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Interpretation of body-mounted
accelerometry in flying animals and
estimation of biomechanical power

R. J. Spivey and C. M. Bishop

School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK

An idealized energy fluctuation model of a bird’s body undergoing horizon-

tal flapping flight is developed, focusing on the biomechanical power

discernible to a body-mounted accelerometer. Expressions for flight body

power constructed from root mean square dynamic body accelerations and

wingstroke frequency are derived from first principles and presented in

dimensionally appropriate units. As wingstroke frequency increases, the

model generally predicts a gradual transition in power from a linear to an

asymptotically cubic relationship. However, the onset of this transition

and the degree to which this occurs depends upon whether and how for-

ward vibrations are exploited for temporary energy storage and retrieval.

While this may vary considerably between species and individual birds, it

is found that a quadrature phase arrangement is generally advantageous

during level flight. Gravity-aligned vertical acceleration always enters into

the calculation of body power, but, whenever forward acceleration becomes

relevant, its contribution is subtractive. Several novel kinematic measures

descriptive of flapping flight are postulated, offering fresh insights into the

processes involved in airborne locomotion. The limitations of the model

are briefly discussed, and departures from its predictions during ascending

and descending flight evaluated. These findings highlight how body-

mounted accelerometers can offer a valuable, insightful and non-invasive

technique for investigating the flight of free-ranging birds and bats.
1. Introduction
Birds flap their wings in order to achieve weight support and locomotion [1–3].

Experiments using high-frame-rate video footage to monitor wing and body

motions of birds or bats flying in wind tunnels have combined the findings with

aerodynamic results and accelerometry to estimate overall energy expenditure

during flight [4–6]. Such approaches have been experimentally valuable and theor-

etically illuminating, enabling the refinement of aerodynamic theory, but in studies

involving free-ranging animals where trailing wires and heavy equipment cannot

be used, ambulatory recording of body acceleration offers a viable and practical

alternative. Accelerometry was initially restricted to wind tunnel work [7],

but has now been miniaturized and demands relatively little electrical power.

Commercially available micro-electromechanical transducers are now capable of

faithfully recording high-frequency vibrations, offering a new means of studying

the characteristics, kinematics and energetics of free-ranging avian flight [8,9]

and, indeed, animal locomotion in general [10]. Because the long-term study of

birds in the wild is becoming increasingly feasible, there is new scope to assess

some of the difficult choices birds face during long-range migrations [11,12].

Traditional techniques for monitoring the metabolic rate or power input of free-

ranging vertebrates include doubly labelled water [13,14] and heart rate, fh, derived

from electrocardiography [15,16]. The latter approach offers good temporal resol-

ution but has historically necessitated calibration of fh against measurements of

oxygen consumption, _VO2
. However, the direct translation of fh to _VO2

may now

be possible for endotherms undergoing primary mode locomotion if augmented
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by knowledge of heart and body mass [17]. Accelerometry has a

similar potential to monitor instantaneous biomechanical power

output [18] during locomotion, and strong correlative relation-

ships between body acceleration and _VO2
have been found in

animals running on treadmills [18,19]. As one might expect,

body accelerations during flight are generally elevated compared

with other forms of locomotion [14,20–22]; however, a theoreti-

cal understanding of how body acceleration relates to the

biomechanical power of flapping flight has not yet been eluci-

dated. This study aims to address this by setting out a

mathematical model that assists the interpretation of accelero-

metry data captured from birds during flight. Novel measures

descriptive of flight kinematics, integral to this modelling, shall

also be derived.

