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Abstract

Stenotrophomonas maltophilia is a multidrug-resistant bacterium with no precise clinical

treatment. This bacterium can be a vital cause for death and different organ failures in

immune-compromised, immune-competent, and long-time hospitalized patients. Extensive

quorum sensing capability has become a challenge to develop new drugs against this patho-

gen. Moreover, the organism possesses about 789 proteins which function, structure, and

pathogenesis remain obscured. In this piece of work, we tried to enlighten the aforemen-

tioned sectors using highly reliable bioinformatics tools validated by the scientific commu-

nity. At first, the whole proteome sequence of the organism was retrieved and stored. Then

we separated the hypothetical proteins and searched for the conserved domain with a high

confidence level and multi-server validation, which resulted in 24 such proteins. Further-

more, all of their physical and chemical characterizations were performed, such as theoreti-

cal isoelectric point, molecular weight, GRAVY value, and many more. Besides, the

subcellular localization, protein-protein interactions, functional motifs, 3D structures, antige-

nicity, and virulence factors were also evaluated. As an extension of this work, ’RTFAMS-

SER’ and ’PAAPQPSAS’ were predicted as potential T and B cell epitopes, respectively.

We hope our findings will help in better understating the pathogenesis and smoothen the

way to the cure.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252295 May 27, 2021 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ezaj M.MA, Haque M.S, Syed SB, Khan

M.SA, Ahmed KR, Khatun M.T, et al. (2021)

Comparative proteomic analysis to annotate the

structural and functional association of the

hypothetical proteins of S. maltophilia k279a and

predict potential T and B cell targets for

vaccination. PLoS ONE 16(5): e0252295. https://

doi.org/10.1371/journal.pone.0252295

Editor: Jinn-Moon Yang, National Chiao Tung

University College of Biological Science and

Technology, TAIWAN

Received: September 1, 2020

Accepted: May 7, 2021

Published: May 27, 2021

Copyright: © 2021 Ezaj et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-1139-985X
https://orcid.org/0000-0002-6343-4901
https://orcid.org/0000-0002-4786-0337
https://orcid.org/0000-0003-0414-1487
https://orcid.org/0000-0002-1331-5875
https://doi.org/10.1371/journal.pone.0252295
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252295&domain=pdf&date_stamp=2021-05-27
https://doi.org/10.1371/journal.pone.0252295
https://doi.org/10.1371/journal.pone.0252295
http://creativecommons.org/licenses/by/4.0/


Introduction

Stenotrophomonas maltophilia is a major emerging nosocomial pathogen [1] and is most com-

monly found in cystic fibrosis (CF) patients worldwide [2]. Among the multidrug-resistant

organisms (MDROs), World Health Organization (WHO) enlisted S. maltophilia as one of the

leading organisms found in the hospital settings [3] and causes nosocomial infection [4]. It is a

Multi-Drug Resistant (MDR), gram-negative [5], ubiquitous [6], non-fermenting, bacilli [7]

that form biofilms [8–11], which is responsible for 65% of infections that are acquired from

hospitals [12]. S. maltophilia is generally found in plant roots, animals, and soils [13–19], dialy-

sate sample and hemodialysis water [20], cannulae, nebulizer, dental units, prosthetic devices

[21–26], ICU (Intensive Care Unit) [27] and airborne transmission can occur from the

infected CF patients [28]. This pathogen causes a broad spectrum of infections including respi-

ratory tract infections (RTIs), COPD (Chronic Obstructive Pulmonary Disease), pneumonia,

biliary sepsis, bacteremia, bone and joint, soft tissues, and urinary tract infections, eye infec-

tions, endocarditis, endophthalmitis, meningitis [28–43]. Recent studies showed that it is the

third most occurring (about 9.1%) NFGNB (Nonfermenting Gram-Negative Bacilli) [44] with

an extremely high death rate of 14 to 69% in bacteremia patients [45]. The prevalence of the

infections associated with this organism has increased from 0.8 to 1.68% during 1997–2012

[44]. It is a life-threatening pathogen to immunocompromised individuals, ICU patients, can-

cer patients, graft transferred patients [32, 46, 47], and immunocompetent persons as well [6].

The main problem to fight this organism is the multi-drug resistance acquired through DSF

(Diffusible Signal Factor)-mediated quorum sensing [48] or horizontal gene transfer [15]. Tri-

methoprim-sulfamethoxazole (SXT) is widely used to fight this organism, which has less effi-

cacy [49]. So, it is quite important to develop new drugs to eliminate this pathogen.

After the first isolation in 1943, S. maltophilia was named Bacterium bookeri, and further

characterization renamed it to Pseudomonas maltophilia [50]. Cistron analysis of rRNA

renamed it as Xanthomonas maltophilia [51], but later it was changed to Stenotrophomonas
maltophilia in1993 based on the result of 16S rRNA genes [51, 52]. The complete genome of

the well-characterized strain of S. maltophilia K279a was sequenced and analyzed in 2008 to

improve our understanding of the biology of this low-grade pathogen [48]. The reference

sequence of S. maltophilia 279A is stored in the NCBI (National Center for Biotechnology

Information) database, which contains 4,851,126 bp long circular chromosome having 4490

genes encode 4332 proteins. The G+C content is 66.7, and it has 74 tRNAs [48].

When a protein is assumed to be encoded by a well-defined open reading frame (ORF), but

no experimental protein product is identified or characterized, it is called Hypothetical Protein

(HP) [53]. Most of the genomes contain about half of the HPs, which have proteomic and

genomic significance [54, 55]. These HPs are believed to have crucial roles in the survival and

progression of the diseases by the pathogens [53, 56]. New pathways, structures, functions cas-

cades can be identified through precise annotation of these HPs [55], where novel ones can act

as a marker or target for pharmaceutical uses [57, 58]. Among the proteins of S. maltophilia,

about 789 proteins are of unknown functionalities and characters.

Several bioinformatics studies have been done on various microorganisms, i.e., Candida
dubliniensis [56], Haemophilus influenza [59], Clostridium tetani [60], Treponema pallidum
ssp. Pallidum [61] to analyze the HPs of these pathogens using the structure and sequence-

based methods. But there is no evidence of such a study on S. maltophilia. As per our knowl-

edge, this is the first study that provides a proper analysis of the functions and structures of

conserved HPs of S. maltophilia.

Here we will be using different bioinformatics tools to predict the functions, structures,

physicochemical properties, subcellular localizations, antigenicity, virulence factors, and some
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other phenomena of the HPs of S. maltophilia. Furthermore, we will also predict the best epi-

tope-based subunit vaccine candidate and different B and T cell epitopes.

Materials and methods

The complete framework and the tools used in this study are depicted in Fig 1 and Table 1,

respectively. The whole process is comprised of three phases: Phase-I, Phase-II, and Phase-III.

The genome analysis and characterization of the HPs are performed in Phase-I. Phase-II

includes annotations of different functional properties using multiple servers and tools. Priori-

tization of targets to design a vaccine against the pathogen and validation of the findings are

illustrated in Phase-III.

Phase-I

Sequence retrieval. The complete genome sequence of S. maltophilia K279a (GeneBank

Assembly ID: GCF_000072485.1) (RefSeq: NC_010943.1) was retrieved from the NCBI data-

base (http://www.ncbi.nlm.nih.gov/). There were about 789 Hypothetical Proteins (HPs)

among the 4332 proteins, which were separated and stored as FASTA files using the Refseq

accession number for further analysis. Different computational strategies were followed to pre-

dict various essential properties of those proteins.

Conserved domain search. The repetitive sequences or recurring structural units that

have notable functional capabilities in many contexts of a protein and thought to modulate or

signify different functions in different proteins through their unique re-combinational rear-

rangements can be called domains [62]. Throughout evolution, these domains work as build-

ing blocks that are rigidly conserved among the protein families rather than the whole protein

sequences [63].

To classify the protein families and to predict the highly conserved and well-defined

domains or folds in the HPs, we used four online bioinformatics tools, namely CDD-BLAST

[64–66], SMART [67], PFAM [68], ScanProsite [69]. All the HPs were subjected to those web

tools mentioned above, which resulted in variable predictions of the conserved domains

among the HPs. Thereat, variability was observed in the confidence level of the cumulative

predictions. Percentile confidence scores were given to determine a higher or lower confidence

level, i.e., a combinatorial score of 100 is given to those proteins which are being predicted to

have the same functional domains. After analyzing all the HPs, we have found 24 proteins that

have a high confidence level (HCL) of 100 and considered them for further investigations.

