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Abstract: The accurate distribution of the replicated genome during cell division is essential for cell
survival and healthy organismal development. Errors in this process have catastrophic consequences,
such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases
in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle
assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to
understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore
and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1
localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore
recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment
between kinetochores and spindle microtubules. Together, this review provides an overview of how
the local distribution of PLK1 could regulate major pathways in mitosis.

Keywords: PLK1 kinase; kinetochore; spindle assembly checkpoint; chromosome segregation; PP1;
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1. Introduction

During mitosis, it is critical for cells to correctly segregate duplicated genomes into
daughter cells. Any errors arising in this process can cause aneuploidy observed in most
cancer cells and may lead to birth defects [1,2]. Therefore, it is important to understand
how chromosomes are accurately segregated during cell division.

A major component of the machinery required for this process is the kinetochore, a
large multiprotein complex that mediates the attachment of chromosomes to spindle micro-
tubule ends. In addition, kinetochores serve as a signaling platform for monitoring errors
in attachment and directing progression through the cell cycle. When kinetochores are not
attached to spindle microtubules, they delay the progression of anaphase by activating the
spindle assembly checkpoint (SAC) to provide sufficient time for the interaction between
kinetochores and microtubules. The SAC inhibits activation of the anaphase-promoting
complex/cyclosome (APC/C), a large E3 ubiquitin ligase required for sister chromatid
separation and execution of the mitotic exit [3,4].

An essential group of mitotic kinases, including CDK1, PLK1, Aurora B, Mps1, and
Bub1, and the counteracting phosphatases PP1 and PP2A, are thought to regulate kine-
tochore assembly and chromosome segregation [5,6]. Polo-like kinase 1 (PLK1), a well-
conserved mitotic serine/threonine kinase, is an essential mitotic kinase that localizes to
kinetochores, centrosomes, and the central spindle and midbody. It plays important roles
in mitotic progression, centrosome assembly, chromosome segregation, spindle elongation,
and cytokinesis [7–9].

In addition, PLK1 has also been shown to be overexpressed in various types of cancers,
including breast cancer, rectal cancer, colorectal cancer, pancreatic cancer, ovarian cancer,
and lung cancer [10–12]. Overexpression of PLK1 in cancer cells is also associated with poor
prognoses [10,11,13–16]. In fact, many different PLK1 inhibitors have been developed, and
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more than 10 PLK1 inhibitors are commercially available. Furthermore, some of the PLK1
inhibitors are in clinical trials and have demonstrated promising results in the treatment of
many types of cancer [10,13].

However, it is currently unclear why overexpression of PLK1 causes cancer or is a
consequence of the overproliferation of cancer cells [17]. If PLK1 is an oncogene, identifying
which pathways involve PLK1 and cause carcinogenesis will be critical in developing
therapeutic strategies. For example, chromosomal instability is a common feature in cancer
cells and can be caused by chromosome missegregation in mitosis [1]. Therefore, elucidating
how PLK1 regulates mitosis is an important question to be answered.

Because PLK1 has many diverse functions in mitosis, it is crucial to understand how
PLK1 localizes at specific regions during mitosis, which will allow the dissection of the
role of PLK1. PLK1 plays a critical role in SAC and chromosome alignment, and many
candidates were suggested to recruit PLK1 to the kinetochore. However, the component
essential for kinetochore recruitment of PLK1 remains unclear. Here, we first describe the
structure and activation mechanism of PLK1 and then elaborate on how PLK1 localizes at
the kinetochore. Finally, we discuss the role of PLK1 in SAC, chromosome alignment, and
microtubule attachment.

2. Molecular Properties and the Activation of PLK1

PLK1 was initially discovered via genetic screening in budding yeast, in which the
temperature mutation failed to progress through the cell cycle. The name Polo-like kinase
(Plk) originated from a discovery in Drosophila, where the mutation of the gene resulted in
abnormal spindle poles. PLK1 is well conserved among species, and almost all eukaryotes,
except plants, have at least one form of the PLK family [18–21]. While flies, budding yeast,
and fission yeast only have a single PLK family member, humans, mice, frogs, and worms
have multiple PLK family members [22,23]. In humans, there are five PLKs, from PLK1 to
PLK5, and they have little overlap in their localization and function, despite some structural
similarity [8,22]. PLK2 is required for centrosome maturation and centriole duplication
in the S phase, and PLK3 promotes DNA replication during the G1/S transition and is
involved in the stress response pathways [24–31]. PLK4 plays a role in centriole duplication
in the S phase, and PLK5 functions in neuron differentiation [31–34]. PLK1 is mainly
expressed in late G2 and M phases and plays critical roles in the regulation of mitosis and
cytokinesis [22,31,35–37].

