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Many pathogens have acquired strategies to combat the immune response. Bacillus anthracis interferes with host
defenses by releasing anthrax lethal toxin (LT), which inactivates mitogen-activated protein kinase pathways,
rendering dendritic cells (DCs) and T lymphocytes nonresponsive to immune stimulation. However, these cell types are
considered resistant to killing by LT. Here we show that LT kills primary human DCs in vitro, and murine DCs in vitro
and in vivo. Kinetics of LT-mediated killing of murine DCs, as well as cell death pathways induced, were dependent
upon genetic background: LT triggered rapid necrosis in BALB/c-derived DCs, and slow apoptosis in C57BL/6-derived
DCs. This is consistent with rapid and slow killing of LT-injected BALB/c and C57BL/6 mice, respectively. We present
evidence that anthrax LT impairs adaptive immunity by specifically targeting DCs. This may represent an immune-
evasion strategy of the bacterium, and contribute to anthrax disease progression. We also established that genetic
background determines whether apoptosis or necrosis is induced by LT. Finally, killing of C57BL/6-derived DCs by LT
mirrors that of human DCs, suggesting that C57BL/6 DCs represent a better model system for human anthrax than the
prototypical BALB/c macrophages.
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Introduction

Bacillus anthracis, the causative agent of anthrax disease [1],
releases lethal toxin (LT), which is sufficient to cause death in
mice even in the absence of the bacterium [2]. Broad
cytopathic and lethal effects associated with B. anthracis
infection can be reproduced by LT injection of mice [3,4].
Lethal toxin consists of two components: protective antigen
(PA) and lethal factor (LF). PA binds to specific cell surface
receptors and mediates endocytosis of LF, a metalloprotease
[5,6]. LF cleaves six of seven mitogen-activated protein kinase
(MAPK) kinases (MAPKKs), thereby disrupting MAPK signal-
ing pathways (reviewed in [7,8]). Despite ubiquitous uptake by
mammalian cells, LT kills only a few cell types, including
murine macrophages [3,4]. Susceptibility of murine macro-
phages to LT killing is strain-specific, and is controlled by a
region of Chromosome 11 that encodes the kinesin-like
motor protein Kif1c [9,10].

B. anthracis appears to combat the host immune response by
inactivating MAPK pathways, which renders immune cells,
including dendritic cells (DCs), nonresponsive to immune
stimulation [11–13]. This may weaken the immune response
by limiting the production of inflammatory cytokines [12,14–
16]. However, drastic cytokine induction has been shown in
several murine strains following LT injection [3,17]. These
findings call into question the in vivo relevance of LT-
mediated nonresponsiveness. DCs, which are considered
resistant to LT-mediated cell killing [12], are key elements
of the adaptive immune response, and are responsible for
uptake and presentation of microbial antigens [18]. Upon
maturation, DCs migrate to secondary lymphoid organs
where they stimulate naı̈ve T cells [18].

Here we report that murine and human DCs are efficiently

killed by LT. The mechanism of LT-mediated DC killing is
dependent on genetic background: LT triggers rapid necrotic
cell death in BALB/c-derived DCs, and slow apoptosis in
C57BL/6-derived DCs, as well as human DCs. Finally, we show
rapid DC depletion in LT-treated BALB/c mice, suggesting
direct immune impairment and in vivo relevance.

Results

Killing of Human DCs by Anthrax LT
LT-treated DCs were reported to be non-responsive to LPS