To find out highly conserved domains of a query protein, NCBI’s online tool CDD-BLAST

uses RPBLAST, which is derived from PSI-BLAST, scans the query sequence with the help of

Position Specific Scoring Matrices (PSSMs) against the Conserved Domain Database. The

SMART stands for Simple Modular Architecture Research Tool, which is a web-based server

that predicts domain profiles and architectural similarities of the target protein using stable

Ensembl [70], SP-TrEMBL [71], Swiss Prot [72], where direct similarities search among the

sequences is avoided. Pfam database has two parts: Pfam-A and the Pfam-B. The Pfam-A is

derived from Pfamseq, which is built from the updated release of UniProtKB at a particular

time frame. Each family of Pfam-A contains three major elements, namely: A curated seed

alignment, a full alignment that is automatically constructed, and Profile Hidden Markov

Models (Profile HMMs). On the contrary, the Automatic Domain Decomposition Algorithm

(ADDA) generates low-quality un-annotated Pfam-B families using nonredundant clusters

[73]. Most of the proteins of a set of an enormous number of proteins that are functionally dif-

ferent can be grouped into a narrow range of families according to their sequence similarities.

This principle is the core of the web-based prediction tool ScanProsite.
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Fig 1. The complete framework of the study was used to annotate the functions of the 24 HPs from S. maltophilia.

https://doi.org/10.1371/journal.pone.0252295.g001
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Phase-II

Physicochemical characterization. Different physicochemical properties of the HCL pro-

teins were measured using Expasy’s ProtParam [74] server, i.e., theoretical isoelectric point

(pI), molecular weight (MW), total amino acid number, Aliphatic index (AI) [75], extinction

coefficient [76], grand average of hydropathy (GRAVY) [77], the total number of positive and

negative charged residues and instability index [78].

Subcellular localization. Depending upon different positional orientations, a protein can

be targeted for vaccines (structural or extracellular proteins) or drugs (cytoplasmic or

Table 1. List of the bioinformatics databases and tools used in this study.

Objective Serial

No.

Tools URL Remarks

Physicochemical

Characterization

1. ProtoParam http://web.expasy.org/protparam/ This server predicts different physical and chemical

properties of accuracy sequence

Subcellular Localization 1. CELLO http://cello.life.nctu.edu.tw Prediction by this server is 91% accurate

2. PSORT B http://www.psort.org/psortb The result is 97% precise

3. SignalP http://www.cbs.dtu.dk/services/

SignalP/

SignalP predicts the cleavage site of signal peptide

4. SecretomeP http://www.cbs.dtu.dk/services/

SecretomeP/

This server is used to predict non-classical secretion

5. HMMTOP http://www.enzim.hu/hmmtop/ Used for transmembrane topology prediction

6. TMHMM http://www.cbs.dtu.dk/services/

TMHMM/

Predicts membrane topology

7. SOSUI http://bp.nuap.nagoya-u.ac.jp/

sosui/sosui_submit.htm

Predicts whether a protein is transmembrane or

soluble

Conserved Domain and

Function Prediction

1. CDD-BLAST http://www.ncbi.nlm.nih.gov/

Structure/cdd/wrpsb.cgi

The conserved domain search tool in the query

sequence

2. SMART http://smart.embl-heidelberg.de/ Predicts domains in the protein sequence

3. PFAM http://pfam.xfam.org/search Uses multiple sequence alignment to search protein

family

4. ScanProsite http://prosite.expasy.org/

scanprosite/

Scans protein based on the motif, domain, and

pattern

5. (PS)2-v2 http://ps2.life.nctu.edu.tw/ Predicts 3D structure

Motif Discovery 1. MOTIF http://www.genome.jp/tools/motif/ Motif discovery tool of Japanese GenomeNet service

2. INTERPROSCAN http://www.ebi.ac.uk/InterProScan/ Motif is searched in the InterPro

Virulence Prediction 1. VirulentPred http://bioinfo.icgeb.res.in/virulent/ Accuracy is 81.8%

2. VICMpred http://www.imtech.res.in/raghava/

vicmpred/

Predicts virulence factor with 70.75% accuracy

Protein-Protein Interaction 1. STRING http://string-db.org keeps the data of different protein-protein

interaction network

T Cell Epitope Prediction 1. NetCTL 1.2 http://www.cbs.dtu.dk/services/

NetCTL/

Predicts potential T cell epitopes

2. IEDB T cell epitope

prediction tools

http://tools.iedb.org/main/tcell/ Prediction of T cell epitopes with high accuracy

3. Population coverage http://tools.iedb.org/population/ Predicts the population coverage of the epitopes

B Cell Epitope Prediction 1. Antibody Epitope

Prediction

http://tools.iedb.org/bcell/ This server predicts linear B cell epitopes using

protein sequence

2. ElliPro http://tools.iedb.org/ellipro/ Conformational B cell epitopes are predicted using a

PDB file

Allergenicity Assessment 1. AllerTOP 2.0 https://www.ddg-pharmfac.net/

AllerTOP/

Predicts allergenicity

2. AllerCatPro https://allercatpro.bii.a-star.edu.sg/ Overall accuracy is 84%

https://doi.org/10.1371/journal.pone.0252295.t001
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intracellular proteins) [79], where UniProtKB can be useful for experimental proteins infor-

mation [80]. There is an information gap about the HPs as they are not experimentally charac-

terized. Hence, their subcellular localizations are also in concealment. To unveil this

characteristic feature, online bioinformatics tools CELLO (v2.5) [81], which uses a system

based on two-level SVM (Support Vector Machine) and PSORTb [82], which is the most reli-

able subcellular localization prediction tool for bacteria, was used. Besides, to predict signal

peptide and secretory pathway (non-classical), we used the neural network-based system Sig-

nalP [83] and CBS server’s tool SecretomeP [84], respectively. Our study also used SOSUI [85],

TMHMM [86], and HMMTOP [87] to predict the solubility and transmembrane topology of

the proteins.

Domain and function assignment. To predict the precise functions of the proteins, we

employed several servers for the accuracy of the work. CDD (Conserved Domain Database),

ScanProsite, SMART, and Pfam were used earlier to search the domains. Furthermore, to

assign functional motifs, the online tool MTIF (https://www.genome.jp/tools/motif/) was

recruited where the output is very large. We also used InterProScan [88], which works in a

combination of different signature recognition methods of proteins, utilizing InterPro consor-

tium, where large databases like Pfam, SUPERFAMILY, SMART, PANTHER, ProSite are the

integral parts.

Protein structure prediction. Along with the functional motif prediction of the HPs, it is

crucial to predict the 3D structures as well [89]. Template-based protein structure prediction

online tool PS square version 2, popularly known as PS2-v2 [90], was exploited to predict the

tertiary structure of the proteins. Protein FASTA sequence is the input format for the query,

which is analyzed using both Pair-wise and multiple sequence alignments in the combination

of IMPALA [91], PSI-BLAST [64, 92], T-Coffee [93] through both target-template selection

and alignment. By default, the best homologous template is selected based on scores to gener-

ate a 3D structure using the amino acid sequence of the target protein with the help of an inte-

grated modeling package. However, the server failed to generate a 3D model for some

proteins. To overcome this problem, we implemented the manual system to select a template

from the suggested list of the server and generated the 3D models of those proteins. Though it

was executed successfully still, there was an error in template selection and modeling for two

proteins. We overcame this problem using the SWISS-MODEL [94]. All the predicted results

for the HCL HPs were stored in PDB (Protein Data Bank) format.

Virulence factor analysis. Virulence Factors (VFs) are related to the intensity or severity

of an infection and are targeted for drug development. More the virulence, more the potency

as the target for drugs [95]. To determine the VFs of HCL HPs, VirulentPred [96] with an

accuracy of 81.8% and VICMpred [97] with the corresponding accuracy of 70.75% were used

in this study. Both servers use a fivefold cross-validation strategy with the SVM method.

Functional protein association and PPI prediction. STRING [98] uses four sources: Pre-

vious Knowledge, (Conserved) Co-expression, High-throughput Experiment, and Genomic

Context to predict Protein-Protein Interactions (PPI). We completed the prediction with

STRING v11 [99], where only the highest scored protein was taken as a functionally associated

partner. Besides, this study also showed the PPI network and gene co-occurrence for the high-

est antigenic and all the virulent proteins.

Identification of antigenic protein. All the previous analyses helped us to select 11 pro-

teins among the entire set of HCL HPs, which are predicted to be connected to classical or

non-classical secretory pathways or localized in the extracellular space/periplasm/plasma

membrane by CELLO prediction server or possessed one or more transmembrane topology.

These types of proteins are generally targeted for subunit vaccines. To check the probability of

these proteins as potential protective antigens, we used the VaxiJen v2.0 [100] server at a
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threshold of 0.5 for a very high precisions level. Besides, we also checked the antigenicity of the

rest of the proteins as they can also induce cell-mediated and humoral immunity [101], and we

found about 15 proteins to be antigenic out of the 24. Among them, the most antigenic protein

was taken to predict potential B cell and T cell epitopes.