PLKs are defined by the presence of an N-terminal catalytic Ser/Thr kinase domain and
a C-terminal polo-box domain (PBD) that phosphorylate target proteins and control PLK1
kinase activity and localization, respectively [7–9,22]. In humans, kinase domains are highly
conserved among all PLKs, except for PLK5, which lacks the kinase domain [22,23,33,38]. In
contrast, the PBD region, which consists of two polo-box (PB) motifs, intervening residues,
and a part of the linker between the kinase domain and PB1, is less well conserved [23]
(Figure 1).
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Figure 1. Domain organization of PLK1. A schematic diagram of human PLK1 protein and its domain
organization. PLK1 contains the serine/threonine kinase domain (KD: orange), the polo-box domain
(PBD: green), and the linker between two domains. The PBD consists of polo-box 1 and 2 (PB1 and
PB2: yellow). PLK1 activation requires the phosphorylation of conserved Thr residues within the
T-Loop.
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Among all PLK family members, PLK1 is the most highly conserved. PLK1 has also
been the most extensively studied because of its importance in cell division. The kinase
domain of PLK1 phosphorylates Ser or Thr of substrates that contain the consensus motif
[D/N/E/Y]-[X]-S/T-[F/Φ; no P]-[Φ/X] [9,23]. Moreover, the kinase domain contains a T-
loop, also called an activation loop, which allows PLK1 to convert ATP to ADP, transferring
the phosphate group to PLK downstream phosphorylation substrates [39]. The PBD is
required for localization at the target region, such as the centrosome, centromere, and
the kinetochore at prometaphase and metaphase, and the central spindle and midbody
at anaphase [40–43]. The expression of the kinase domain alone is not sufficient for PLK1
localization at the centromere and the kinetochore, and the expression of the PBD alone
localizes strongly at the centromere and weakly at the kinetochore [44]. PBD recognizes
the S-[pS/pT]-[P/X] motif of the target protein, and when X is proline, proline-directed
kinases, including the Cdk1 kinase, can phosphorylate Ser or Thr [45,46]. Phosphorylation
of the preceding Ser or Thr primes the motif, thereby generating a binding site for PBD
docking [9,42]. Alternatively, when the S-[pS/pT]-[P/X] motif is phosphorylated by PLK1
itself, known as self-priming, PBD can interact with PLK1 [42].

Furthermore, PBD is required to control kinase activity. PBD docking partially activates
Plk1 by inducing conformational changes [47]. However, to fully activate PLK1 and relieve
the intramolecular interaction between the kinase domain and PBD, which stabilizes the
inactive conformation of PLK1, phosphorylation of the T-loop in the kinase domain is
required [40,47–50]. The T-loop of the kinase domain can be phosphorylated by Bora, and
Aurora A and B, which localize at the centrosomes and kinetochore, respectively [49–53].

3. Function of PLK1 in Mitosis

PLK1 is a master mitotic kinase with diverse and important functions in mitosis, in-
cluding mitotic entry, a G2/M checkpoint, centrosome assembly, chromosome segregation,
a spindle assembly checkpoint, and cytokinesis [54–67]. PLK1 expression levels start to
increase at the G2 phase and peak in the metaphase of the M phase. Upon completion of
mitosis, PLK1 levels sharply decrease [35–37].

PLK1 is essential for mitotic entry and exit. Mitotic entry is controlled by CDK/cyclin
B complex activity, which is regulated by phosphorylation. PLK1 activates Cdc25 phos-
phatase, which in turn inactivates the Wee1 and dephosphorylates CDK/cyclin B, leading
to the activation of CDK/cyclin B [68–72]. In addition, PLK1 promotes Wee1 degrada-
tion by phosphorylation, which decreases phosphorylation of CDK/cyclin B by Wee1
kinase [73]. PLK1 is also involved in the activation of transcription factor Forkhead Box M1
(FoxM1), which allows the expression of the genes involved in the G2/M transition [74].
Additionally, PLK1 promotes activation of the anaphase-promoting complex (APC/C) and
the degradation of the APC/C inhibitor Emi1 to exit mitosis and enter cytokinesis [75–79].