Instruments that log acceleration are, for practical reasons,

generally attached to the torso of a flying animal. As wings

are coupled to the body, this offers much promise as a non-

invasive tool that can help estimate the biomechanical

power (and indirectly or proportionally, the metabolic

costs) associated with flight [18,19,23], with the potential to

augment or replace existing methods [15,24]. Activity-related

accelerations can be decomposed into the sum of dynamic

and static accelerations which can be respectively derived

by high- and low-pass filtering either in the time or the fre-

quency domain. To date, biologists have found the dynamic

component most informative with regard to correlations

with energy expenditure. Two time-averaged measures of

dynamic body acceleration (DBA) have been used when

studying the energetics of animals [18,25]. Overall dynamic

body acceleration (ODBA) is a running average of the

L1-norm of the dynamic acceleration [10,18]. The variant

using the L2-norm, which accurately encapsulates vectorial

length, is known as vectorial dynamic body acceleration

(VeDBA) [26,27]. An immediate difficulty with using any

acceleration measure as a proxy for estimating biomechanical

power in the absence of empirical calibration is that the funda-

mental units of acceleration, namely LT22, are different both to

those of power, ML2T23, and those of mass-specific power,

L2T23. Overcoming this inevitably requires the development

of some theoretical model descriptive of the biomechanics of

bird flight with respect to body acceleration.

Under the hypothesis that DBA is closely related to over-

all metabolic costs, accelerometry has been successfully

applied to a wide variety of other animals [10]. Consequently,

it is not unreasonable to expect that a correlation could also

exist between DBA and the biomechanical power directly dis-

cernible using a body-mounted accelerometer (body power)

during steady horizontal flight and the metabolic rates of

birds during flight (subject to the additional uncertainties

of the value for the mechanochemical conversion efficiency

of muscle [28]). Therefore, the ansatz is adopted here that

the kinetics of the body should reflect the kinetics of the

wings, thereby ultimately allowing the biomechanical costs

incurred during avian locomotion to be estimated. This

work primarily focuses on the interpretation of data from

accelerometers attached to the body of a flying bird in the

absence of additional information, a constraint demanding

the development of some mathematical model to theoreti-

cally bridge the divide between body vibrations and overall

biomechanical costs. The relationship between decomposed

vertical and horizontal dynamic accelerations, and the var-

ious components of the energy associated with the body are

investigated, lateral components being neglected due to
the symmetrical beating of the wings. Birds must find ways

of contending with the weight of gravity when airborne

and flapping flight demands significant energy expenditure

[1,3]. Motions of the body on the vertical axis differ from

motions within the horizontal plane as they involve changes

in gravitational potential. Thus, if the biomechanical power

during flight is to be estimated solely from accelerometry,

then it is essential to pay heed to the direction of gravity

and hence also the absolute orientation of the transducer.

The ultimate aim of this work is to derive estimates of

acceleration-based biomechanical body power during flap-

ping flight from first principles, potentially leading to the

future interpretation of accelerometry from flying animals

without the need for direct calibration. Novel statistical

measures derived here may also be informative of flight

kinematics, pertaining to energetically significant transitions

in the wingstroke frequency, such as the relative phase and

amplitude of forward and vertical body oscillations.
2. Developing a model
2.1. Preliminaries
Due to the pulsatile character of avian flight associated with

the periodic contraction of powerful wing muscles, the energy

associated with each wingstroke is delivered sporadically.

Efficient flight confers evolutionary advantages, so the effort

required by a bird to flap its wings is likely to achieve useful

goals such as forward propulsion against aerodynamic drag,

the countering of gravity, changes in velocity, ascent/descent

and general manoeuvring. The mechanical energy of a bird

will fluctuate in time and in still air there is a metabolic cost

when the total energy increases. When it decreases, the dissipa-

tion of mechanical energy into the surrounding air is used to

accomplish these various flight goals [29]. In the absence of grav-

ity and an atmospheric medium, the mean mechanical power

required by a vibrating but dissipationless mechanical system

is precisely zero, because the total energy of the system is

constant at all times. However, energy will necessarily be trans-

formed or exchanged between different elements of the system

within individual vibration cycles. Birds, on the other hand,

remain airborne and sustain forward momentum despite air

resistance by doing mechanical work which they never recover.

Notwithstanding this, birds may be able to temporarily store

and retrieve energy within individual wingbeat cycles in a simi-

lar manner to an idealized dissipationless system, so this should

be considered when developing the model, as such a mechanism

may provide significant flexibility to execute flight more

efficiently under certain circumstances.

We assume a triaxial accelerometer of negligible mass

securely affixed to the body of a bird undergoing horizontal

flight at a steady air speed. It has been known for several

decades that, provided adequate consideration is given to har-

ness design, accelerometers can be externally mounted to birds

with negligible oscillation relative to the body [30]. Raw data

from an accelerometer can be reoriented using mathematical

transformations, an issue returned to later, so this analysis

proceeds by taking the z-axis to be oppositely aligned to gravity

and the y-axis to correspond to the direction of forward motion.