Phase-III

T cell epitope identification. To induce cell-mediated and humoral immunity, identify-

ing potential epitopes for T cell and B cell is essential. A tool from the CBS server, NetCTL 1.2

[102], was used at threshold 0.5 with a sensitivity of 0.89 and specificity of 0.94 to predict prob-

able epitopes. The prediction is based on the peptide to MHC-I (Major Histocompatibility

Complex class I) binding, C terminal proteasomal cleavage, and TAP (Transporter associated

with Antigen Processing) transport efficiency using 12 prominent supertypes of MHC-I. This

server uses ANN (Artificial Neural Network) based method to predict MHC-I binding and C

terminal proteasomal cleavage where TAP transport efficiency is calculated using the Weight

Matrix method.

For peptide to MHC-I binding prediction, the Stabilize Matrix Method (SMM) [103] was

selected in a tool from IEDB (Immune Epitope Database) [104], which was employed to deter-

mine the IC50 (Half Maximal Inhibitory Concentration) value. All the available alleles were

selected with the peptide length of 9.0 before the prediction. Finally, selected epitopes were

analyzed using the T cell epitopes-processing prediction tool that calculates a combinatorial

score for TAP transport, proteasomal cleavage, and MHC-I binding [105]. We used the SMM

method in this case as well.

Prediction of population coverage. Among the different ethnicity, the coverage of our

proposed epitopes with corresponding HLAs was calculated using the population coverage

tool [106] from the IEDB server.

Allergenicity appraisal. Two web-based tools were used to predict the allergenicity of the

epitopes with very high specificity, namely: AllerTOP v2.0 [107] with an accuracy of 85.3%

and AllerCatPro [108] with 84% accuracy.

Molecular docking simulations. Before docking, the 3D structure of the epitope

RTFAMSSER was built using PEP-FOLD3 [109], and the PDB (Protein Data Bank) structure

of the HLA-C�03:03 (PDB ID: 1EFX) was retrieved from the RCSB database [110] where it was

complexed with human natural killer cell receptor KIR2DL2. Then the complex was opened

using Discovery Studio [111] to remove the receptor and recover the simplified HLA-C�03:03.

Autodock Vina [112] was used to calculate the binding energy between the target epitope

and the corresponding HLA. The docked complex was visualized using PyMol [113] and

UCSF Chimera [114].

However, the rest of the epitopes and HLA alleles were also subjected to molecular docking

simulation following the similar procedure in order to estimate the relation between the dock-

ing score, IC50 value, and combined score of proteasome score, TAP score, MHC-I score, pro-

cessing score.

Linear and conformational b cell epitope identification. B lymphocytes play a crucial

role in the induction of immune response mediated by B cell epitopes [115]. We used IEDB B

cell epitope prediction tools to identify the B cell epitopes. Bepipred linear epitope prediction

analysis [116], Kolaskar and Tongaonkar antigenicity scale [117], Karplus and Schulz flexibil-

ity prediction [118], Emini surface accessibility prediction [119], Parker hydrophilicity predic-

tion [120] were performed to predict and confirm the linear antigenic B cell epitope

properties. As beta-turn regions of a protein are found in the antigenic portions [121], we uti-

lized the Chou and Fasman beta-turn prediction tool in this regard [122].
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Furthermore, the conformational or discontinuous B cell epitopes were also predicted

using the IEDB tool Elipro [123]. For this prediction, the 3D structure of the protein was built

using PS2-v2 and validated. Then the valid, optimized structure was submitted to the server,

and the scoring criteria were set at 0.5, where less than that value is rejected, and the most

stringent score is considered to be at 1.0. To calculate the residue clusters, 6.0 Å (Angstrom)

was selected as the maximum distance parameter.

Result and discussion

Sequence evaluation

The implementation of advanced technologies in DNA sequencing techniques enables us to

reveal the exact sequence of an immense number of bacterial genomes in a short time with a

considerably low cost. Many genes are found to be conserved in a broad spectrum of bacterial

genomes throughout the evolutionary process. As a result, the precise annotations and func-

tions of these genes are assigned using sequence homology or similarity search against func-

tionally specified genes [124]. Although, one-third of the sequenced genes have no specified

functional assignment due to the rapid deviations of functions between the similar gene

sequences in the road to evolution [125, 126]. Consequently, only sequence homology or simi-

larity search cannot predict or ascertain the proper function of a gene, which ultimately results

in faulty functional allocation [127].

To overcome this crux and lessen the proportion of HPs, it is recommended to use multiple

bioinformatics tools for discovering appropriate functions of the hypothetical proteins. On

account of this, the current study focused on annotating the functions of the hypothetical pro-

teins of Stenotrophomonas maltophilia by recruiting diverse bioinformatics methods and tools.

At first, the conserved domains for the 789 hypothetical proteins were searched with the help

of four bioinformatics web tools, namely Pfam, CDD-BLAST, ScanProsite, SMART. Based on

these results, the proteins were classified into five groups where 24 proteins showed a specific

consensus functional domain in all the tools and hence are grouped into high confidence level

(HCL) proteins. The tools did not find any domain for 479 proteins, and the combined confi-

dence level was zero. Remaining HPs (286 proteins) showed hit in one, two, or three of the

four tools mentioned above, which resulted in different confidence levels (i.e., 25% for 172,

50% for 59, and 75% for 55 proteins). The result is summarized in the S1 Table. However, fur-

ther analysis is required to reveal the proper functions of these proteins. We considered only

the 24 HCL HPs for downstream study because these proteins showed at least one conserved

domain in all four servers. To avoid false-positive results and increase the accuracy of the

study, we excluded all the other four confidence level proteins.

The theoretical pI, molecular weight, extinction coefficient, total number of negative and

positive charged residues, instability index, GRAVY value, and other physiochemical proper-

ties of the HCL HPs were measured by the online bioinformatics tool ProtParam, and the

result is shown in S2 Table. The cumulative value of hydropathy for all the amino acid residues

of a protein chain is divided by the total number of residues of that protein sequence to calcu-

late the GRAVY value [77]. The lower GRAVY value indicates the possibility of a protein

being hydrophilic (globular), where the higher value confirms the hydrophobic (membranous)

nature of the proteins.

We found the GRAVY values of our concerned proteins ranging from -0.958 to -0.044,

which points towards the hydrophilic properties of the proteins and helps in predicting the

localization. Functional motifs of these hypothetical proteins were discovered using web-based

tools MOTIF and InterProScan for further confirmation about the functions. Using the ter-

tiary structural information, we can validate the predicted biochemical functions of a protein
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[128]. So, we assigned the PS2-v2 server for the resolution of the 3D structure of HCL HPs,

which generates a PDB file in a template-based manner and fold recognition scheme. Then all

the sequence evaluation data were collated, and the HCL HPs were sorted into different func-

tional groups, which consist of eleven enzymes, three binding proteins, four regulatory pro-

teins, two inhibitors, two transporters, and two proteins of manifold functions. These groups

are described below:

Enzymes. Bacterial enzymes are crucial for their pathogenesis in the host. They also pro-

vide essential nutrients and control various metabolic pathways, which helps in the growth

and survival of the organism [129]. In our study, we found 11 enzymes among the 24 anno-

tated HCL HPs that have different physiological and pathological importance to S. maltophilia.

Among them, WP_005408386.1 and WP_012479842.1 are phosphotransferases (catalyze

phosphorylation reactions), which play a key role in the bacterial PTS (Phosphotransferase

System) in transporting sugar [130]. Besides, WP_012479842.1 is a member of the chloram-

phenicol phosphotransferase-like protein family. This protein phosphorylates and inactivates

the lethal chloramphenicol metabolites in bacteria, which inhibits ribosomal peptidyl transfer-

ase and thus shuts protein production down [131, 132].

We found WP_005409007.1 protein to be a member of the SmrA superfamily. Member of

this family contains the Smr domain, which is thought to participate in crossing over, mis-

match repair, or segregation, and it also has nicking endonuclease activity [133, 134]. Vicinal

Oxygen Chelate (VOC) is a family of proteins that are involved in sequestering and localizing

metal ions. This type of domain or fold consists of two β-α-β-β-β units, which are responsible

for the formation of the partially closed beta-sheet barrel around the metal ions [135]. The pro-

tein WP_005414366.1 was found to be a member of the VOC superfamily. So, we assume this

protein may involve in the metal resistance trait in the organism. The protein

WP_012478637.1 contains the Haloacid Dehydrogenase or HAD domain superfamily, which

participates in various cellular processes, i.e., detoxification, amino acid biosynthesis, and

many more [136, 137]. X-ray crystallography revealed the conserve hydrolase fold analogous

to the Rossmann fold found in the members of this superfamily [138]. This fold contains two

subdomains, where the large one remains strictly conserved, and the small domain shows

structural variations among the classes [139]. WP_012480920.1 protein belongs to the Isopren-

oid Biosynthesis Enzymes Class-I.