PLK1 also contributes to centriole duplication and centrosome maturation. Other
PLK family members, PLK2 and PLK4, also localize to the centrosomes, but the function
of PLK1 in centrosome maturation is not redundant with that of PLK2 or PLK4. During
the S and M phases, PLK1 promotes centrosome maturation by phosphorylating several
centriole proteins and nucleation factors, including pericentrin, cnn, Nlp, Kizuna, and
γ-tubulin [80–84]. In addition, PLK1 allows centriole disengagement, leading to centriole
duplication [85]. Interestingly, PLK1 was also suggested to contribute to DNA replication
during the S phase [86].

During M phases, PLK1 localizes to the kinetochore and centrosomes and controls
mitotic progression by regulating the spindle assembly checkpoint and attachment of
kinetochores to spindle microtubules, which is discussed below. Moreover, PLK1 is in-
volved in regulating other mitosis kinases. PLK1 increases the expression of Aurora B by
phosphorylating FoxM1 [74]. PLK1 also activates Haspin by phosphorylation [87–103].

When cells enter anaphase, PLK1 dissipates from the kinetochore, moves to the central
spindle and spindle midbody, and plays a role in the initiation of cytokinesis [60,61,63,66,67].
Inhibition of PLK1 abolishes RhoA accumulation at the equatorial cortex and disrupts the
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localization of Ect2, the GEF protein essential for Rho activation, to the spindle midzone [61].
This suggests that PLK1 is critical for the Ect2-RhoA network, which allows proper cleavage
furrow and cytokinetic bridge formation, leading to the initiation of cytokinesis.

4. Kinetochore Recruitment Mechanism of PLK1

Because of the importance of PLK1 during mitosis, the molecular mechanism of the
kinetochore localization of PLK1 has been extensively studied. PLK1 has been suggested to
be recruited to the kinetochore by interacting with many proteins, including the kinetochore
components Bub1, BubR1, CENP-U (also called PBIP1), and other proteins, including
nuclear distribution protein C (NUDC), CLIP-170, dynactin subunit p27, INCENP, CLASP2,
Survivin, SGO1, NCAPG2, USP16, and RSF1 [87,88,90,93–95,97–108]. Localization of PLK1
is mediated by the interaction of its PBD with proteins that contain its S-[pT/pS]-P/X
consensus-binding motif, which is primed by the master mitotic kinase Cdk1 [45,46].
Accordingly, all the listed proteins, except SGO1, contain the S-[pT/pS]-P/X motif, and
inhibition of these proteins or the introduction of mutations in the S-[pT/pS]-P/X motif
results in reduced kinetochore recruitment of PLK1 [87,90,93–97,100–104,106,108] (Figure 2).
However, it is unclear whether these interacting partners equally contribute to kinetochore
recruitment of PLK1 or whether the initial interaction of PLK1 with only one or few proteins
facilitates the interaction of PLK1 with other PLK1-binding proteins.

Additionally, Aurora B may contribute to PLK1 kinetochore localization. Aurora B
contributes to the kinetochore localization of Bub1, a kinetochore component that recruits
PLK1 to the kinetochore [109]. Moreover, the T-loop in the kinase domain of PLK1 can be
phosphorylated by Aurora A or B, resulting in the activation and kinetochore recruitment
of PLK1 [50,51]. Furthermore, because Aurora B and phosphatase PP2A-B56 counteract
each other during mitosis, Aurora B indirectly inhibits dephosphorylation by PP2A-B56,
which in turn contributes to the recruitment of PLK1 at the kinetochore [5,110].