An inertial frame of constant velocity comoving with the bird is

considered. The majority of the power in the measured accelera-

tions resides at the fundamental wingstroke frequency f, the

angular frequency of the wingstrokes being v ¼ 2pf. This is a
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Figure 1. A typical power spectrum derived from the Fourier decomposition
of about 10 s of vertical axis accelerometry data captured by the authors at
400 s s21 from the body of a freely flying homing pigeon during horizontal,
straightline flight while returning to a loft. The peak at the fundamental
wingstroke frequency (at around 6.5 Hz) dominates over that of higher
harmonics, suggesting that the acceleration on the bird’s body is not only
periodic but essentially sinusoidal.
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crucial assumption, backed up by the acceleration power

spectrum obtained via accelerometry experimentally collected

from a flying pigeon, as presented in figure 1. Because power

is concentrated at the fundamental frequency, the oscillations

of the body in the vertical axis can be accurately approximated

by a sinusoid with maximum excursion B relative to the mean

altitude. The vertical displacement z and vertical velocity _z
therefore vary as follows:

z ¼ B cosðvtÞ ð2:1Þ

and

_z ¼ �Bv sinðvtÞ: ð2:2Þ

It is assumed that no energy is stored either elastically or

as rotational kinetic energy, leaving the gravitational poten-

tial energy U ¼ mbgz, the kinetic energy associated with the

vertical axis Kz ¼ mb _z2=2; and the kinetic energy associated

with the forward axis Ky ¼ mb _y2=2 to be considered. Here,

mb is the mass of the body of the bird, and g is the gravita-

tional acceleration. The beating of both wings is assumed to

always be in phase with one another. Because of the bilateral

symmetry in birds, we neglect any kinetic energy associated

with the x-axis.

The wings also have gravitational and kinetic energies

(both vertical and horizontal). However, these are not

directly estimable from a body-mounted accelerometer, so

terms for these quantities are not explicitly included in the

analysis. Instead, it is assumed that the activity detected by

the accelerometer will, to a first approximation, be an attenu-

ated reflection of the total biomechanical output of the bird. It

is reasonable to think that energy associated with the wings

can be subsumed into existing terms by constructive or

destructive superposition. This follows from the fact that

the addition of two arbitrarily scaled sinusoids of the same

frequency, but different phase results in a rescaled sinusoid

of the same frequency:

a sinðvtÞ þ b sinðvtþ fÞ ¼ c sin

"
vtþ arctan

b sinf

aþ b cosf

� �

þ pHð�a� b cosfÞ
#
; ð2:3Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 � 2ab cosf

p
and H is the Heaviside step

function in which H( j) ¼ 1 if j � 0, otherwise H( j) ¼ 0. It

can be seen that the resultant sinusoid will generally have

an intermediate phase shift.