Protein WP_012478648.1 was found to maintain the protein tyrosine phosphatase super-

family, which is homologous to the dual-specificity protein phosphatase known as Cyclin-

Dependent Kinase Inhibitor-3 (CDKN3) [140]. WP_012480806.1 glycosidase enzyme pos-

sesses six helical hairpin structures in a closed circular order and hence are included in the six-

hairpin glycosidase superfamily [141]. We found the CheB domain in WP_012481043.1 pro-

tein, which is a strong indication for this protein of being a member of methylesterase CheB,

C-terminal superfamily. The members of this superfamily consist of parallel β sheet with the

α-β-α array in seven strands and remove the methyl group from the methyl-accepting chemo-

taxis proteins (MCP) [142, 143]. Among the enzymes, we were able to identify only one prote-

ase enzyme (WP_044570756.1) containing DUF2268 (DUF is annotated as Domain of

Unknown Function) domain, which is predicted as a Zn-dependent protease.

Binding proteins. We have characterized two (WP_005412620.1 and WP_005413412.1)

calcium ion binding proteins containing the EF-hand domain, and the rest is a DNA binding

protein. EF-hand Ca2+-binding motifs are found in pairs. Each of them comprises a loop that

is 12 residues long where a 12 residue α-helix flanks the loop on either side [144]. The confor-

mation of the EF-hand motif changes upon the binding of the Ca2+ ion. The ion is positioned

in the loop in a pentagonal bipyramidal fashion [145, 146]. The DNA binding protein

WP_012479848.1 belongs to the Bro-N family proteins which function is unknown. But the
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experimental shreds of evidence of Bro-A and Bro-C suggest its ability to regulate host DNA

replication and/or transcription by binding with it directly [147].

Regulatory proteins. In this study, we were successfully able to characterize a novel regu-

latory protein (WP_012479796.1) of S. maltophilia that is crucial for its extensive multi-drug

resistance nature. This protein is a member of the LuxR transcription regulatory protein fam-

ily, which is one of the most important proteins in Quorum Sensing (QS). It also plays key

roles in plasmid transfer, motility, biofilm formation, nodulation, and the expression of many

genes that includes the antibiotics and virulence factors encoding genes [148]. This family pro-

tein has an autoinducer binding domain at the N-terminal that generally binds to the N-acyl

homoserine lactones (AHL). Binding with autoinducer results in the dismantling of the C-ter-

minal DNA-binding domain that promotes it to bind with the DNA and actuate the transcrip-

tion [149].

WP_012479125.1 and WP_012480949.1 protein contains the structural motif Tetratrico

Peptide Repeat (TPR). This protein domain consists of 34 amino acids that are repeated 3–16

fold and occur in a helix-turn-helix array with the nearby TPRs in a parallel manner, which

results in anti-parallel α-helices [150, 151]. These proteins are engaged in many biological pro-

cesses, such as the regulation of transcription, cell cycle, protein transport, and folding [152].

The functional analysis disclosed a vital protein (WP_012478875.1) that can act as a regula-

tory protein and immune protein both at the same time due to the presence of Ankyrin

repeat-containing domain and NTF2 fold domain. NTF2 domain-containing proteins are

found in the polymorphic toxin system of bacteria [153]. This domain is always fused with

ankyrin repeats, which is a multi-repeat β2-α2 motif of 33 amino acid residues [154]. Proteins

of these domains can participate in a variety of functions, including the initiation of transcrip-

tion, ion transportation, cell-cycle regulation, and signal transduction [155].

Inhibitor proteins. Two HCL HPs among the annotated 24 showed similarities with lyso-

zyme inhibitors. Lysozymes are the hydrolase enzymes recruited by the innate immune system

of animals for the degradation of bacterial major cell wall component peptidoglycan [156].

WP_005413200.1 is a C-type lysozyme inhibitor superfamily protein, more specifically mem-

brane-bound lysozyme inhibitor of C-type lysozyme (MliC), which are well known for their

conferring support in extensive lysozyme tolerance to the gram-negative bacteria [157]. This

protein forms ionic and hydrogen bonds with its invariant loop to the lysozyme at the active

site cleft [158]. The second inhibitor (WP_044569343.1) is of the IVY (Inhibitor of Vertebrate

Lysozyme) superfamily, which is also known as a virulence factor [159, 160]. IVY proteins con-

sist of three layers of α2-β5-α2 topology and a crucial 5-residue long loop for the inhibitory

function [161].

Transporter proteins. Maintenance and assembly of outer membrane (OM) components

play a vital role in bacterial survival and pathogenesis. To aid this process, many transport pro-

teins are involved in bacteria. We found two such proteins, namely the LPS-assembly lipopro-

tein LptE (WP_005410539.1) and Curli production assembly/transport component CsgG

(WP_032966398.1). During the assembly through the beta-barrel assembly machine, LptE

interacts with LptD and forms a complex [162] that is involved in lipopolysaccharides (LPS)

assembly at the outer region of OM [163–165]. Along with them, LptA, LptB, and LptC are

also involved in the LPS transport machinery. Blocking any of them disrupts the LPS assembly

system as a whole and creates the same type of OM biogenesis defects [164]. On the other

hand, CsgG is a lipoprotein that works as the stabilizer for CsgA and CsgB during the Curli

assembly [166]. The Curli protein is amyloid fiber in nature and promotes cell to cell commu-

nication via biofilm formation [167].

We found two proteins showing miscellaneous functions. One of them (WP_024956629.1)

contains the DUF2329 domain, which is a domain of unknown functionality. But
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WP_005410716.1 proteins were found to have a CheW like domain associated with the che-

motaxis process of the bacteria [168]. The domain is about 150 residues long and is made up

of two β-sheet subdomains. Every beta-sheet is comprised of a five-stranded loose beta-barrel

centering a hydrophobic core component [169].

The MOTIF and InterProScan servers were used to validate the predicted functions of the

proteins by the blast servers (Table 2). Web-based tool STRING was employed to predict the

possible functional partners of the HCL HPs (S3 Table).

Structure prediction

All of the 24 HCL HPs were subjected to the PS2-v2 server to generate the 3D structure of the

proteins. The server effectively produced a PDB file for each of the 22 proteins. In the case of

the rest two proteins, it showed an error message, which is due to the inappropriate or unavail-

ability of a suitable template for the prediction. To solve this problem, we used the SWISS--

MODEL and generated the 3D structure. The result is depicted in the S3 Table.

Subcellular localization prediction

The subcellular localization of the HCL HPs was predicted using various bioinformatics tools,

which predicted not only their cellular locus but also their solubility and secretion or signaling

ability along with possible membrane helices. Among the 24 HCL HPs we found about 10 proteins

(WP_005412620.1, WP_005413200.1, WP_005413412.1, WP_012479125.1, WP_012480806.1,

WP_012480949.1, WP_024956629.1, WP_032966398.1, WP_044569343.1, WP_044570756.1) that

are in or near the outer membrane or the periplasmic space of S. maltophilia. All of them have at

least one transmembrane helix to anchor the membrane. The remaining 14 proteins were pre-

dicted as cytoplasmic soluble proteins with no transmembrane helices. An exception of them is

the protein WP_005410539.1. This protein possesses one transmembrane helix, which was further

verified by all three tools (HMMTOP, TMHMM, and SOSUI). The result of subcellular localiza-

tion is shown in the S4 Table.

Virulent protein prediction

Virulentpred and VICMpred were used to predict the virulence factor of the high confidence

level hypothetical proteins. These web tools predicted two HPs among the 24 proteins as viru-

lent, and the other proteins were either non-virulent or predicted virulent by only one server.

The result is shown in Table 3. It is thought that the virulence factors can be potentially good

candidates and can provide comparatively better therapeutic interposition in case of bacterial

infections [170]. Characterized virulent HPs can yield a dynamic target-based therapy against

the infections and can be a subsidiary therapy to the antibiotics or can work as effector mole-

cules to the immune response of the host [171].

Antigenic protein prediction

Antigenicity of a protein is the primary requirement of being targeted by the host immune sys-

tem [172]. Vaxijen server 2.0 predicted about 15 proteins as a probable antigen candidate with a

threshold of 0.50 for higher sensitivity and accuracy. The scores of the remaining nine proteins

were below the threshold value, and thus, they were excluded. The result is shown in Table 4.

Protein-protein interaction

Interaction between various proteins plays a crucial role in all most all biological processes.

One protein mutually interacts with others to perform common cellular functions. For
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Table 2. Functional domains present in the HCL HPs.

Serial

No.

Protein

Accession No.

