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Purpose: We investigated whether retinal ischemia and inflammation produced by raising the intraocular pressure above
normal systolic levels differs in mice that lack a functional toll-like receptor 4 (Tlr4) signaling pathway.
Methods: In this work we used the murine strain B6.B10ScN-Tlr4lps-del/JthJ, which does not express functional Tlr4.
C57BL/6J was considered as the control. We induced retinal ischemia by unilateral elevation of intraocular pressure for
1 h by direct corneal cannulation. The changes in expression of proinflammatory genes 24 h postreperfusion were assessed
by quantitative PCR. Corresponding changes in protein abundances were analyzed by western blot and
immunohistochemistry. Cell death was evaluated by direct counting of neurons in the ganglion cell layer of flat-mounted
retinas seven days postreperfusion.
Results: We showed that Tlr4-deficient mice display significantly reduced expression of proinflammatory genes,
including RelA, tumor necrosis factor (Thf), interleukin 6 (Il6), chemokine (C-C motif) ligand 2 (Ccl2), chemokine (C-C
motif) ligand 5 (Ccl5), chemokine (C-X-C motif) ligand 10 (Cxcl10), Cybb, nitric oxide synthase 2 (Nos2), and intercellular
adhesion molecule 1 (Icam1) 24 h after reperfusion. The mice that lacked Tlr4 showed significantly increased survival of
neurons in the ganglion cell layer following ischemic injury, as compared to wild-type controls.
Conclusions: Our results indicate that Tlr4 signaling is involved in retinal damage and inflammation triggered by ischemic
injury.

Retinal ischemia is a common clinical entity and, due to
relatively ineffective treatment, remains a common cause of
visual impairment and blindness [1]. Ischemia has been
proposed as a facet of anterior ischemic optic neuropathy,
retinal and choroidal vessel occlusions, glaucoma, diabetic
retinopathy, retinopathy of prematurity, and traumatic optic
neuropathy [1–5]. Thus, increased understanding of the events
involved in ischemic neuronal injury can provide us with
clinically effective treatments for many retinal diseases.

Toll-like receptors (TLRs) have been identified in the
central nervous system (CNS) and are thought to play an
important role in the CNS response to pathogens, as well as
necrotic cells [6–8]. Recent studies using a permanent and
longstanding focal cerebral ischemia model have shown that
infarct size is reduced in Tlr4-deficient mice compared with
wild-type (WT) mice [9,10]. Another observation linked Tlr4
deficiency with the reduced neuronal death and lowered levels
of proinflammatory cytokine expression in the hippocampus
in models of global cerebral ischemia/reperfusion (IR) and
axotomy-induced degeneration [11–13]. Tlr4 expression and
localization in the retina has been extensively studied and
reported [14–20]. Because of many parallels in cell death
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mechanisms in brain and retinal ischemia, we hypothesized
that Tlr4 signaling is involved in retinal damage and in
inflammation triggered by ischemic injury.