2.2. Relative phase between vertical and horizontal
oscillations of the body

Vibrations on both axes will exhibit simple harmonic motion

with both Ky and Kz varying at the same frequency. However,

before an expression for the variation in y can be written as a

sinusoid, there is a need to carefully consider its relative

phase u with respect to z. Even if the bird has considerable

freedom to adjust the phase of its motion on the horizontal

axis, arrangements that minimize the power required in

order to sustain flight confer evolutionary advantages. Intro-

ducing a horizontal vibration amplitude A, the counterpart to

B for the vertical axis, one can write

y ¼ A cosðvtþ uÞ ð2:4Þ

and

_y ¼ �Av sinðvtþ uÞ: ð2:5Þ

The convention is adopted that neither A nor B can be nega-

tive. The total energy associated with the bird’s body, Eb(t), is

EbðtÞ ¼ U þ Kz þ Ky ¼ mbgzþmb _z2

2
þmb _y2

2
ð2:6Þ

and

EbðtÞ ¼ mbgB cosðvtÞ þmbB2v2 sin2ðvtÞ
2

þmbA2v2 sin2ðvtþ uÞ
2

: ð2:7Þ

During each wingstroke, the flight muscles of the bird

must supply energy when Eb is increasing. An important

aspect of the present model is the assumption that when Eb

decreases, energy is irrecoverably lost to the environment

and exploited so as to achieve propulsion and weight

support. This can be compared with aerodynamic models

which assume the kinetic energy of the wings is never

recovered [31,32]. The mean power associated with the

body, kPbl, can then be determined according to

kPbl ¼ v

2p

ð2p=v

0

EbðtÞHð _EbðtÞÞ dt: ð2:8Þ

Consider, for now, the case in which A ¼ 0. One then has

Ky ¼ 0 and Eb ¼ U þ Kz. Gravitational potential energy

attains a minimum at t ¼ p/v when z ¼ 2B and a maximum

at t ¼ 0 when z ¼ B. At both these times, Kz reaches its mini-

mum of zero. Because sin2vt ¼ (1 2 cos 2vt)/2, the vertical

kinetic energy varies sinusoidally at twice the frequency of

the gravitational energy. Thus, Eb(t ¼ p/v) is always a mini-

mum. Although U is always a maximum at t ¼ 0, it is

possible that Eb is not a maximum at that time if Kz thereafter

increases more rapidly than U decreases. This possibility is

apparent upon inspection of the time derivatives of Eb, the

roots of which correspond to stationary points:

_EbðtÞjA¼0 ¼ mbBv sinðvtÞ½Bv2 cosðvtÞ � g� ð2:9Þ

and

€EbðtÞjA¼0 ¼ mbBv2½Bv2 cosð2vtÞ � g cosðvtÞ�: ð2:10Þ
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Owing to the sin(vt) term, stationary points exist at t ¼ 0

and t¼ p/v. At t¼ p/v, one has €Eb ¼ mbBv2ðBv2 þ g2Þ . 0,

so this stationary point is always a minimum. However,
€Eb ¼ mbBv2ðBv2 � gÞ for the stationary point at t ¼ 0,

which corresponds to a maximum when v2 , g/B and a

minimum when v2 . g/B. If both these are minima,

additional stationary points occur when cos(vt) ¼ g/Bv2.

Using cos(2vt) ¼ 2g2/B2v42 1, one then finds that at those

times €Eb ¼ mbðg2 � B2v4Þ , 0, confirming that these points

correspond to maxima of Eb.

Therefore, when v2 , g/B, the mean body power is simply

kPbl ¼ (v/2p) (Eb
max 2 Eb

min), where Emax
b ¼ Ebð0Þ ¼ mbgB and

Emin
b ¼ Ebðp=vÞ ¼ �mbgB. However, when v . g/B, then

due to the existence of a new maximum in Eb at t = 0, Emax
b

will exceed Eb(0), and the mean power will inevitably rise.

During intense flight, there will be a high wingstroke frequency,

and for each wingstroke the variation in kinetic energy will

increase and the variation in gravitational energy will decrease,

allowing the variations in kinetic energy to become dominant.

However, if it were possible to temporarily store some of the ver-

tical kinetic energy as horizontal kinetic energy, and retrieve it

later in the wingstroke cycle, then this elevated maximum in

Eb could be avoided, and the concomitant increase in power

is eliminated.

The transition between the two regimes occurs at g ¼ Bv2,

corresponding to the peak gravitational energy Umax ¼ mbgB
being equal to twice the peak vertical kinetic energy