UniProt Id MOTIF INTERPROSCAN

1 WP

005408386.1

J7V4Q1 PTS system fructose IIA component PTS EIIA man-typ sf, PTS EIIA man-typ

2 WP

005409007.1

J7VKL1 Smr Domain Smr dom sf, Smr dom

3 WP

005410539.1

B2FPR6 Lipopolysaccharide-assembly, Prokaryotic membrane lipoprotein

lipid attachment site

LPS assembly LptE

4 WP

005410716.1

J7VVQ8 CheW-like domain CheW-like dom sf, CheW-like dom, CheW

5 WP

005411349.1

B2FKP0 Variant SH3 domain, SH3 domain, Bacterial SH3 domain,

Protein of unknown function (DUF2442)

UCP034961 SH3 2, SH3-like dom sf, SH3 domain

6 WP

005412620.1

B2FTC2 EF-hand, Secreted protein acidic and rich in cysteine Ca binding

region, Dockerin type I domain

EF Hand 1 Ca BS, EF-hand dom, EF-hand-dom pair

7 WP

005413200.1

B2FQ57 Membrane-bound lysozyme-inhibitor of c-type lysozyme MliC sf, MliC

8 WP

005413412.1

B2FS21 EF-hand, Secreted protein acidic and rich in cysteine Ca binding

region, Bacillus PapR protein, Peptidase propeptide, and YPEB

domain

EF-hand-dom pair, EF-hand dom, EF Hand 1 Ca BS

9 WP

005414366.1

T5KJF3 Glyoxalase/Bleomycin resistance protein/Dioxygenase

superfamily, Glyoxalase-like domain, YtxH-like protein

VOC, Glyas Bleomycin-R OHBP Dase, Glyas Fos-R

dOase dom

10 WP

012478637.1

B2FT99 NLI interacting factor-like phosphatase HAD-like sf, FCP1 dom, HAD sf

11 WP

012478648.1

B2FU04 Cyclin-dependent kinase inhibitor 3 (CDKN3), Protein-tyrosine

phosphatase, Dual specificity phosphatase, catalytic domain,

Tyrosine phosphatase family

CDKN3, Prot-tyrosine phosphatase-like, TYR

PHOSPHATASE dom, Tyr Pase cat, PTPase domain

12 WP

012478875.1

B2FJ12 Ankyrin repeat, NTF2 fold immunity protein Ankyrin rpt, Ankyrin rpt-contain sf, Imm-NTF2,

Ankyrin rpt-contain dom

13 WP

012479125.1

B2FNJ7 Bacteriophage N adsorption protein A C-term, TPR repeat,

Tetratricopeptide repeat, Alkyl sulfatase dimerization

TPR-contain dom, TPR-like helical dom sf, TPR

repeat, NfrA C

14 WP

012479796.1

B2FLZ2 Bacterial regulatory proteins; luxR family, Autoinducer binding

domain, Sigma-70; region 4, Helix-turn-helix domain,

Homeodomain-like domain, HTH DNA binding domain, ECF

sigma factor, PucR C-terminal helix-turn-helix domain, LexA

DNA binding domain, Winged helix-turn-helix DNA-binding

Tscrpt reg LuxR HchA-assoc, TF LuxR autoind-bd

dom sf, WH-like DNA-bd sf, Sig transdc resp-reg C-

effector, Tscrpt reg LuxR C

15 WP

012479842.1

B2FM42 D5 N terminal like, Chloramphenicol phosphotransferase-like

protein

Phage/plasmid primase P4 C, TOPRIM DnaG/

twinkle, Helicase SF3 DNA-vir, DNA primase phage/

plasmid

16 WP

012479848.1

B2FM48 BRO family, N-terminal domain, Phage antirepressor protein

KilAC domain, Protein of unknown function DUF99

BRO N domain

17 WP

012480806.1

B2FM94 F5/8 type C domain, Amylo-alpha-1,6-glucosidase FA58C, Galactose-bd-like sf, 6hp glycosidase-like sf,

6-hairpin glycosidase sf

18 WP

012480920.1

B2FP37 Polyprenyl synthetase Isoprenoid synthase dom sf, Polyprenyl synt,

Polyprenyl synt CS

19 WP

012480949.1

B2FPT9 Tetratricopeptide repeat, Transglutaminase-like superfamily,

TPR repeat, MIT (microtubule interacting and transport)

domain, BRO1-like domain, Anaphase-promoting complex,

cyclosome, subunit 3

TPR-like helical dom sf, Papain-like cys pep sf, TPR

repeat, Transglutaminase-like, TPR-contain dom

20 WP

012481043.1

B2FR32 CheB methylesterase CheB C, Sig transdc resp-reg Me-estase

21 WP

024956629.1

A0A0U5DG84 Putative glucoamylase DUF2329, UCP028431

22 WP

032966398.1

UPI0002E8A010 Curli production assembly/transport component CsgG,

Peptidoglycan-synthase activator LpoB, Flagellar assembly

protein T; middle domain

Curli assmbl/transp-comp CsgG

(Continued)
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example, the activation of transcription includes multiple transcription factors that work

together in gene expression. Moreover, the functions of proteins can be predicted using their

PPI information because it is very rare for a protein to interact with different biomolecules.

Therefore, PPI databases have become an important resource to study biological networks and

pathways [173]. We predicted the PPI and gene co-occurrence for three annotated HCL HPs

(highest antigenic protein and two virulent protein), which are thought to be vital players in

the pathogenesis of the organism (Fig 2). Gene Co-occurrence network is the graphical visuali-

zation of a particular gene network that is possibly present, not necessarily conserved, in a vari-

ety of biological organisms. Here in the figure, A1, B1, and C1 are the PPI network of the

protein WP_012479796.1, WP_012480949.1, and WP_005413200.1, respectively, while A2, B2,

and C2 depicted their corresponding gene co-occurrences. The colored nodes of the PPI net-

work represent functionally associated first shell proteins, and each edge shows the type of

interactions.

Table 2. (Continued)

Serial

No.

Protein

Accession No.

UniProt Id MOTIF INTERPROSCAN

23 WP

044569343.1

UPI00031F6529 Inhibitor of vertebrate lysozyme (Ivy) Inhibitor vert lysozyme sf

24 WP

044570756.1

UPI00031EA029 Predicted Zn-dependent protease (DUF2268) DUF2268

https://doi.org/10.1371/journal.pone.0252295.t002

Table 3. The virulence factor prediction result of the HPs of S. maltophilia.

Serial No. Accession No UniProt ID VICMpred Virulentpred

1 WP_005408386.1 J7V4Q1 Metabolism Molecule Virulent

2 WP_005409007.1 J7VKL1 Metabolism Molecule Non-Virulent

3 WP_005410539.1 B2FPR6 Metabolism Molecule Virulent

4 WP_005410716.1 J7VVQ8 Cellular process Virulent

5 WP_005411349.1 B2FKP0 Metabolism Molecule Virulent

6 WP_005412620.1 B2FTC2 Metabolism Molecule Virulent

7 WP_005413200.1 B2FQ57 Cellular process Non-Virulent

8 WP_005413412.1 B2FS21 Metabolism Molecule Virulent

9 WP_005414366.1 T5KJF3 Cellular process Non-Virulent

10 WP_012478637.1 B2FT99 Metabolism Molecule Non-Virulent

11 WP_012478648.1 B2FU04 Metabolism Molecule Non-Virulent

12 WP_012478875.1 B2FJ12 Cellular process Non-Virulent

13 WP_012479125.1 B2FNJ7 Information and storage Non-Virulent

14 WP_012479796.1 B2FLZ2 Virulence factors Virulent

15 WP_012479842.1 B2FM42 Cellular process Non-Virulent

16 WP_012479848.1 B2FM48 Cellular process Non-Virulent

17 WP_012480806.1 B2FM94 Virulence factors Non-Virulent

18 WP_012480920.1 B2FP37 Metabolism Molecule Virulent

19 WP_012480949.1 B2FPT9 Virulence factors Virulent

20 WP_012481043.1 B2FR32 Cellular process Non-Virulent

21 WP_024956629.1 A0A0U5DG84 Metabolism Molecule Non-Virulent

22 WP_032966398.1 UPI0002E8A010 Cellular process Non-Virulent

23 WP_044569343.1 UPI00031F6529 Metabolism Molecule Non-Virulent

24 WP_044570756.1 UPI00031EA029 Metabolism Molecule Non-Virulent

https://doi.org/10.1371/journal.pone.0252295.t003
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On the other hand, Gene co-occurrence is presented as a phylogenetic tree where the top-

most part contains the proteins of the specific network, and the left side contains the organ-

isms. Right-sided color denotes the similarities for a particular gene of interest in a given

genome. Higher the color intensity, the higher the sequence similarity or conservancy. For a

clade that is collapsed in the tree, the highest and lowest similarities are indicated by two dis-

tinct colors.

Epitope prediction for vaccine target

For the prediction of subunit vaccine candidates, the outer membrane proteins of the bacteria

are the target of choice. We have selected only the outer membrane/periplasmic/extracellular

proteins predicted by the CELLO prediction tool. We have found 11 such proteins (S4 Table).

Though each of them can induce the immune response in the host, we selected only the highest

antigenic protein (WP_005413200.1 scored 1.1056 in VaxiJen) for this purpose.

T cell epitope prediction. NetCTL server identified potential T cell epitopes with prese-

lected criteria using the selected antigenic protein. Seven epitopes that have a combinatorial

score of more than 1.5 were selected, and the data is presented in Table 5.