METHODS
Animals: All experiments and postsurgical care were
performed in compliance with the NIH Guide for the Care and
Use of Laboratory Animals and according to the University
of Miami Institutional Animal Care and Use Committee
approved protocols. Adult male B6.B10ScN-Tlr4lps-del/JthJ
(stock number 007227) and C57BL/6J (stock number 000664)
mice were obtained from the Jackson Laboratory (Bar Harbor,
ME). The murine strain B6.B10ScN-Tlr4lps-del/JthJ does not
express functional Tlr4. C57BL/6J was used as a control. Mice
were housed under standard conditions of temperature and
humidity, with a 12 h light/dark cycle and free access to food
and water. All animals used in our experiments were three-
month-old mice (six animals per group).
Transient retinal ischemia: After anesthesia with
intraperitoneal ketamine (80 mg/kg) and xylazine (16 mg/kg),
pupils were dilated with 1% tropicamide–2.5% phenylephrine
hydrochloride (NutraMax Products, Inc., Gloucester, MA),
and corneal analgesia was achieved with 1 drop of 0.5%
proparacaine HCl (Bausch and Lomb Pharmaceuticals,
Tampa, FL). Retinal ischemia was induced for 60 min by
introducing into the anterior chamber of the left eye a 33-
gauge needle attached to a normal (0.9% NaCl) saline-filled
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reservoir raised above the animal to increase intraocular
pressure (IOP) above cystolic blood pressure (IOP increased
to 120 mmHg). The contralateral (right) eye was cannulated
and maintained at normal IOP to serve as a normotensive
control. Complete retinal ischemia, evidenced by a whitening
of the anterior segment of the eye and blanching of the retinal
arteries, was verified by microscopic examination. After
needle removal, 1% atropine and 1% vetropolycin with
hydrocortisone ointment (Fougera and Atlanta, Inc., Melville,
NY) were applied to the conjunctival sac. Mice were
sacrificed by CO2 inhalation under anesthesia.
Immunohistochemistry for Neuronal Nuclei (NeuN) antibody
in flat-mounted retinas: Eyes were enucleated upon
euthanasia, incised at the ora serrata and immersion-fixed in
a 4% paraformaldehyde solution (in phosphate buffered saline
solution (PBS): 1.4 mM KH2PO4, 8 mM Na2HPO4, 140 mM
NaCl, 2.7 mM KCl, pH 7.4) for 1 h, and the retinas were
removed. The retinas were cryoprotected overnight in 30%

sucrose followed by three freeze–thaw cycles, were rinsed
3×10 min in 0.1 M PBS, blocked by 5% donkey serum, 0.1%
Triton X-100 in 0.1 M Tris buffer for 1 h, and incubated
overnight with monoclonal fluorescein isothiocyanate–
conjugated Neuronal Nuclei (NeuN) antibody (dilution 1:300;
Chemicon, Billerica, MA). After 3×10 min rinsing in 0.1 M
Tris buffer, retinas were flatmounted, coverslipped, and
imaged using a Leica TSL AOBS SP5 confocal microscope
(Leica Microsystems, Exton, PA).
Counting of NeuN positive ganglion cell layer neurons:
NeuN-positive neurons in the ganglion cell layer (GCL),
including retinal ganglion cells and displaced amacrine cells,
were imaged by confocal microscopy in flat-mounted retinas.
To avoid topological irregularities, stacks of five serial images
were collapsed to generate “maximum projections” (standard
feature of the Leica LAS AF software), where all imaged cells
appear in sharp focus. Individual retinas were sampled
randomly to collect a total of 20 images located at the same

TABLE 1. LIST OF PCR PRIMERS

Gene Oligonucleotides
Il1b Forward GACCTTCCAGGATGAGGACA

 Reverse AGGCCACAGGTATTTTGTCG
Il6 Forward ATGGATGCTACCAAACTGGAT
 Reverse TGAAGGACTCTGGCTTTGTCT