stimulation, as well as impaired in their abilit7y to present
antigens [12]. To determine whether the impairment of DCs
could be due to cytopathic effects mediated by LT, we
generated immature monocyte-derived dendritic cells
(MoDCs) from human peripheral blood monocytes. MoDCs
were found to be CD11cþ, CD80þ, CD86þ, HLA-DRþ, DEC-
205þ, CD14�, and CD16� (Figure 1), consistent with markers
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found on immature human DCs [19]. MoDCs were challenged
with a dose of LT (500 ng/ml PA and 250 ng/ml LF) cytotoxic
to murine J774A.1 macrophages [20]. In contrast to previous
findings, we found that human MoDCs were efficiently killed
by LT [12]. LT-treated MoDCs from five different subjects
showed a consistent increase in annexin V binding, while
remaining propidium iodide-negative 48 h after LT challenge
(Figure 2A and 2B). Induction of cytopathic effects was
further supported by a drop in MTT (3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide) activity (Figure 2C).
At 72 h post-LT exposure, the MTT signal declined to levels
only marginally above those observed in MoDCs treated with
the apoptosis inducer camptothecin (Figure 2C). No cyto-
pathic effects were observed in MoDCs treated with PA or LF
alone (unpublished data). Ultrastructural analysis of LT-
treated human MoDCs revealed signs of apoptotic cell death,
including chromatin condensation, pycnotic nuclei, and
cytoplasmic vacuolization, along with membrane preserva-
tion (Figure 2D). Apoptosis induction was further supported
by TUNEL staining of LT-treated MoDCs (Figure 2E). These
results are consistent with reports of apoptosis induction
following LT challenge of human endothelial cells, phorbol
myristate acetate-stimulated monocytic cell lines, and lip-
opolysaccharide (LPS)-stimulated murine macrophages
[13,21–23].

Control of LT Killing of Murine DCs by Genetic Factors
To test whether murine DCs were also susceptible to LT

killing, we generated immature bone marrow-derived den-
dritic cells (BMDCs) from BALB/c and C57BL/6 mice [24].
BMDCs were CD11bþ, CD11cþ (over 80%), and CD14�, and
they expressed low levels of CD80 and CD86 (Figure 3A and
3B), consistent with surface markers found on in vitro-
generated immature murine DCs [25,26]. To ensure that we
were working with immature DCs, we treated these DCs for
18 h with LPS, and confirmed maturation by measuring
surface levels of CD86. As expected, LPS exposure for 18 h
generated a significant up-regulation in CD86 surface
expression levels (Figure 3B). Exposure of DCs to PA or LF

(1 lg/ml) alone did not result in CD86 up-regulation
(unpublished data).
BMDCs from BALB/c and C57BL/6 mice were exposed to

LT, and cell viability was determined at several time points
post-LT exposure (Figure 4). The MTT signal dropped
significantly in BALB/c-derived BMDCs within 2–4 h of LT
challenge. Cell viability fell in C57BL/6-derived BMDCs as
well, but only after 2–3 d of LT exposure (Figure 4A).
Accordingly, BALB/c and C57BL/6-derived BMDCs under-
went morphological changes 2 h and 2 d post-LT exposure,
respectively, as determined by phase contrast microscopy
(unpublished data). In addition to immature BMDCs, we
isolated splenic DCs with a mature phenotype from BALB/c
mice using magnetic beads. These splenic DCs died within 4 h
of LT exposure as determined by morphological changes and
MTT assays (unpublished data), suggesting that LT suscept-
ibility of murine DCs is independent of their maturation
state.
Our findings are consistent with the in vitro sensitivity of

murine macrophages to LT killing, which is also dependent
on genetic background [3,4,27]. BALB/c-derived macrophages
are efficiently killed by LT with rapid kinetics, while C57BL/6-
derived macrophages are resistant to rapid LT killing [13].
Similarly, in vivo studies have shown rapid disease progres-
sion in LT-treated BALB/c mice, and a delayed onset of lethal
effects in LT-treated C57BL/6 mice [3,4].

Figure 1. FACS Profile of Immature Human MoDCs

MoDCs were derived from human peripheral blood monocytes.
Expression of HLA-DR, CD11c, CD14, CD16, CD80, CD86, and DEC-205
was assessed by flow cytometry. The data were collected from two
subjects and are representative of similar experiments. Filled histograms
represent isotype-matched controls.
DOI: 10.1371/journal.ppat.0010019.g001
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Synopsis