Using the SMM method, we predicted the MHC-I binding affinity for all of the seven epi-

topes. A broad range of MHC Class I alleles was screened for interaction with the epitopes.

The lower or higher IC50 value measured the affinity. The lower the IC50 higher the affinity,

Table 4. The antigenic properties determination using the VaxiJen server.

Serial No Accession No VaxiJen Score

1 WP_005408386.1 0.5815 (Probable ANTIGEN)

2 WP_005409007.1 0.5459 (Probable ANTIGEN)

3 WP_005410539.1 0.5306 (Probable ANTIGEN)

4 WP_005410716.1 0.4253 (Probable NON-ANTIGEN)

5 WP_005411349.1 0.5427 (Probable ANTIGEN)

6 WP_005412620.1 0.8651 (Probable ANTIGEN)

7 WP_005413200.1 1.1056 (Probable ANTIGEN)

8 WP_005413412.1 0.7023 (Probable ANTIGEN)

9 WP_005414366.1 0.501 (Probable ANTIGEN)

10 WP_012478637.1 0.3267 (Probable NON-ANTIGEN)

11 WP_012478648.1 0.5506 (Probable ANTIGEN)

12 WP_012478875.1 0.4504 (Probable NON-ANTIGEN)

13 WP_012479125.1 0.6294 (Probable ANTIGEN)

14 WP_012479796.1 0.4975 (Probable NON-ANTIGEN)

15 WP_012479842.1 0.504 (Probable ANTIGEN)

16 WP_012479848.1 0.4515 (Probable NON-ANTIGEN)

17 WP_012480806.1 0.5217 (Probable ANTIGEN)

18 WP_012480920.1 0.595 (Probable ANTIGEN)

19 WP_012480949.1 0.4533 (Probable NON-ANTIGEN)

20 WP_012481043.1 0.468 (Probable NON-ANTIGEN)

21 WP_024956629.1 0.42 (Probable NON-ANTIGEN)

22 WP_032966398.1 0.7985 (Probable ANTIGEN)

23 WP_044569343.1 0.6115 (Probable ANTIGEN)

24 WP_044570756.1 0.4801 (Probable NON-ANTIGEN)

The cutoff was 0.5, which means less than that value is probable non-antigenic in nature.

https://doi.org/10.1371/journal.pone.0252295.t004
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and vice versa. We allowed only those MHC-I alleles that interacted with the epitopes with an

IC50 value of less than 250nM (Table 6).

The IEDB tool predicted MHC-I processing (TAP transport, proteasomal cleavage, and

MHC-I combined predictor) with a combined score for individual epitopes from the submit-

ted protein sequence. Peptides are formed due to the cleavage of peptide bonds with the help

of the proteasome complex. Then these peptides bind to the MHC Class I molecules and are

transported by the TAP proteins to the plasma membrane and presented to the CD4+ T cells

or helper T lymphocytes. Higher the combinatorial score higher the processing potency

(Table 6).

The 9 mer peptide RTFAMSSER interacted with the maximum number of alleles among

the seven epitopes. The interacted alleles include HLA-A�31:01, HLA-A�68:01, HLA-C�12:03,

Fig 2. The protein-protein interaction network and gene co-occurrence. 2A1, 2B1 and 2C1 represents the PPI and 2A2, 2B2 and 2C2 represents the gene co-

occurrence of WP_012479796.1, WP_012480949.1 and WP_005413200.1 respectively. The color intensity indicates the similarity level.

https://doi.org/10.1371/journal.pone.0252295.g002

Table 5. NetCTL T cell epitope prediction with the combinatorial score.

Serial No. Epitopes Overall Score (nM)

1 RRFDVAQPT 2.3005

2 ERAASGAKY 1.8535

3 VPSLLAASL 1.8151

4 RQYHGCGNF 1.8062

5 RATGNEPGW 1.7780

6 WTKGSDDGL 1.7301

7 RTFAMSSER 1.7202

https://doi.org/10.1371/journal.pone.0252295.t005
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HLA-C�15:02, HLA-C�03:03, HLA-A�11:01, HLA-A�30:01, HLA-C�14:02 and HLA-A�03:01

(Table 6).

Allergenicity assessment and population coverage. To avoid cross-reactivity, all the epi-

topes were subjected to AllerTOP v2.0, and AllerCatPro and six epitopes were predicted as

non-allergens by these servers where epitope WTKGSDDGL found to have allergic activity

(Table 6). So, we excluded that epitope for further analysis.

Population coverage is a crucial parameter in vaccine development. Hence, the cumulative

population coverage percentage was measured using the IEDB population coverage tool for all

Table 6. Promising T cell epitopes with their properties: IC50 value, docking score (kcal/mol), combinatorial processing score.

Serial

No.

Peptide Interacting MHC

class-I allele

Docking Score i.e Binding

affinity (kcal/mol)

IC50 Value

<250nM

The combined score of Proteasome score, TAP

score, MHC-I score, processing score

Allergenicity

1 RRFDVAQPT HLA-C�12:03 -8.2 16.72 -0.70 NON-ALLERGEN

HLA-C�03:03 -8.4 104.86 -1.50

HLA-C�14:02 -7.1 113.66 -1.53

HLA-B�27:05 -7.1 115.50 -1.54

HLA-C�07:02 -8.4 165.26 -1.70

HLA-C�07:01 -8.3 194.16 -1.77

2 ERAASGAKY HLA-C�03:03 -8.9 32.78 1.02 NON-ALLERGEN

HLA-C�12:03 -8.2 44.38 0.89

HLA-B�15:02 -8.8 49.46 0.85

3 VPSLLAASL HLA-C�03:03 -7.1 25.98 0.37 NON-ALLERGEN

HLA-B�07:02 -7.1 45.28 0.13

HLA-C�12:03 -8.1 75.03 -0.09

HLA-B�15:02 -9.4 132.20 -0.34

4 RQYHGCGNF HLA-B�15:01 -8.7 31.48 1.05 NON-ALLERGEN

HLA-C�12:03 -9.4 59.32 0.77

HLA-C�03:03 -8.8 72.21 0.68

HLA-A�32:01 -9.7 121.32 0.46

HLA-B�15:02 -9.3 159.30 0.34

HLA-C�14:02 -8.1 197.07 1.62

5 RATGNEPGW HLA-C�03:03 -10.4 5.96 1.07 NON-ALLERGEN

HLA-B�58:01 -9.8 12.34 0.76

HLA-C�12:03 -10 13.78 0.71

HLA-B�57:01 -9 53.07 0.12

HLA-B�53:01 -8.6 164.77 -0.37

6 WTKGSDDGL HLA-C�12:03 -8 17.43 0.54 ALLERGEN

HLA-B�15:02 -9.4 25.42 0.38

HLA-C�03:03 -8 29.35 0.32

7 RTFAMSSER HLA-A�31:01 -8.4 7.20 0.79 NON-ALLERGEN

HLA-A�68:01 -8.4 13.92 0.51

HLA-C�12:03 -6.9 15.28 0.47

HLA-C�15:02 -8.8 40.97 0.04

HLA-C�03:03 -7.8 48.71 -0.04

HLA-A�11:01 -8.6 92.11 -0.31

HLA-A�30:01 -8 117.75 -0.42

HLA-C�14:02 -7.4 217.58 -0.69

HLA-A�03:01 -7 234.86 -0.72

Allergenicity results of these epitopes are also included.

https://doi.org/10.1371/journal.pone.0252295.t006
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the non-allergenic epitopes. We found the maximum coverage in Europe, which was 90.03%,

followed by Northeast Asia 85.65%, and South Asia 84.06%. Besides, we also measured the

population coverage for North America (82.53%) and Southeast Asia (80.64%). The cumula-

tive World population coverage was 85.30%. The results are summarized in Table 7 and Fig 3

Molecular docking analysis. Molecular docking is the most common method used in

reverse vaccinology to analyze the interaction pattern between epitopes and MHC molecules.

We performed molecular docking in general for all the epitopes and the respective alleles

(Table 6). The ranges of docking score, i.e., binding affinity was between -6.9 to -10.4 kcal/mol,

respectively. The IC50 values were taken for the study were <250 nM, which is an indication

of strong binding affinity between alleles and their respective epitopes. The higher the IC50,

the lower the affinity [105]. Along with that, the combined scores of proteasome score, TAP

score, MHC-I score, processing score are a quantity-based prediction that is proportional to

the total amount of peptides presented by the MHC molecules on the surface of the cells.

Higher the value, the higher the amount of presented peptides [105]. The IC50 value, com-

bined scores, and docking scores cumulatively showed a strong interaction pattern between

the epitopes and the HLA with an average binding affinity of -8.4 kcal/mol. Though all the

non-allergen epitopes can individually induce an immune response, we took only the

RTFAMSSER epitope for post docking interaction analysis because it interacted with the

maximum number of alleles as compared to others. To check the interaction modes between

the predicted T-cell epitope and the HLA-C�03:03, molecular docking was performed using

Autodock Vina. The result comes with a binding affinity of -7.8 kcal/mol. In addition, our

study about the HLA-C�03:03 suggests that the binding cleft of the MHC molecule is located

near the α1 helix region between residues 70–77 and α2 helix region between residues 144–

152 [174]. Post docking interaction was analyzed (Fig 4), and the nonbonding interaction

data are tabulated in Table 8.