Tnf Forward CAAAATTCGAGTGACAAGCCTG
 Reverse GAGATCCATGCCGTTGGC

RelA Forward GGCCTCATCCACATGAACTT
 Reverse ATCGGATGTGAGAGGACAGG

Ccl2 Forward AGGTCCCTGTCATGCTTCTG
 Reverse ATTTGGTTCCGATCCAGGTT

Ccl5 Forward AGCAGCAAGTGCTCCAATCT
 Reverse ATTTCTTGGGTTTGCTGTGC

Cxcl10 Forward GCTGCAACTGCATCCATATC
 Reverse CACTGGGTAAAGGGGAGTGA

Icam1 Forward TGGTGATGCTCAGGTATCCA
 Reverse CACACTCTCCGGAAACGAAT

Cybb Forward GACTGCGGAGAGTTTGGAAG
 Reverse ACTGTCCCACCTCCATCTTG

Ncf1 Forward CGAGAAGAGTTCGGGAACAG
 Reverse AGCCATCCAGGAGCTTATGA

Ncf2 Forward CTACCTGGAGCCAGTTGAGC
 Reverse AGCGCCAGCTTCTTAGACAC

Gfap Forward AGAAAGGTTGAATCGCTGGA
 Reverse CGGCGATAGTCGTTAGCTTC

Nos2 Forward CAGAGGACCCAGAGACAAGC
 Reverse TGCTGAAACATTTCCTGTGC

Actb Forward CACCCTGTGCTGCTCACC
 Reverse GCACGATTTCCCTCTCAG

      Abbreviations: Il1β represents interleukin 1β, Il6 represents interleukin 6, Thf represents tumor necrosis factor, RelA represents
      transcriptional upregulation of the p65, Ccl2 represents chemokine (C-C motif) ligand 2, Ccl 5 represents chemokine (C-C
      motif) ligand 5, Cxc10 represents chemokine (C-X-C motif) ligand 10, Icam1 represents intercellular adhesion molecule 1,
      Ncf1 represents neutrophil cytosolic factor 1, Ncf2 represents neutrophil cytosolic factor 2, Gfap represents glial fibrillary acidic
      protein, Nos2 represents nitric oxide synthase 2.
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eccentricity in the four retinal quadrants using a 20× objective
lens. NeuN-positive neurons with a size range of 6–30 µm
were counted semiautomatically using MetaMorph
(Molecular Devices, Sunnyvale, CA) software, after image
thresholding and the manual exclusion of artifacts. Cell loss
in the ischemic retinas was calculated as percentile of the
mean cell density in normotensive fellow control eyes.
Real-time polymerase chain reaction analysis: Real-time
PCR analysis was performed as described previously [21,22]
using gene-specific primers (Table 1). Specifically, total RNA
was extracted from retinas using Nanoprep (Stratagene, Santa
Clara, CA), reverse transcribed with Superscript III
polymerase (Invitrogen, Carlsbad, CA) to synthesize cDNA.
Real-time PCR was performed in the Rotor-Gene 6000 Cycler
(Corbett Research, Australia) using the SYBR GREEN PCR
MasterMix (Qiagen, Valencia, CA). For each gene, relative
expression was calculated by comparison with a standard
curve, following normalization to the housekeeping gene β-
actin (Actb) expression chosen as control.
Immunohistochemistry: Fixed retinas were sectioned to a
thickness of 100 μm with a vibratome (Vibratome, St. Louis,
MO) and immunostained using the protocol described earlier
[21,22]. Briefly, sections were permeabilized with 0.3%
Triton X-100 in 1xPBS for 45 min, rinsed in 1X PBS and
blocked by 5% donkey serum, 2% BSA and 0.15% Tween-20
in 1X PBS for 1 h and incubated overnight with chemokine
(C-C motif) ligand 2 (Ccl2; Sc-1784; Santa Cruz, Santa Cruz,
CA) or interleukin 6 (Il6; AMC0864; Invitrogen, Carlsbad,
CA) primary antibodies, followed by species-specific
secondary fluorescent antibodies (AlexaFluor; Invitrogen).
Control sections were incubated without primary antibodies.
Imaging was performed with a Leica TSL AOBS SP5
confocal microscope (Leica Microsystems, Bannockburn,
IL).
Western blot analysis: Samples containing 20 µg of protein
were loaded, and the proteins were size-separated in sodium
dodecyl sulfate polyacrylamide gel (SDS–PAGE). Proteins
were blotted onto a polyvinylidene difluoride (PVDF)
membrane (Invitrogen) and incubated with phospho-p65
primary antibody. Proteins recognized by the antibody were
revealed by the SuperSignal West Femto Maximum
Sensitivity Substrate from Pierce according to instructions
(Thermo Fisher Scientific, Rockford, IL). Briefly, luminol/
enhancer and stable peroxide solutions were mixed at a 1:1
ratio to prepare the substrate working solution. PVDF
membrane was incubated 5 min in working solution.
Quantification of the protein bands were performed using the
software Quantity One (Bio-Rad Laboratories, Hercules,
CA). Data were normalized against β-actin.
Statistical analysis: Statistical analysis of real-time PCR and
cell density data was performed with one-way ANOVA
followed by the Tukey test for multiple comparisons. In the
case of single comparisons, the Student t test was applied. P

values equal to or less than 0.05 were considered statistically
significant.