Although several proteins were suggested to recruit PLK1 to the kinetochore, three
groups recently suggested that CENP-U and Bub1 are the main PLK1 kinetochore receptors
during mitosis [90,104,111]. Nguyen et al. and Chen et al. suggested that Bub1 and
CENP-U act in parallel pathways to recruit PLK1 to the kinetochore using cell biological
approaches. They both showed that depletion of the CENP-O complex, which includes
CENP-U or CENP-U, resulted in a significant decrease in kinetochore localization of PLK1.
In addition, depletion of only the CENP-U or CENP-O complex compromised chromosome
alignment marginally; however, when it was combined with Bub1 depletion, the PLK1
level at the kinetochore was further decreased, and the chromosome alignment defect
was significantly increased. These results indicate that both CENP-U and Bub1 work
together to reach a certain threshold level for PLK1 at the kinetochore for normal function.
Interestingly, Nguyen et al. showed that the requirement of the CENP-O complex for
kinetochore localization of PLK1 was variable between cell lines, which suggests that
different expression levels of Bub1 and CENP-U could affect the requirement of these
components for normal kinetochore recruitment of PLK1.

Singh et al. first tested the role of Aurora B in recruiting PLK1 to the kinetochore. They
showed that the contribution of Aurora B to the PLK1 kinetochore is indirect. Inhibition of
Aurora B with hesperadin caused a strong decrease in the PLK1 level at the kinetochore.
However, this was rescued with phosphatase inhibitor okadaic acid (OA), suggesting that
Aurora B indirectly contributes to the PLK1 level at the kinetochore by counteracting the
phosphatases PP2A-B56 and PP1. In contrast, Bub1 directly interacts with PLK1-PBD but
only in the presence of priming kinases PLK1 and CDK1 in vitro. Although inhibition of
kinetochore recruitment of Bub1 by treating human cells with an Mps1 kinase inhibitor
significantly decreased the levels of PLK1 at the kinetochore, it left residual levels of PLK1
at the kinetochore, indicating that additional PLK1 receptors were required. Through
in vitro reconstitution of the 22 kinetochore components, Singh et al. found that among the
inner kinetochore components that comprise constitutive centromere-associated network
(CCAN), CENP-U is the primary receptor of PLK1. In addition, ectopic localization of
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CENP-U increased the PLK1 level at the ectopic site, suggesting that CENP-U is necessary
for the kinetochore localization of PLK1. Furthermore, the co-depletion of Bub1 and CENP-
OPQUR complex completely abolished the kinetochore recruitment of PLK1, and the PLK1
level was not rescued by OA treatment, indicating that Bub1 and CENP-U are the main
receptors for PLK1 at the kinetochore.
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Figure 2. Molecular mechanism of PLK1 localization at the kinetochore. A schematic diagram of
the kinetochore structure and the mechanism of kinetochore recruitment of PLK1. The kinetochore
consists of an inner and an outer kinetochore. The inner kinetochore is composed of a complex of
CCAN, CENP-C, CENP-HIK-LN, CENP-T, and CENP-QU. The outer kinetochore is composed of
KNL1 complex, Mis12 complex, and the NDC80 complex (KMN network). PLK1 is recruited to the
kinetochore by interacting with CENP-U and Bub1, which are located in the inner kinetochore and
outer kinetochore, respectively. There are other known PLK1 receptors, including the kinetochore
components Bub1, BubR1, and CENP-U (also called PBIP1), and other proteins, including nuclear dis-
tribution protein C (NUDC), CLIP-170, dynactin subunit p27, INCENP, CLASP2, Survivin, NCAPG2,
USP16, and RSF1. The relationship between PLK1 and these components during mitosis requires
further characterization.

As suggested for other PLK1 receptors, interactions between CENP-U, Bub1, and
PLK1 are heavily dependent on priming by CDK1-mediated phosphorylation. Although
these results indicate that Bub1 and CENP-U are essential for kinetochore recruitment of
PLK1, they do not exclude the possibility that other known PLK1 receptors are important
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in the normal cell progression because all experiments with human cells are conducted
using the nocodazole treatment, which removes the spindle microtubules during mitosis.

Once all kinetochores attach to the spindle microtubules at metaphase, PLK1 is ubiq-
uitinated by active APC/C, resulting in its dissociation. Ubiquitin-specific peptidase 16
(Usp16) antagonizes the activity of CUL-3-based ubiquitin ligase by deubiquitinating PLK1
at the kinetochore [94]. Furthermore, Usp16 promotes chromosome alignment by regulating
kinetochore localization of PLK1 through phosphorylation of the Cdk1 site of USP16 [94].