Dendritic cells (DCs) are specialized white blood cells that identify
and present antigens to immune cells, T cells, in order to mount an
immune response targeted against specific pathogens. DCs are
critical to a host’s defense against infection. Previous work has
shown that the anthrax bacterium disables many immune cells,
including DCs, through the action of a released toxin, lethal toxin.
Here the authors show that lethal toxin efficiently kills both human
and murine DCs. The means by which DCs were killed by the anthrax
toxin were notably distinct and dependent on their genetic
background. Human DCs, as well as those derived from the murine
strain C57BL/6, died over the course of 72 h via activation of
apoptosis, or programmed cell death. DCs from BALB/c mice,
however, died rapidly of a necrotic cell death following toxin
exposure. As human and C57BL/6 DCs share an identical response to
anthrax toxin, C57BL/6 mice appear to provide an excellent model
for human anthrax. The study’s findings suggest that specific
targeting of DCs by the anthrax toxin impairs the immune response
of the infected host, and the authors believe that this strategy
promotes spread of the bacterium and disease progression.



Figure 2. Killing of Human DCs by LT

(A) MoDCs from a representative human subject were treated with LT (500 ng/ml PA and 250 ng/ml LF) or 10 lM camptothecin (Campt.) as a positive
control, and annexin V/PI staining was measured by flow cytometry 48 h post-LT exposure.
(B) Percentages of annexin V-positive untreated and LT-treated MoDCs from five different subjects were determined by flow cytometry 48 h post-LT
exposure.
(C) MTT assay of LT or camptothecin-treated human MoDCs. Meanþ standard deviation from three independent experiments are shown.
(D) LT-treated human MoDCs show signs of apoptotic cell death, as analyzed by electron microscopy 48 h post-LT exposure. Bars: 1 lm.
(E) Human MoDCs were TUNEL-positive 48 h post-LT exposure. Untreated and LT-treated MoDCs were subjected to TUNEL and Hoechst staining.
DOI: 10.1371/journal.ppat.0010019.g002
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As apoptotic pathways were activated in LT-treated human
DCs (see Figure 2D and 2E), we tested for signs of apoptosis
in murine BMDCs following LT exposure. C57BL/6 BMDCs
showed clear signs of apoptosis, as indicated by TUNEL
staining and nuclear condensation (Figure 4E and 4F). In
contrast, no chromatin condensation, TUNEL staining, or
DNA fragmentation was detected in LT-treated BALB/c
BMDCs (Figure 4E and 4F), which is consistent with rapid
necrotic cell death, as has been observed in LT-treated BALB/
c-derived macrophages [13,23]. Strikingly, LT exposure
triggered caspase-3 activation in murine BMDCs derived
from both BALB/c and C57BL/6 mice. Consistent with the cell
killing kinetics described above, caspase-3 activation oc-
curred rapidly in BALB/c-derived BMDCs (1 h post-LT
exposure), and slowly in C57BL/6-derived BMDCs (24 h
post-LT exposure) (Figure 4B and 4C). We used the pan-
caspase inhibitors Z-VAD-FMK and BOC-D-FMK to block
caspase activation. Both caspase inhibitors blocked caspase-3

activation (Figure 4C), but failed to block LT killing of BALB/
c-derived DCs (Figure 4D), indicating that caspase activation
was not required for induction of cytopathic effects in these
cells. Experiments using caspase inhibitors were limited to
BALB/c DCs, as both Z-VAD-FMK and BOC-D-FMK showed
high toxicity in murine DCs when used for more than 12 h.
These results revealed that the genetic background of

murine DCs determines LT killing kinetics and cell death
pathway activation. The difference in the LT killing kinetics
between BALB/c and C57BL/6 BMDCs or human DCs was not
caused by a discrepancy in LT uptake, MAPKK-3 cleavage, or
LT sensitivity. MAPKK-3 cleavage, the earliest indicator of LF
action, occurred in BALB/c BMDCs, C57BL/6 BMDCs, and
human MoDCs at similar time points, as determined by
Western blotting (Figure 5A). The small divergences in
MAPKK-3 cleavage did not correlate with differences in LT
killing kinetics, suggesting that these kinetics were not
determined by the rate of MAPKK-3 cleavage, and were
presumably caused by downstream events.
To determine the LT sensitivity of BALB/c and C57BL/6-

derived BMDCs to LT killing, we treated these cells with
increasing LF concentrations, while keeping PA constant at
500 ng/ml. Both BALB/c and C57BL/6-derived BMDCs
exhibited similar susceptibility to LT, with the main increase
in LT killing occurring between 1 and 10 ng/ml of LF (Figure
5B and 5C). Taken together, our results indicate that the
difference in LT killing cannot be explained by divergences
in MAPKK cleavage or LT sensitivity.

