononuclear cells
(235) have been described in monitoring response to immune
therapy in non-CNS tumors (236) but similar studies have not
been performed extensively in glioblastoma. However, additional
biomarkers need to be developed to have a more complete
understanding of host and tumor response.

The use of microdialysis in neuro-oncology is a promising
addition to our arsenal for immune monitoring of glioma
patients. Early use of cerebral microdialysis predominantly
focused on patients with neurologic trauma (237–242) or
subarachnoid hemorrhage (243–248) demonstrating safety and
viability of the technology. More recently, this technique
has been applied to brain tumor patients. Portnow et al.
utilized microdialysis to monitor in real time if treatment
with chemotherapy changed levels of 17 cytokines compared
to craniotomy alone. This study showed that craniotomy
induced an inflammatory response that dissipated over the
next 96 h after surgery (249). Tabatabaei et al. utilized
microdialysis catheters in peritumor tissue in high grade glioma
patients undergoing radiation therapy, finding that treatment
induces a strong inflammatory response via macrophages and
monocytes (250). The development of checkpoint inhibitors,
though demonstrably effective in metastatic melanoma and
non-small cell lung carcinoma, has had mixed results human
glioma studies thus far. Understanding the immune profile
of the glioma microenvironment in patients undergoing this
therapy may allow for patient stratification to determine
those with the greatest potential for therapeutic benefit. The
ongoing study “Cytokine Microdialysis for Immune Monitoring
in Recurrent Glioblastoma Patients Undergoing Checkpoint
Blockade” uses microdialysis for monitoring of immune
functioning in the glioblastoma tumor environment following
checkpoint inhibition. Concurrently, the study samples serum,
CSF, and bone marrow for comprehensive analysis of potential
biomarkers indicating response to therapy (251).

Sequencing and Biomarker Development
Advances in understanding the genetics of glioblastomas has
led to discovery of prognostic and predictive factors as well
as potential targets. Initially, the identification of 4 different
molecular profiles (252) of GBM expanded understanding
of pathology of the disease beyond histology. Subsequent
identification of isocitrate dehydrogenase (IDH) mutation
and MGMT methylation statuses and their association with
survival (253, 254) as well as response to chemotherapy and
radiation (255–257) have proven invaluable to patient care
and stratification for appropriate therapy. As technology and
methodology have improved, DNA and RNA sequencing allow
further mutation identification (258) including biomarkers with
associated survival implications (259, 260). Additionally, these
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techniques may now be able to move out of the laboratory
into the clinical setting as sequencing technology becomes more
accessible for use in patient care. Kazimierz has shown that
whole-genome and RNA sequencing can be performed in a
timely and efficient manner (261). As sequencing has become
more efficient, its use in guiding clinical decision-making has
become feasible, with Byron et al finding that results could
consistently be obtained within 35 days of surgical resection
(262). Pertinent to this review, sequencing may have implications
for immune-based therapies. Early sequencing of common in-
vitro glioblastoma cell lines identified which lines expressed HLA
subtypes associated with improved antigen presentation and
response to immunotherapy (263). Song et al. then expanded
on similar sequencing work in 298 glioblastoma and control
patients, identifying HLA subtypes associated with decreased
tumor incidence (264).

Evidence from non-CNS malignancies has suggested an
association between the number of somatic mutations identified
via sequencing of malignant cells (mutational burden) and the
cancer’s relationship with the host immune system. Mutational
burden is widely variable between malignancies (265) with
subsequent groups demonstrating these mutations act as
neoantigens to target in adoptive T-cell therapy (266) as well
as checkpoint blockade (267). Cancers that have had promising
results with checkpoint blockade in human trials, thus far,
have been associated with high mutational burden, such as
melanoma (268) and non-small cell lung cancer (269). However,
further investigation suggests that degree of mutation burden
has not had a strong association with response to checkpoint
blockade across a broad cross section of malignancies (270).
A pilot study reported two patients with glioblastomas due
to bi-allelic mismatch repair deficiency, which results in high
mutational burden. They found promising results in response to
checkpoint inhibition, describing both clinical and radiographic
improvement (271). However, despite the inter and intra-
heterogeneity of the genomics of glioblastoma, Hodges et al
found that only a minority of these tumors were found to
have a high mutational burden, and the degree of burden
did not correlate with immune cell infiltration into the tumor
(272).