In the future, it will be valuable to investigate whether the initial recruitment of PLK1
by CENP-U and Bub1 activates phosphorylation of downstream targets that promote
further recruitment of PLK1, thereby clarifying how the PLK1-binding proteins at the
kinetochore regulate PLK1 dynamics and function.

5. PLK1 Function in Spindle Checkpoint Activation and Spindle Checkpoint Silencing

Although the kinetochore localization of PLK1 increases at metaphase, how PLK1
functions within the kinetochore is unclear because of the complexity of the interdepen-
dence of many kinases and phosphatases and because many PLK1 receptors are distributed
along the kinetochore and centromere.

One of the major functions of PLK1 during mitosis is the activation of the spindle
assembly checkpoint (SAC). The SAC is a safeguard system that halts anaphase progression
by inhibiting APC/C until all kinetochores attach to the spindle microtubules. APC/C
inhibition is caused by the accumulation of SAC components at unattached kinetochores, a
process that mediates the formation of the mitotic checkpoint complex (MCC) composed of
Mad2, Bub3, BubR1, and Cdc20 [3,112].

The accumulation of SAC components involves phosphorylation of SAC components
by Mps1 kinase [113–122]. Both PLK1 and Mps1 share a similar phosphorylation consensus
motif D/E-x-S/T-Φ, with a strong preference for D/E residues at position-2 [123–127].
Consequently, PLK1 and Mps1 may share many SAC substrates. Caenorhabditis elegans lacks
the Mps1 kinase; thus, PLK1 potentially phosphorylates several known Mps1 substrates,
which is discussed later [128]. However, it remains unclear whether PLK1 can completely
substitute for Mps1 kinase in other animal systems.

The Bub1/Bub3 complex activates SAC by recruiting Mad1, Mad2, BubR1, and Cdc20
to unattached kinetochores. Kinetochore recruitment of Bub/Bub3 is mediated by the
core outer kinetochore component KNL1 via multiple “MELT (Met-Glu-Leu-Thr)” motifs,
which are phosphorylated by Mps1 and PLK1 [113–115] Additionally, Mps1 phosphory-
lates the CM1 motif of Bub1, and its phosphorylation is required for its interaction with
Mad1 [129,130]. Alternatively, PLK1 is able to phosphorylate the Bub1-CM1 motif in C.
elegans [89]. Mps1 is also suggested to phosphorylate MAD-1 C-terminus to promote
interaction with the N-terminal region of CDC20 [129,131]. In vitro data using C. elegans
proteins showed that phosphorylation of PLK-1 at the MAD-1 C-terminus promoted its
interaction with the CDC-20 N-terminus [89].

PLK1 also contributes to SAC activation by phosphorylating the APC/C co-activator
Cdc20. PLK1 that interacts with S-[pS/pT]-[P/X] motif of Bub1 at the kinetochore suggested
to phosphorylate Cdc20, resulting in the inhibition of the interaction between Cdc20 and
APC/C [132].

Collectively, these results suggest that PLK1 may activate SAC by phosphorylating
Knl1, Bub1, Mad1, and Cdc20. When kinetochores are unattached, phosphorylation-
mediated interaction of Cdc20 with Bub1 and Mad1 can occur at the kinetochores, which is
critical for the formation of Mad2-Cdc20, which mediates the formation of MCC (Figure 3).
However, which pool of PLK1 phosphorylates these kinetochore components in vivo
requires further investigation. It will be enlightening to knock down specific PLK1 pools
that interact with Bub1 or CENP-U, or other known PLK1 receptors, to determine the effects
of the phosphorylation of one of those PLK1 substrates and the SAC activation.
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lates the CM1 motif of Bub1, and its phosphorylation is required for its interaction with 
Mad1 [129,130]. Alternatively, PLK1 is able to phosphorylate the Bub1-CM1 motif in C. 
elegans [89]. Mps1 is also suggested to phosphorylate MAD-1 C-terminus to promote in-
teraction with the N-terminal region of CDC20 [129,131]. In vitro data using C. elegans 
proteins showed that phosphorylation of PLK-1 at the MAD-1 C-terminus promoted its 
interaction with the CDC-20 N-terminus [89]. 