RESULTS
Inactivation of toll-like receptor 4 signaling promotes
survival of retinal neurons following ischemic injury: To
investigate the role of Tlr4 in retinal ischemia, we took
advantage of Tlr4-deficient mice. We induced unilateral
retinal ischemia in WT and Tlr4 knockout (Tlr4 KO) mice by
raising IOP above normal systolic levels and evaluating
neuronal survival. High IOP-induced transient retinal IR is
one of the most frequently used models to investigate
molecular mechanisms contributing to neuronal ischemic
injury [23]. This technique produces global ischemia by
obstruction of both the retinal and uveal circulation, and
causes retinal GCL pathology closely mimicking that
observed in central retinal artery occlusion [1]. The IR-
induced degeneration of neurons in the GCL is biphasic, with
a primary degeneration occurring within 24 h after reperfusion
and a secondary degeneration progressing over several days
[23]. In this study, we sought to evaluate neuronal survival

Figure 1. Toll-like receptor 4 deficiency results in neuroprotective
effects in the ganglion cell layer of retinas after ischemia/reperfusion.
A: The percent surviving of ganglion cell layer (GCL) neurons in the
ischemia/reperfusion (IR) retinas of wild type (WT) and toll-like
receptor 4 (Tlr4) knockout (KO) animals seven days after IR. The
percent of Neuronal Nuclei (NeuN)-labeled neurons in regions of
central, middle and peripheral retina were compared between sham
operated and ischemic eyes of WT and Tlr4 KO animals seven days
after IR (**p<0.01, n=6). B: Representative confocal images of
NeuN-labeled GCLs (green) in flat-mounted controls and ischemic
retinas seven days after reperfusion. Scale bar equal to 100 µm.
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one week after reperfusion to be able to detect cumulative
damage from both waves of degeneration. Whole retina
flatmounts were stained for the neuronal marker NeuN to
quantify the number of surviving neurons in the GCL. We
observed IR-induced loss of retinal neurons in both WT and
Tlr4 KO retinas. However, in contrast to the Tlr4 KO mice,
which showed minimal damage (92±2% survival rate), WT
mice exhibited significantly (p<0.01, n=6) lower survival of
NeuN-positive neurons (63±7%) in the GCL. The NeuN
immunohistochemistry showed that the affected neurons were
distributed evenly across the ischemic retinas in all treatment
groups; no geographic pattern of degeneration was observed
(Figure 1A).

Inactivation of toll-like receptor 4 signaling resulted in
reduced inflammation following retinal ischemia: To study
the molecular changes associated with the elevated resistance
to ischemia in Tlr4 KO retinas, we compared the expression
of several proinflammatory genes known to be involved in IR-
induced cytotoxicity in experimental versus control eyes. We
measured gene expression in total RNA extracted from whole
retina 24 h postreperfusion because most changes in gene
expression for proinflammatory factors typically occur
shortly after IR injury. Transcriptional upregulation of the p65
(RelA) subunit of NF-κB, interleukin 1β (Il1β), interleukin 6
(Il6), tumor necrosis factor (Thf), Ccl2, chemokine (C-C
motif) ligand 5 (Ccl5), chemokine (C-X-C motif) ligand 10
(Cxcl10), Icam1, nitric oxide synthase 2 (Nos2) gene, as well
as Cybb, neutrophil cytosolic factor 1 (Ncf1) and neutrophil
cytosolic factor 2 (Ncf2), genes encoding subunits of the
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase protein complex and glial fibrillary acidic protein
(Gfap) was evident in all experimental eyes 24 h after
reperfusion (Figure 2). In Tlr4 KO mice, however, the
expression of RelA, Tnf, Il6, Ccl2, Ccl5, Cxcl10, Gfap, Icam1,
Cybb, and Nos2 was significantly reduced relative to WT. We
did not detect statistically significant differences in the IR-
induced upregulation of Il1β, Ncf1, and Ncf2 genes between
the two genotypes. In addition, the levels of phospho-p65 were
significantly increased in WT mice 24 h after IR injury, as
demonstrated by western blot (Figure 2B). In contrast, there
was no significant difference between the Tlr4 KO sham
control and Tlr4 KO IR mice in the levels of phospho-p65
protein. The gene expression profiles for Il6 and Ccl2 were
consistent with the corresponding protein accumulation levels
detected by immunohistochemistry 24 h after reperfusion
(Figure 2C). Combined, these data indicate that, as a result of
Tlr4 inactivation, the inflammatory response observed in the
retina 24 h after reperfusion was significantly suppressed in
the retinas of Tlr4-deficient mice.