As mutational burden alone has not been a strong predictor,
other groups have investigated specific somatic mutations,
such as the interferon-gamma pathway that may portend a
decreased response to checkpoint inhibition (273) in non-
CNS tumors. Similarly, in glioblastoma, a diverse population
of tumor-infiltrating lymphocytes, thought to more effectively
combat a heterogeneous tumor, may not be dependent on
intratumoral genomic heterogeneity (274) but rather in 23
genes in immune-related pathways whose expression was found
to be significantly associated with prognosis via The Cancer
Genome Atlas GBM dataset (275). Goodman et al analyzed a de-
identified tumor database, finding that solid tumors with PD-L1
amplification in their genomic profile had almost 70% reported
response to checkpoint inhibition, including in glioblastoma.
This study again demonstrated that in these tumors, overall
tumormutational burden was only low-to-intermediate (276). As
immune-relevant mutations have been identified, comprehensive

testing of these mutations is being implemented in clinical
decision-making. Peng et al utilized exome, whole genome,
and RNA sequencing to identify glioblastoma patients that
are least likely to respond to traditional therapy and may be
candidates for immune therapy (277). Similarly, Chen et al.
categorized multiple malignancies, including GBM, based on
tumor microenvironment immune types, to identify genetic
patterns that have the greatest potential for therapeutic response
to immune therapy (278). While not yet described in GBM,
sequencing of circulating tumor DNA in the serum has
identified single nucleotide polymorphisms in PD-L1 genes that
correlate with improved response to PD-1 blockade in NSCLC
(279).

Sequencing and Development of
Patient-Specific Therapeutics
Beyond identifying patients who may have the greatest benefit
from immune therapy, Tran et al. reported using neoantigens
identified via sequencing as targets for adopted T cell transfer
with promising results in non-CNS cancers (141, 280).
Monovalent and polyvalent vaccination, described previously,
may incorporate these additional targets as more are identified
(281). Dunn et al used whole exome and RNA sequencing
to identify potential tumor neoantigens in murine glioma
models, then use ELISPOT to screen for immunogenicity. These
techniques allowed the identification of targets that infiltrating
tumor CD8 cytotoxic T cells recognized and bound with high
affinity. They suggest that this view into the function of the
endogenous immune response to a tumor may provide guidance
in the development of personalized tumor vaccination (282). As
these lines of research continue, there is great potential for both
the development of novel therapeutics as well as the identification
of the patients who will most benefit.

Bispecific T-Cell Engagers (BITEs)
First described in 1961, bispecific antibodies have two variable
segments allowing for binding two antigens (283). Nitta et
al reported the use of bispecific antibodies to coat activated
lymphocytes with partial response in a subset of 10 high-
grade glioma patients (284). Bispecific antibodies would be the
precursor to bispecific T-cell engagers (BITEs). In 1985, Staerz
reported the use of bispecific antibodies in which one of the
variable segments targeted the T-cell receptor with the goal of
recruiting T-cell mediated immune response (285).

In 1995, Mack et al used BITEs to induce effective cytotoxicity
in a cell line transfected to express the target antigen (286). The
first drug of this type, blinatumomab, used segments specific for
CD19 and CD3 to facilitate T cell targeting of leukemia. It was
successful in several phase II trials for adult and pediatric acute
lymphocytic leukemia (287–289) and in one phase III trial (290).
It was subsequently given FDA approval in 2017. Blinatumomab
has also had positive initial results in the treatment of refractory
non-Hodgkin lymphoma (291).

These developments have led to study of other targeted
BITEs in multiple myeloma (292) hepatocellular carcinoma
(293) and other solid tumors in conjunction with oncolytic
virus and CAR-T therapies (172, 294). The expanding use of
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BITEs has been of particular interest in solid cancers that are
relatively non-immunogenic, which may be poor candidates for
checkpoint inhibition (295). As the most common neoantigen
found in glioblastoma, EGFRvIII has been one of the first
targets for BITEs therapy. Initial in-vivo work in murine
glioma models showed high cure rates. Interestingly, after BITE
therapy, immunosuppressive Tregs changed their behavior to
attack EGFRvIII positive tumor cells via the granzyme-perforin
pathway (296). In addition to targeting the EGFRvIII antigen,
BITEs have also been applied to enhance the cytotoxic T
cell response to cells expressing CD133+, a marker of tumor
initiating cells in GBM (113). A preclinical study by Prasad
et al. showed that BITEs targeting CD133 increased T cell
ability to eradicate patient derived CD133+ GBM stem cells
in orthotopic models of brain tumors (297). They showed that
the BITEs specific to CD133 and CD3 were able to inhibit
tumor progression in 4 out of the 5 mice, compared to control
BITEs targeting prostate-specific membrane antigen (PSMA).
They also confirmed the antitumor activity of the CD133
BITE in established tumors in orthotopic xenograft models by
administering the bispecific antibodies on day 14 after the tumor
implantation. In the group treated with PSMA BITEs, the tumor
progressed between day 20 and 35, whereas the group treated
with CD133 BITEs inhibited further tumor growth. Despite
promising pre-clinical results, there are no current human trials
for BITEs in glioblastoma (120).

CONCLUSION

Glioblastoma is a highly malignant disease particularly resistant
to the current armament of chemoradiation. As a result, the

need for novel therapeutic strategies has been paramount. Over
decades, research has made enormous strides in defining the
pathogenesis of GBM and its relationship with its human host. A
greater understanding of the immune function both systemically
and within the tumor microenvironment has provided new
therapeutic targets. In addition, in-depth knowledge of each
patient’s particular disease may allow for improved patient
stratification to determine the best emerging therapy to use. The
ongoing development of multiple immunotherapeutic strategies
has ever-increasing potential to fundamentally change the way
patients with glioblastoma are treated and, hopefully, make
meaningful improvements in outcome.
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