Control of LT Killing of Murine DCs by Proteasomal
Activity
LT killing of BALB/c-derived murine macrophages is

controlled by the proteasome system [20,28]. To determine
whether BALB/c-derived DCs also require proteasomal
activity for LT killing, we added the proteasome inhibitors
MG132 or Velcade (bortezomib) to BALB/c-derived BMDCs at
different time points following exposure to LT. Both
proteasome inhibitors completely blocked LT killing when
added simultaneously with LT to BALB/c-derived DCs (Figure
6). Strikingly, the MTT signal recovered completely from an
initial drop when proteasome inhibitors were added to BALB/
c BMDCs up to 1 h post-LT exposure (Figure 6). Partial
recovery was obtained when the proteasome inhibitors were
added 2 h post-LT treatment (Figure 6). These results
suggested that proteasomal degradation of protective factors
controls a late step in LT killing of BALB/c DCs. Experiments
using proteasome inhibitors were limited to BALB/c DCs, as
both MG132 and Velcade were highly toxic to DCs when
applied for more than 8 h. It is conceivable that slow LT
killing of C57BL/6-derived cells is due to increased levels or
stability of putative protective factors. Proteasomes may also
control LT-induced morbidity and mortality in LT-treated
mice.

In Vivo Depletion of DCs and Loss of T Cell Activating
Function Following LT Exposure
To determine whether murine DCs were also killed by LT

in vivo, we injected 10-wk-old female BALB/c mice intra-
peritoneally with LT (200 lg PA and 200 lg LF), and analyzed
bulk splenocytes from these mice using flow cytometry. We
selected BALB/c mice, the commonly recognized prototype
strain for anthrax research, for our in vivo experiments.

Figure 3. FACS Profile of BMDCs

(A) BMDCs were derived from a BALB/c mouse and analyzed on day 10.
Expression of CD11b, CD11c, CD14, and CD80 was assessed by flow
cytometry. The data are representative of four similar experiments in
BALB/c and C57BL/6 mice.
(B) BALB/c and C57BL/6-derived BMDCs were stimulated by LPS for 18 h,
and CD86 expression was measured by flow cytometry. Filled histograms
represent isotype-matched controls.
DOI: 10.1371/journal.ppat.0010019.g003
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Figure 4. BALB/c- and C57BL/6-Derived DCs Differ in Their Response to LT

(A) BALB/c and C57BL/6-derived BMDCs were treated with LT (500 ng/ml PA and 250 ng/ml LF), and cell survival was determined by MTT assay.
(B) Caspase-3 activation of LT-treated BALB/c and C57BL/6 DCs as determined by a colorimetric caspase-3 cleavage assay. A representative experiment
is shown.
(C) The caspase inhibitors Z-VAD-FMK (10 lg/ml) and BOC-D-FMK (40 lg/ml) prevent caspase-3 activation in LT-treated BALB/c BMDCs.
(D) The caspase inhibitors Z-VAD-FMK (10 lg/ml) and BOC-D-FMK (40 lg/ml) do not prevent LT killing of BALB/c BMDCs as determined by MTT assay.
(E) C57BL6, but not BALB/c DCs, were TUNEL-positive post-LT exposure. BALB/c and C57BL/6-derived BMDCs were treated with LT (500 ng/ml PA and
250 ng/ml LF), and were stained using a TUNEL reaction and a Hoechst counterstain.
(F) BALB/c and C57BL/6-derived BMDCs were analyzed by electron microscopy 4 and 48 h post-LT exposure, respectively. Bars, 1 lm.
DOI: 10.1371/journal.ppat.0010019.g004
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Consistent with our in vitro data, levels of splenic DCs
dropped rapidly in LT-treated BALB/c mice (Figure 7). Levels
of DCs declined to 10% of those found in untreated control
mice 3 h after LT challenge, and remained at this level for at
least 24 h. Levels of splenic macrophages were also reduced,
reaching 20% of control levels 24 h post-LT challenge (Figure
7B). As expected, levels of B and T cells, which are resistant to
LT killing, did not drop after LT exposure (Figure 7B). These
results showed that LT killing of DCs was not restricted to the
cell culture system, as it also occurs in vivo. LT-treated DCs
have been described as impaired in their abilities to respond
to cytokines and to present antigens [12]. Our findings
indicate that significant impairment of the immune response
in LT-treated mice is caused by rapid DC depletion.