DISCUSSION
This study shows that Tlr4-deficient mice have reduced retinal
damage and inflammatory response after an IR injury. The
neuroprotection observed in Tlr4-deficient mice raises a

Figure 2. Toll-like receptor 4 deficiency suppresses induction of
proinflammatory markers after ischemia/reperfusion. A: Differential
expression of proinflammatory molecules in the retinas of wild type
(WT) and toll-like receptor (Tlr4) knockout (KO) animals 24 h after
ischemia/reperfusion (IR). Gene expression was assessed using real
time PCR in sham-operated controls and experimental retinas
following IR. For each gene, results are expressed as a percentage of
corresponding value in the sham-operated eye±SEM after
normalization to β-actin. (*p<0.05, n=6). B: The levels of p65 (RelA)
in Tlr4-deficient mice after retinal IR injury were studied using real
time PCR and western blot analysis. C: Immunohistochemistry for
interleukin 6 (Il6) and chemokine (C-C motif) ligand 2 (Ccl2) protein
accumulation in post-ischemic retinas of WT and Tlr4 KO mice are
consistent with increased levels of the transcripts at the level of
corresponding proteins. Scale bar equal to 100 μm.
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question concerning which molecular mechanism(s) may be
involved. Retinal and brain ischemia results in a prolonged
period of neuronal cell death with a high number of necrotic
cells at an early stage of pathology [1,2,24–27]. The factors
liberated from necrotic cells could trigger inflammation and
damage through Tlr4–NF-κB signaling after IR injury [28,
29]. Our data indicate that the IR-induced activation of NF-
κB was attenuated in the Tlr4 KO animals, which is consistent
with previous studies of Tlr4-deficient animals challenged
with brain ischemia [12,13]. The NF-κB-regulated expression
of Tnf, Il6, Ccl2,Ccl5,Cxcl10, and Icam1 [22] were
significantly reduced in Tlr4 KO versus WT retinas,
suggesting that the neuroprotective effect is in part due to
Tlr4-NF-κB signaling. A robust inflammatory response in WT
animals can exacerbate the injury-induced stress by
overexposing neurons to neurotoxic levels of Tnf and Il6
cytokines, as shown previously [30]. The CCL2, CCL5, and
CXCL10 chemokines, as well as the cell adhesion molecules
ICAM1 are essential for immune cell activation, attraction,
and trafficking across the blood-brain barrier into the CNS
under both physiologic and pathological conditions [31,32].
Lowered activity of genes encoding these molecules in Tlr4
KO animals suggests that the diminished ability for
inflammatory cells to infiltrate the retina could elicit a
neuroprotective effect following ischemia. Finally, the
excessive activity of the Cybb and Nos2 genes, encoding
subunits of the reactive oxygen species (ROS)-producing
enzymes NAD(P)H oxidase and inducible NO-synthase,
likely causes oxidative stress. The activation of these enzymes
is broadly deleterious, and their inhibition was shown to be
neuroprotective [33,34]. Our analysis of IR-challenged retinas
revealed that the gene expression of Nos2 and Cybb was
suppressed in the retina of Tlr4 KO animals relative to WT
controls.

In conclusion, our data strongly support the hypothesis
that Tlr4 signaling negatively influences neuronal survival
and promotes inflammatory gene expression following retinal
IR injury. Triggering inflammation and damage through Tlr4
by factors liberated from necrotic cells after IR injury could
provide a mechanism of neuroprotection in Tlr4-deficient
animals. This mechanism will be further examined in our
future studies.
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