Post docking analysis of the docked complex shows that our potent epitope formed 12

hydrophobic, nine electrostatic, and 15 hydrogen bonds with the MHC molecule. Half of the

hydrophobic interaction was formed within the binding cleft, which is an indication of the sta-

ble binding pattern as combined hydrophobic interaction plays a vital role in protein stability.

In hydrophobic interaction, epitope interacted with the MHC molecule only in α2 binding

cleft where interestingly hydrogen bond was formed in both α1 and α2 binding cleft. Interest-

ingly, Lys146 showed both alkyl and pi-alkyl type hydrophobic interaction along with conven-

tional hydrogen bond, whereas Glu152 exhibited salt bridge and conventional hydrogen bond

along with attractive charge type electrostatic interaction. Experimental evidence shows that

the dimorphic amino acid Asn80 generally interacts with both NK cell receptors and the for-

eign antigens (epitopes) [174]. Interestingly, this docking result shows two conventional

hydrogen bonds between Asn80 and the epitope.

B cell epitope prediction. Linear B cell epitope prediction. Several authentic tools were

recruited to identify potential linear B-cell epitopes (Fig 5). Kolaskar and Tongaonkar

Table 7. Population coverage results of the epitopes using IEDB resource.

Country/Region Coverage Average hit PC90

World 85.30% 2.81 0.68

Europe 90.03% 3.25 1

Northeast Asia 85.65% 2.92 0.7

South Asia 84.06% 2.46 0.63

North America 82.53% 2.32 0.57

Southeast Asia 80.64% 2.29 0.52

https://doi.org/10.1371/journal.pone.0252295.t007
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antigenicity prediction tool assessed the conserve regions considering the Physico-chemical

properties of the protein. The threshold value was set at 1.00, which determines the possibility

of a conserved region being a potential antigen scoring more than that. The minimum and

maximum antigenic propensity values were 0.920 and 1.240, where the average was 1.058. We

were able to identify such regions that can induce a humoral immune response presented in

Fig 5A and Table 9.

Fig 3. Population coverage data based on MHC class I restriction data. Here the line (-o-) shows the cumulative percentage of population coverage for the epitopes,

and the bars represent individual population coverage of the epitopes.

https://doi.org/10.1371/journal.pone.0252295.g003
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We were ascertained of the region 35–42 amino acid residues as surface accessible by the

Emini Surface Accessibility prediction tool that can act as B cell epitope (Fig 5B and

Table 10).

Moreover, it is well known about the surface accessibility or hydrophilicity of the beta-turn

regions of a protein, which was predicted by Chou and Fasman Beta-turn prediction tool. The

predicted beta-turn regions were 20–57, 87–107, and 171–188 (Fig 5C). The antigenicity of the

peptide is strongly correlated with its flexibility [100]. Karplus and Schulz flexibility prediction

tool identified 21–51 as the most flexible regions (Fig 5D). In the end, Bepipred linear epitope

prediction tool suggested the probable linear B-cell epitopes (Fig 5E and Table 11).

Parker Hydrophilicity prediction tool was recruited for further confirmation about the

hydrophilic nature of our predicted B cell epitopes (Fig 5F). Analysis of the data from B cell

epitope prediction tools revealed the most potent B cell-mediated immunity inducing con-

served epitope ’PAAPQPSAS’ in the region of 34–42.

Conformational B cell epitope prediction

Most of the epitopes for B cells are discontinuous or conformational rather than linear [175].

To predict the discontinuous B cell epitopes, the 3D structure of the protein was generated and

validated, and submitted to the Ellipro server. This server identified eight different epitopes for

the protein WP_005413200.1 (Table 12).

Fig 4. Predicted docking mode analysis of the HLA-C�03:03 and the epitope RTFAMSSER where the epitope binds to the binding cleft of the HLA. Here, (A) Pose

in solid surface mode (B) Binding orientation map.

https://doi.org/10.1371/journal.pone.0252295.g004

Table 8. Nonbonding interactions with their distances (Å) between epitope (RTFAMSSER) and HLA (HLA-C�03:03).

Hydrophobic Hydrophobic Electrostatic

Alkyl Pi-Alkyl Conventional Salt Bridge Attractive Charge Pi-Anion

LYS146 (4.225)

LEU81 (5.296)

ILE95 (4.974)

LYS146 (5.329)

ALA150 (3.880)

TRP147 (4.293)

TRP147 (5.492)

TYR116 (4.653)

TYR123 (5.237)

TRP147 (5.366)

TYR159 (4.428)

TYR99 (4.617)

GLU152 (2.757)

THR73 (2.893)

ASN80 (2.390)

LYS146 (2.157)

ASN80 (2.118)

TYR116 (2.695)

TYR116 (2.015)

ARG97 (2.389)

ARG97 (2.471)

GLN70 (2.352)

GLU152 (2.131)

ARG69 (2.621)

ARG97 (2.451)

GLU63 (2.882)

GLU63 (2.581)

GLU152 (2.131)

ARG69 (2.621)

ARG97 (5.575)

GLU63 (2.882)

GLU63 (2.581)

ARG97 (2.451)

ARG97 (4.332)

GLU63 (4.252)

TYR99 (3.490)

https://doi.org/10.1371/journal.pone.0252295.t008
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Fig 5. Prediction of B cell epitope properties for the conserved antigenic region. Region 34–42 (PAAPQPSAS) possessed the maximum antigenic criteria as a

potential B cell epitope. (A) Kolaskar and Tongaonkar antigenicity prediction, (B) Emini surface accessibility prediction. (C) Chou and Fasman beta-turn prediction,

(D) Karplus and Schulz flexibility prediction, (E) Bepipred linear epitope prediction, (F) Parker hydrophilicity prediction. The regions with antigenic nature are shown

in yellow color.

https://doi.org/10.1371/journal.pone.0252295.g005
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Table 9. Predicted epitope from Kolaskar and Tongaonkar antigenicity prediction tool.

No. Start End Peptide Sequence Length

1 4 25 VPSLLAASLGLVLAACQPAQPP 22

2 34 40 PAAPQPS 7

3 50 60 TYQCGDLSVRA 11

4 68 74 ATVVIGE 7

5 106 111 GLLSLK 6

6 117 122 ECHAVE 6

7 144 150 WLAVVDG 7

8 154 160 GLQVEVD 7

9 167 172 DVAQPT 6

10 187 195 DVKLSFQRT 9

11 207 213 DAKVNLT 7

https://doi.org/10.1371/journal.pone.0252295.t009

Table 10. Results from Emini surface accessibility prediction.

Serial No Start End Peptide Length

1 35 42 AAPQPSAS 8

2 44 50 EGGSETT 7

3 87 94 GAKYGDGK 8

4 112 117 GEADRE 6

5 160 166 DYGERRF 7

6 181 186 KASDGT 6

https://doi.org/10.1371/journal.pone.0252295.t010

Table 11. Bepipred linear epitope prediction result.

Serial No. Start End Peptide Sequence Length

1 20 52 QPAQPPAAGGNDAPPAAPQPSASTEGGSETTYQ 33

2 61 67 TFNGEDA 7

3 82 105 ERAASGAKYGDGKGNSFWTKGSDD 24

4 113 118 EADREC 6

5 121 144 VEATEGDGSAGNAAFRATGNEPGW 24

6 148 158 VDGDTPGLQVE 11

7 160 164 DYGER 5

8 166 187 FDVAQPTAGADGWSGKASDGTD 22

9 196 207 TCQDDMSGEAFD 12

10 219 220 YH 2

https://doi.org/10.1371/journal.pone.0252295.t011

Table 12. Amino acid residues of the conformational B cell epitopes.

Serial

No.