Discussion

Here we show for the first time, to our knowledge, that
anthrax LT is highly toxic to human, BALB/c, and C57BL/6

DCs, even at very low concentrations. In a previous report,
Tournier et al. [29] showed that infection of C57BL/6 and
BALB/c DCs by anthrax spores disrupts the cells’ ability to
produce cytokines. The authors also reported a loss of
viability in BALB/c DCs treated with a combination of B.
anthracis spores and purified LT. Our results show that
purified LT alone was sufficient to reproduce these observa-
tions.
Our findings on DC killing challenge an earlier report [12],

which described DC impairment without cell killing. Agrawal
et al. [12] specifically reported no cytopathic effects in LT-
treated C57BL/6-derived DCs, as measured by Trypan blue
exclusion. This is not surprising, as LT-mediated killing of
C57BL/6 BMDCs occurred without significant membrane
perturbation. Additionally, they reported no caspase-3
activation in C57BL/6 DCs at 6 and 48 h post-LT exposure.
We found that a window of caspase-3 activation occurred
between 18 and 32 h (see Figure 4B). At the time points

Figure 6. Proteasome Inhibitors Block LT-Mediated Killing of BALB/c-Derived DCs

Proteasome inhibitors MG132 (10 lM) (A), or Velcade (0.1 lM) (B) were added either simultaneously with LT or 1 or 2 h post-LT exposure, and cell
viability was determined by MTT assay. Meanþ standard deviation of four independent experiments are shown.
DOI: 10.1371/journal.ppat.0010019.g006

Figure 5. MAPKK Cleavage Kinetics and LT Susceptibility of BALB/c- and C57BL/6-Derived BMDCs

(A) MAPKK-3 cleavage occurs at similar rates in murine and human DCs treated with LT (500 ng/ml PA and 250 ng/ml LF), as determined by Western blot
analysis using anti-MKK3 and anti-actin (control) antibodies.
(B and C) Relative LT susceptibility of BALB/c- (B) and C57BL/6-derived (C) BMDCs. BALB/c and C57BL/6 BMDCs were subjected to PA (500 ng/ml) and
varying concentrations of LF. After 4 h (BALB/c DCs) and 72 h (C57BL/6 DCs), cell viability was determined by MTT assays. Representative experiments
are shown.
DOI: 10.1371/journal.ppat.0010019.g005

PLoS Pathogens | www.plospathogens.org October 2005 | Volume 1 | Issue 2 | e190155

Anthrax Lethal Toxin Kills Dendritic Cells



reported in their study, we also found no increase in active
caspase-3.

We show that genetic background determines the type of
cell killing induced by LT: LT triggered rapid necrosis in
BALB/c-derived DCs and slow apoptosis in C57BL/6-derived
DCs. A genetic polymorphism containing a putative suscept-
ibility factor at the Kif1c locus on Chromosome 11 has been
identified that correlates with the sensitivity of macrophages
to LT killing [9,30]. We believe that the strain-specific cell
death pathways we report are also controlled by this genetic
locus. It remains to be shown how genetic factors determine
whether apoptotic or necrotic pathways are induced by LT.