PLK1 also contributes to SAC activation by phosphorylating the APC/C co-activator 
Cdc20. PLK1 that interacts with S-[pS/pT]-[P/X] motif of Bub1 at the kinetochore sug-
gested to phosphorylate Cdc20, resulting in the inhibition of the interaction between 
Cdc20 and APC/C [132]. 

Collectively, these results suggest that PLK1 may activate SAC by phosphorylating 
Knl1, Bub1, Mad1, and Cdc20. When kinetochores are unattached, phosphorylation-me-
diated interaction of Cdc20 with Bub1 and Mad1 can occur at the kinetochores, which is 
critical for the formation of Mad2-Cdc20, which mediates the formation of MCC (Figure 
3). However, which pool of PLK1 phosphorylates these kinetochore components in vivo 
requires further investigation. It will be enlightening to knock down specific PLK1 pools 
that interact with Bub1 or CENP-U, or other known PLK1 receptors, to determine the ef-
fects of the phosphorylation of one of those PLK1 substrates and the SAC activation. 

 
Figure 3. Function of the PLK1 in spindle assembly checkpoint activation. Reprinted/adapted
with permission from Ref. [133], 2021, Taekyung Kim. When kinetochores are not attached to the
microtubules, PLK1 activates the checkpoint by phosphorylating (1) MELT motifs of KNL1 and (2) the
CM1 motif of Bub1, (3) C-terminal region of Mad1, and (4) Cdc20. The PLK1 can substitute Mps1
kinase in phosphorylating MELT motifs of KNL1, which promotes kinetochore localization of the
Bub1/Bub3 complex and the CM1 motif of bub1, mediating the interaction with Mad1. PLK-1 in C.
elegans was shown to phosphorylate the C-terminal region of Mad1, which promotes the interaction
with Mad1. PLK1 that interacts with Bub1 activates the MCC formation by phosphorylating Cdc20.

In addition to substituting for Mps1 activity, PLK1 activates Mps1 by phosphorylating
multiple sites of Mps1, although whether such phosphorylation directly activates Mps1 is
unclear [134].

Once all kinetochores are attached to spindle microtubules, all SAC components
are removed from the kinetochore, which extinguishes the SAC signal and anaphase
progression by activating APC/C [3]. For SAC silencing, PP2A-B56 and PP1 are the major
phosphatases that dephosphorylate the MELT motifs of KNL1, thereby removing Bub1
from the kinetochore [135–143]. Although PLK1 may activate SAC, paradoxically, PLK1
may also help silence SAC by recruiting PP2A to the kinetochore. BubR1 contains a KARD
motif that interacts with PP2A-B56, and phosphorylation of the KARD motif by PLK1
enhances the interaction with PP2A-B56 [99,144,145]. However, PP2A-B56 and PP1 may
silence the spindle checkpoint by dephosphorylating the polo-binding motif of Bub1 and
BubR1, which removes PLK1 from the kinetochore [146]. To clarify the function of PLK1
in the SAC, the functions of phosphatases PP1 and PP2A-B56 in SAC silencing must be
studied. Whether the removal of PLK1 from the kinetochore is the major cause of silencing
of the spindle checkpoint requires further study.

6. A Role of PLK1 in Stabilizing Kinetochore-Microtubule Attachment

In addition to the function of PLK1 in SAC activation, PLK1 plays a role in stabilizing
the kinetochore-microtubule attachment during prometaphase [62]. This is somewhat con-
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tradictory because SAC activation delays the onset of anaphase, and stabilizing kinetochore-
microtubule attachment promotes the onset of anaphase. Mps1, which can be substituted
by PLK1 in some cases, activates the SAC and inhibits the kinetochore-microtubule attach-
ment. Inhibition of PLK1 can destabilize or stabilize kinetochore-microtubule attachment
under different experimental conditions [55,77,110]. Potentially, PLK1 initially helps form
the kinetochore-microtubule attachment by activating the SAC, and once the kinetochore
interacts with the microtubule, PLK1 helps stabilize the kinetochore-microtubule attach-
ment. The dual function of the PLK1 may help cells respond quickly and efficiently to the
change in the kinetochore-microtubule dynamics. However, whether or how PLK1 activity
is controlled within such a short period needs to be further studied.