Conformational B cell epitope residues Number of

residues

Score

1 MET1, ARG2, VAL3, VAL4, VAL210, ASN211, LEU212, THR213, ILE214, GLY215, THR216, ARG217 12 0.796

2 ALA173, SER179, GLY180, LYS181, ALA182, SER183, ASP184, GLY185, THR186, ASP187, VA188, LYS189, LEU190, SER191, PHE192, GLN193, THR195, THR196, CYS197, GLN198, ASP199,

ASP200, MET201, SER202, GLN203, GLU204, ALA205, PHE206, ASP207, ALA208, LYS209, ALA227, LYS228, GLN229, PRO230

35 0.714

3 ALA22, GLN23, PRO24, PRO25, ALA26, ALA27, GLY28, GLY29, ASN30, ASP31, ALA32, PRO33, PRO34, ALA35, ALA36, PRO37, PRO39, SER40, ALA41 19 0.676

4 THR50, TYR51, GLN52, CYS53, GLY54, ASP55, LEU56, SER57, VAL58, ARG59, VAL71, ILE72, GLY73, GLU74, ARG75, THR76, PHE77, ASP104, SER109, LEU110, LYS111, GLY112, GLU113,

ALA114, ASP115, ARG116, GLU117, CYS118, HIS119, ALA120, VAL121, GLU122, ALA123, THR124, GLU125

35 0.646

5 GLY93, LYS94, GLY95, ASN96 4 0.642

6 GLN218, TYR219, HIS220, GLY221 4 0.626

7 GLY126, ASP127, GLY128, SER129, GLY154, LEU155, GLN156, VAL157, GLU158, VAL159, ASP160, TYR161, GLY162, GLU163, ARG164, PHE166, ASP167, VAL168, ALA169, GLN170, PRO171,

GLY174

22 0.582

8 GLY223, ASN224, PHE225 3 0.503

https://doi.org/10.1371/journal.pone.0252295.t012
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The 3D structures of these epitopes were visualized using Jmol (integrated service of the server),

which demonstrates their particular positions in the protein. The epitope residues were predicted

using the full-length protein, where they were scattered throughout the surface. The scores of the

predicted epitopes reside between 0.503 to 0.796, where the cutoff score was previously selected 0.50

by default. The detailed view of these conformational epitopes is illustrated in Fig 6.

Fig 6. Conformational or discontinuous B cell epitopes of WP_005413200.1 predicted from the PDB structure (homology). Here, A-H, the yellow balls represent

the residues of the corresponding epitopes, and sticks in white color are the structure of the core residues.

https://doi.org/10.1371/journal.pone.0252295.g006
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There are still some limitations in epitopes prediction using different bioinformatics tools,

and therefore, improvements are required in the prediction methods. Improving the incor-

rectly delineated epitope databases can result in higher accuracy prediction [176]. It is more

suitable to include multiple tools for more accurate and consistent outcomes as the results

obtained from different tools and methods may differ [177].

Conclusions

At first, we resolved all the 789 HPs from S. maltophilia K279a and predicted the functions

with precision and confidence for 24 proteins. Next, the characterization was carried out, fol-

lowed by the functional validation with different approaches, including structure-based meth-

ods. The physical and chemical parameters and the subcellular localization information helped

to distinguish the HPs from the others. The PPI also gave an idea about their corresponding

metabolic pathways. Besides, we were able to detect two virulence-associated proteins vital for

the pathogenesis and survival of this organism. Among the HPs, we predicted the T cell and B

cell epitopes for the highest antigenic protein, which is located in the periplasmic membrane

of the pathogen. Pieces of evidence of our study suggest the potency of these epitopes as good

targets against the bacteria. Nevertheless, clinical experiments are needed to ensure the efficacy

of these candidates as vaccines.
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92. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, et al. Improving the accuracy of

PSI-BLAST protein database searches with composition-based statistics and other refinements.

Nucleic Acids Res. 2001; 29:2994–3005. https://doi.org/10.1093/nar/29.14.2994 PMID: 11452024

93. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple

sequence alignment. J. Mol. Biol. 2000; 302:205–17. https://doi.org/10.1006/jmbi.2000.4042 PMID:

10964570

94. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL:

homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46:W296–W303.

https://doi.org/10.1093/nar/gky427 PMID: 29788355

95. Baron C, Coombes B. Targeting bacterial secretion systems: benefits of disarmament in the micro-

cosm. Infect. Disord. Drug Targets 2007; 7:19–27. https://doi.org/10.2174/187152607780090685

PMID: 17346208

96. Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial patho-

gens. BMC Bioinform. 2008; 9:1–12. https://doi.org/10.1186/1471-2105-9-62 PMID: 18226234

97. Saha S, Raghava G. VICMpred: an SVM-based method for the prediction of functional proteins of

Gram-negative bacteria using amino acid patterns and composition. Genomics, Proteomics Bioinf.

2006; 4:42–7. https://doi.org/10.1016/S1672-0229(06)60015-6 PMID: 16689701

98. Cv Mering, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted func-

tional associations between proteins. Nucleic Acids Res. 2003; 31:258–61. https://doi.org/10.1093/

nar/gkg034 PMID: 12519996

99. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–pro-

tein association networks with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Res. 2019; 47:D607–D13. https://doi.org/10.1093/nar/gky1131

PMID: 30476243

PLOS ONE Structural and functional annotation of the hypothetical proteins of S. maltophilia k279a: Computational study

PLOS ONE | https://doi.org/10.1371/journal.pone.0252295 May 27, 2021 28 / 32

https://doi.org/10.1007/s11568-011-9152-7
https://doi.org/10.1007/s11568-011-9152-7
http://www.ncbi.nlm.nih.gov/pubmed/23205162
https://doi.org/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372
https://doi.org/10.1093/bioinformatics/btq249
http://www.ncbi.nlm.nih.gov/pubmed/20472543
https://doi.org/10.1038/nprot.2007.131
http://www.ncbi.nlm.nih.gov/pubmed/17446895
https://doi.org/10.1186/1471-2180-5-1
http://www.ncbi.nlm.nih.gov/pubmed/15649330
https://doi.org/10.1093/bioinformatics/14.4.378
https://doi.org/10.1093/bioinformatics/14.4.378
http://www.ncbi.nlm.nih.gov/pubmed/9632836
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.1006/jmbi.2000.4315
http://www.ncbi.nlm.nih.gov/pubmed/11152613
https://doi.org/10.1093/bioinformatics/17.9.849
http://www.ncbi.nlm.nih.gov/pubmed/11590105
https://doi.org/10.1093/nar/gki442
http://www.ncbi.nlm.nih.gov/pubmed/15980438
https://doi.org/10.2174/1389203003381469
http://www.ncbi.nlm.nih.gov/pubmed/12369918
https://doi.org/10.1186/1471-2105-10-366
http://www.ncbi.nlm.nih.gov/pubmed/19878598
https://doi.org/10.1093/nar/gkl187
http://www.ncbi.nlm.nih.gov/pubmed/16844981
https://doi.org/10.1093/nar/29.14.2994
http://www.ncbi.nlm.nih.gov/pubmed/11452024
https://doi.org/10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/pubmed/10964570
https://doi.org/10.1093/nar/gky427
http://www.ncbi.nlm.nih.gov/pubmed/29788355
https://doi.org/10.2174/187152607780090685
http://www.ncbi.nlm.nih.gov/pubmed/17346208
https://doi.org/10.1186/1471-2105-9-62
http://www.ncbi.nlm.nih.gov/pubmed/18226234
https://doi.org/10.1016/S1672-0229%2806%2960015-6
http://www.ncbi.nlm.nih.gov/pubmed/16689701
https://doi.org/10.1093/nar/gkg034
https://doi.org/10.1093/nar/gkg034
http://www.ncbi.nlm.nih.gov/pubmed/12519996
https://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
https://doi.org/10.1371/journal.pone.0252295


100. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens

and subunit vaccines. BMC Bioinform. 2007; 8:4. https://doi.org/10.1186/1471-2105-8-4 PMID:

17207271

101. Rascón-Castelo E, Burgara-Estrella A, Mateu E, Hernández J. Immunological features of the non-

structural proteins of porcine reproductive and respiratory syndrome virus. Viruses 2015; 7:873–86.

https://doi.org/10.3390/v7030873 PMID: 25719944

102. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of meth-

ods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007; 8:424. https://doi.org/10.

1186/1471-2105-8-424 PMID: 17973982

103. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological

processes with the stabilized matrix method. BMC Bioinform. 2005; 6:132. https://doi.org/10.1186/

1471-2105-6-132 PMID: 15927070

104. Buus S, Lauemøller S, Worning P, Kesmir C, Frimurer T, Corbet S, et al. Sensitive quantitative predic-

tions of peptide-MHC binding by a ‘Query by Committee’artificial neural network approach. Tissue anti-

gens 2003; 62:378–84. https://doi.org/10.1034/j.1399-0039.2003.00112.x PMID: 14617044

105. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz M, et al. Modeling the MHC class I pathway

by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol.

Life Sci. 2005; 62:1025–37. https://doi.org/10.1007/s00018-005-4528-2 PMID: 15868101

106. Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-

cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006; 7:1–5. https://doi.org/10.1186/

1471-2105-7-153 PMID: 16545123

107. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v. 2—a server for in silico prediction of aller-

gens. J. Mol. Model. 2014; 20:2278. https://doi.org/10.1007/s00894-014-2278-5 PMID: 24878803

108. Maurer-Stroh S, Krutz NL, Kern PS, Gunalan V, Nguyen MN, Limviphuvadh V, et al. AllerCatPro—pre-

diction of protein allergenicity potential from the protein sequence. Bioinformatics 2019; 35:3020–7.

https://doi.org/10.1093/bioinformatics/btz029 PMID: 30657872
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