DC killing precedes lethal effects in LT-treated BALB/c and
C57BL/6 mice by approximately 24 h, and therefore
constitutes an early event in anthrax pathogenesis [3]. The
reason for selective LT targeting of antigen presenting cells,
including macrophages and DCs, is unknown. Murine C57BL/

6 DCs and human DCs share slow killing kinetics and
induction of apoptosis following LT exposure. Therefore,
C57BL/6-derived cells appear to be a better model system for
human anthrax than the prototypical BALB/c-derived macro-
phages, which rapidly undergo necrotic cell death after LT
challenge. Induction of distinct cell death pathways suggests
that LT-mediated cell killing is controlled by strain-specific
regulators and inhibitors. Extensive investigation has led to
the discovery of multiple potent apoptosis inhibitors, which
might block LT-mediated apoptosis, and possibly anthrax
disease progression, in C57BL/6 mice and human subjects.
Additionally, these findings might be important for ther-
apeutic applications. It is conceivable that agents that block
LT killing are strain-specific, and that drugs blocking LT-
mediated killing of BALB/c-derived cells might be inefficient
in targeting LT killing of C57BL/6-derived and human cells
and vice versa. Based on our findings, it is now possible to
differentiate, in LT-treated C57BL/6 mice, cells that are
directly killed by LT, presumably by apoptosis induction,
from cells killed by indirect means via induction of necrotic
pathways.
B. anthracis infections appear to challenge the immune

system in two phases. During the early phase of infection,
subtoxic concentrations of LT disrupt MAPK signaling
pathways, rendering immune cells nonresponsive to cytokine
and immune stimulation [12,13]. We present evidence that
this phase is followed by LT killing of DCs, which presumably
occurs when the concentration of LT reaches cytotoxic levels.
This likely causes additional impairment of adaptive immun-
ity, and represents an immune-evasion strategy of the
bacterium. DCs as well as macrophages are primary entry
sites of B. anthracis [29,31,32], and early replication of the
bacterium occurs exclusively within these cells. The slow LT
killing kinetics found in C57BL/6 and human DCs may
promote bacterial proliferation.
Specific targeting of DCs by LT should prevent stimulation

of the adaptive immune response, rendering hosts highly
susceptible to other microbial pathogens. Depletion of DCs
also plays a critical role in human and murine sepsis [33].
Additionally, it is possible that LT killing of DCs could be
exploited in therapeutic applications of the toxin. LT’s
potential for medical applications is not novel; sublethal LT
treatment was employed in nude mice containing human
melanoma xenograft tumors, resulting in tumor regression
without any cytotoxic side effects [34]. Due to the high
specificity and sensitivity of DCs to LT, exposure of DCs to
specific toxin concentrations could represent a useful
approach to transiently suppress the immune response, if
cytotoxic effects of LT on other cell types could be effectively
controlled or eliminated.

Materials and Methods

Cell culture and materials. C57BL/6 and BALB/c mice were
obtained from Jackson Laboratories (Bar Harbor, Maine, United
States). Human MoDCs were cultured in RPMI-1640 containing 2 mM
L-glutamine and supplemented with 1% nonessential amino acids, 10
mM Hepes, 1% penicillin-streptomycin, and 10% FCS (R10 medium).
The pan-caspase inhibitors Z-VAD-FMK and BOC-D-FMK (Calbio-
chem, San Diego, California, United States) and the proteasome
inhibitor MG132 (Oncogene, Boston, Massachusetts, United States)
were reconstituted in DMSO and used at a concentration of 10 lg/ml,
except for BOC-D-FMK, which was used at 40 lg/ml. The proteasome
inhibitor Velcade (bortezomib) was generously provided by Dr.