Among all suggested PLK1 receptors that localize at the kinetochore or centromere,
some may contribute to stabilizing kinetochore-microtubule attachment. CENP-U, BubR1,
PICH, CLIP-170, CLASP2, Survivin, USP16, and RSF1, which interact with PBD and are
phosphorylated by PLK1, showed defects in chromosome alignment when a phospho-
mutant was introduced [62,90,92,94,96,97,99,100,105,106,136,144,145,147]. However, it is
unclear whether the defects in the phospho-mutants of PLK1 receptors are caused by
reduced localization of PLK1 or other functions of PLK1 receptors. The localization of PLK1
in a specific region by PLK1 receptors may promote phosphorylation of other proteins
at close distances that participate in kinetochore-microtubule attachment. For instance,
the kinetochore-localized pool of PLK1 binds to CENP-U phosphorylates CENP-Q at
multiple sites; mutations of these phosphorylation sites can cause defects in chromosome
segregation [148,149]. PLK1 also contributes to the recruitment and phosphorylation of Sgt1,
a co-chaperone for Hsp90 [101]. Hsp90 stabilizes the kinetochore complex by interacting
with the MIS12 complex, thereby coordinating the recruitment of NDC80, which interacts
with spindle microtubules [150]. In addition, PLK1 interacts with and phosphorylates
astrin, which is essential for chromosome alignment and microtubule attachment [151].

Finally, PLK1 may promote stable kinetochore-microtubule attachment by controlling
the pool of kinases and phosphatases. As described earlier, BubR1 contains a KARD
motif that recruits PP2A, which promotes stable kinetochore-microtubule attachment by
counteracting Aurora B activity. PLK1 enhances PP2A interactions by phosphorylating
the KARD motif [99,144,145]. However, other studies suggest that PLK1 activates Aurora
B by phosphorylating the activating loop of Aurora B [88]. Furthermore, Aurora B may
contribute to kinetochore localization of PLK1 and activate PLK1 by phosphorylating the
activation loop in the kinase domain [152]. Therefore, regulation of the balance of the
phosphorylation state by PLK1 is complex and remains to be fully determined.

7. Concluding Remarks

Since the discovery of PLK1 in the early 1980s, it has been extensively studied using
structural, biochemical, and cell-biological approaches. PLK1 contains a conserved kinase
domain and PBD domains that recognize the S-[pS/pT]-[P/X] motif of the target protein,
required for localization and activation. PLK1 is a master kinase with diverse functions
in mitosis. PLK1 localizes to the specific regions in cells through interaction with many
proteins, including the PBD domain, and locally phosphorylates the substrates to perform
diverse functions. How PLK1 localizes at the kinetochore and regulates functions in mitosis
is an important question to be resolved. Many kinetochore proteins, which contain a
motif that interacts with the PBD domain, have been suggested to recruit PLK1 to the
kinetochore. Here, we reviewed the recent studies that suggest the primary receptors
of the PLK1 at the kinetochore. Intriguingly, CENP-U and Bub1 are suggested to be
the primary receptors of the PLK1 at the kinetochore, although the relationship between
PLK1 and other known PLK1 receptors remains to be clarified. PLK1 contributes to SAC
by phosphorylating Knl1, Bub1, BubR1, Mad1, Cdc20, and Mps1. In addition, PLK1
contributes to kinetochore-microtubule attachment via multiple pathways involving PLK1
phosphorylation. Significant progress has been recently made, although many important
questions remain. For example, understanding the temporal regulation of PLK1 during
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mitosis is important. How PLK1 and other kinases, Mps1 and Aurora B, and phosphatases,
PP1 and PP2A, work together to balance the phosphorylation state of the kinetochore
proteins involved in mitosis remains unresolved. Additionally, since PLK1 localizes at
the kinetochore, the kinetochore-localized pool of PLK1 might phosphorylate all those
substrates involved in the SAC activation and the kinetochore-microtubule attachment.
However, whether or when the kinetochore-localized pool of PLK1 phosphorylates these
substrates needs to be investigated. Finally, the identification of additional substrates of
PLK1 during SAC activation and normal cell cycle progression will herald the development
of new approaches for treating diseases such as cancer.
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