Figure 7. In Vivo Depletion of DCs and Loss of T Cell Activating Function

Following LT Exposure

(A) Murine DCs and macrophages are killed by LT in vivo. Ten-week-old
BALB/c mice were injected intraperitoneally with LT, and the percentage
of DCs and macrophages in the spleen were determined by flow
cytometry. A representative experiment is shown.
(B) Specific depletion of DCs and macrophages in LT-treated BALB/c mice
injected intraperitoneally with either PBS or LT (200 lg PA and 200 lg
LF). Levels of splenic DCs (CD11cþ, MHC class IIþ), macrophages (CD11bþ,
MHC class IIþ), and circulating B cells (B220þ) and T cells (CD3þ) were
determined by flow cytometry. Percent changes are shown by number of
cells derived from LT-treated BALB/c mice (three mice per time point),
relative to PBS-treated control mice (three mice per control experiment).
DOI: 10.1371/journal.ppat.0010019.g007
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Roman Perez-Soler (Albert Einstein College of Medicine). Recombi-
nant anthrax LF was obtained from List Biological Laboratories
(Campbell, California, United States). PA was generously provided by
Dr. Steven Leppla (National Institutes of Health). PA and LF were
reconstituted in water at 500 ng/ml and 250 ng/ml, respectively [35].
Recombinant LF and PA were produced in B. anthracis and were free
of LPS contamination as indicated by the manufacturer, and by a lack
of CD86 up-regulation on immature cells, as measured by flow
cytometry.

Generation of human DCs from peripheral blood. Immature DCs
were prepared from human PBMCs as previously described [36].
Briefly, PBMCs from buffy coats were isolated by centrifugation on
Ficoll-Paque Plus (Amersham Biosciences, Little Chalfont, United
Kingdom) at 600 g for 20 min. After washing three times with PBS to
remove platelets, PBMCs were resuspended in 60 ml of R10 medium
(containing 10% FCS and 6.6 ng/ml human GM-CSF [Leukine; Berlex,
Montville, New Jersey, United States]). After 30 min at 37 8C, the
medium was removed and adherent cells were cultured in R10
medium containing human GM-CSF at 6.6 ng/ml and human IL-4
(PeproTech, Rocky Hill, New Jersey, United States) at 10 ng/ml for 3–4
d, to produce immature DCs. The identity of these cells was
confirmed by flow cytometry using anti-CD11c, CD14, CD16, CD80,
CD86, HLA-DR, and DEC-205 antibodies.

Generation of murine bone marrow-derived and splenic DCs.
BMDCs were prepared as previously described [24]. 10 ml syringes
fitted with 25 gauge needles and filled with mR10 medium (RPMI-
1640, 10% FCS, 10 mM Hepes, 1% penicillin-streptomycin, and 55
lM beta-mercaptoethanol) were used to flush bone marrow cells from
the femurs and tibias of C57BL/6 and BALB/c mice. Red blood cells
were lysed using RBC lysing buffer (Sigma, St. Louis, Missouri, United
States), and the remaining cells were washed with PBS. Cells were
plated in bacterial plates in mR10 medium containing 20 ng/ml
murine GM-CSF (PeproTech). On days 3, 6, and 8, cells were
resuspended in fresh mR10 containing 20 ng/ml murine GM-CSF.
On day 10, nonadherent cells were resuspended in mR10 containing 5
ng/ml murine GM-CSF, for maintenance of differentiated DC
populations. The identity of cells was assayed by flow cytometry
using anti-CD11b, CD11c, CD14, CD80, CD86, and MHC class II
antibodies. Splenic DCs were isolated using anti-CD11c magnetic
beads according to the manufacturer’s instructions (Miltenyi Biotec,
Bergisch Gladbach, Germany). Spleens from BALB/c mice were
treated with collagenase D, cells were incubated with anti-CD11c
microbeads, and splenic DCs were enriched using MS separator
columns.

Cell death and viability assays. Cell viability was measured by
analysis of MTT cleavage to formazan by succinate dehydrogenases in
living cells [37]. For the colorimetric MTT assay, cells were exposed to
LT (500 ng/ml PA and 250 ng/ml LF), and the MTT solution (5 mg/ml
MTT in PBS) was added directly to wells and incubated at 37 8C for 4
h. The dye was solubilized with acidic isopropanol (25 mM HCl and
0.5% SDS in isopropanol), and the absorbance was measured at 570
nm.

For analysis of caspase activation, we used a colorimetric caspase-3
assay, performed as recommended by the manufacturer (R&D
Systems, Minneapolis, Minnesota, United States). LT-treated cells
were cultured in 24-well plates and lysed in the wells after removing
the culture medium. Cleavage of the substrate was measured on an
LS-50 fluorescence spectrometer (Perkin Elmer, Wellesley, California,
United States). TUNEL assays were performed as described previously
[38].

Western blotting. Cells were cultured in 24-well plates and treated
with LT. Western blotting was performed as described previously [39].
In brief, cells were lysed in the wells after removing culture medium.
For lysis, the caspase-3 lysis buffer (R&D Systems) was supplemented
with a cocktail of protease inhibitors (Roche, Basel, Switzerland).
Cellular lysates were centrifuged, and supernatants were mixed with

SDS sample buffer and denatured at 100 8C for 3 min. Size
fractionation was performed on 50 lg of protein from each sample
on BioRad SDS-Tris HCl polyacrylamide gels (BioRad, Hercules,
California, United States), and transferred to PVDF membranes
(Amersham). Membranes were probed with anti-MEK-3 polyclonal
antibody (Santa Cruz Biotechnology, Santa Cruz, California, United
States; #Sc-960) and anti-actin monoclonal antibody (Sigma; #Ac-40).
Polyclonal HRP-conjugated anti-rabbit antibodies were used as
secondary antibodies (Santa Cruz Biotechnology; #Sc-2313), and
blots were developed using ECL Plus solution (Amersham).

Transmission electron microscopy. Samples were fixed with 2.5%
glutaraldehyde in 0.1 M sodium cacodylate buffer, and postfixed with
1% osmium tetroxide, followed by addition of 1% uranyl acetate.
After dehydration through a graded series of ethanol washes, samples
were embedded in LX112 resin (LADD Research Industries, Williston,
Vermont, United States). Ultrathin sections were cut on a Reichert
Ultracut UCT, stained with uranyl acetate followed by lead citrate,
and viewed on a JEOL 1200EX transmission electron microscope at
80 kV.

Flow cytometry. Human DCs and murine BMDCs were analyzed by
flow cytometry using FACScan and FACScalibur flow cytometers (BD
Biosciences, Palo Alto, California, United States). For each staining
condition,106 cells were washed once with buffer A (PBS containing
1% BSA and 0.05% NaN3). After blocking for 10 min with heat-
inactivated fetal calf serum, primary antibody was added for 30 min
on ice. Subsequently, cells were spun down, washed in buffer A and
stained with secondary antibodies when necessary. The following
antibodies were purchased from BD Biosciences: FITC-conjugated
anti-CD14 (clone M5E2), anti-CD16 (clone 368), and anti-CD80 (clone
L307.4); and PE-conjugated CD11c (clone B-Ly6) and anti-CD86
(clone 2331). The following antibodies were produced from hybrid-
oma lines that were cultivated in our laboratory: anti-HLA-DR (clone
L243; obtained from ATCC, Manassas, Virginia, United States), anti-
DEC-205 (clone Mg38; obtained from Dr. R. Steinmann, Rockefeller
University), and anti-CD58 (clone TS2/9; obtained from ATCC). FITC-
conjugated goat F(ab9)2 anti-mouse IgGþ IgM, fluorescein conjugate
(Biosource, Camarillo, California, United States) was used as a
secondary antibody when necessary. In all cases, antibody staining
was compared to the appropriate isotype control.

In vivo assay. Ten-week-old female BALB/c mice were injected
intraperitoneally with LT [3,4]. Mice were sacrificed 0, 3, 6, and 24 h
after LT injection. Spleens were harvested and treated with 400 U/ml
collagenase D (Roche) to release DCs. Levels of splenic DCs (CD11cþ,
MHC class IIþ), macrophages (CD11bþ, MHC class IIþ), and circulating
B cells (B220þ) and T cells (CD3þ) were determined by flow cytometry
using fluorescently labeled antibodies to surface markers.
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