2Kmax
z ¼ mbB2v2. Clearly, if the total kinetic energy Kyz ¼

Ky þ Kz did not fluctuate at all, then Kz could be arbitrarily

large without incurring any additional increase in mean

power. The total kinetic energy is

Kyz ¼
mbv

2

2
A2 sin2ðvtþ uÞ þ B2 sin2ðvtÞ
� �

ð2:11Þ

and

Kyz ¼
mbv

2

4
A2 þ B2 � A2 cosð2vtþ 2uÞ � B2 cosð2vtÞ�:
�

ð2:12Þ

If Kyz is constant, then its derivative

_Kyz ¼
mbv

3

2
A2 sinð2vtþ 2uÞ þ B2 sinð2vtÞ
� �

ð2:13Þ

must be zero at all times. It is apparent from this expression

and (2.3) that Kyz varies sinusoidally. The amplitude of these

fluctuations vanishes when

A2 sin 2vt cos 2uþ A2 cos 2vt sin 2uþ B2 sin 2vt ¼ 0 ð2:14Þ

and

tan 2vt ¼ sin 2vt
cos 2vt

¼ �A2 sin 2u

A2 cos 2uþ B2
: ð2:15Þ

Because u is constant, this would demand that t is also

constant. However, Kyz can be zero, if the sin 2vt and the

cos 2vt terms are simultaneously zero. One then finds that

the cos 2vt term vanishes if sin 2u ¼ 0, which is satisfied

when u ¼ np=2 ðn [ ZÞ. The sin 2vt term is zero when

A2 cos 2uþ B2¼ 0, which yields u¼ arccos(2B2/A2)/2. When

u ¼ np, one has cos 2u ¼ 1 which must be rejected as it pre-

dicts A2 ¼ 2B2. However, u ¼ (n+ 1/2)p yields A2 ¼ B2,

which is acceptable. Therefore, for Kyz to remain constant

requires A ¼ B and u ¼+p/2. This can be seen in the
following

Kyz ¼ Kz þ Ky

¼ mbv
2

2
B2 sin2ðvtÞ þ A2 sin2 vt + p=2ð Þ
� �

ð2:16Þ

and

Kyz ¼
mbv

2

2
B2 þ ðA2 � B2Þ cos2ðvtÞ
� �

¼ mbv
2B2

2
: ð2:17Þ

A relative phase shift of +p/2 between the horizontal and

vertical axes corresponds to what is commonly termed a quad-

rature phase arrangement. Only in this circumstance does it

hold that Ky is a maximum when Kz is a minimum, and vice

versa. This maximizes the potential for shuttling energy back

and forth between the two axes, a useful property that the

bird might be able to exploit to decrease its mean power.

Although Ky will be maximal at t¼ 0 and t ¼ p/v, because

these maxima are equal, they have no effect on the difference

Eb(t ¼ 0) 2 Eb(t ¼ p/v). In fact, this holds for any value of u

because sin2x ¼ sin2(x þ p), but Kyz is constant only when Ky

and Kz are in antiphase. As the kinetic energies vary at

double the fundamental wingstroke frequency, this occurs

when u ¼+p/2.

While variations in Kyz can be completely eliminated, it

may not be necessary for the bird to do so because, as will

be shown, the bird can in some cases also minimize power

when A/B , 1 with excessive fluctuations in Kz being com-

pletely tamed by smaller fluctuations in Ky. This may be

preferable as it reduces extraneous energy losses and amelio-

rates the vibrations transmitted to the head of the bird, which

might otherwise make flight an unnecessarily uncomfortable

experience compromising visual acuity [33]. Note also that if

A/B . 1, then fluctuations in Ky may not be adequately

absorbed by fluctuations in Kz.

Because birds are expected to have a maximum forward

velocity at the end of the downbeat, the phase that makes

_yð0Þ maximal is chosen (u ¼ 2p/2). Hence, u can be

eliminated from the expressions for y and _y by writing

y ¼ A sinðvtÞ ð2:18Þ

and

_y ¼ Av cosðvtÞ: ð2:19Þ

The upbeat commences at t ¼ 0 when _y is maximal. The

body is then at its maximum height above the ground.

The body and the wings are in antiphase on the vertical

axis, and the same should also be approximately true of the

forward axis. To summarize the findings of this section,

power reduction is possible only when g/Bv2 , 1 and is

best achieved by a quadrature phase arrangement.
2.3. Quadrature phase flight
Unless expressly stated otherwise, the analysis now proceeds

by assuming quadrature phase applies. In order to assess the

biomechanical power in the body, one is interested in deter-

mining the maxima and minima (stationary points) of the

body energy, necessitating looking for roots of the first-time

derivative and inspecting their signs by taking the second-

time derivative. Both Kyz and U vary sinusoidally but because

they do not vary at the same frequency their sum is not a

simple sinusoid, demanding that calculus be used. Body
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energy now reads

EbðtÞ ¼
mb

2

� �
2gB cosðvtÞ þ B2v2 sin2ðvtÞ þ A2v2 cos2ðvtÞ
� �

;

ð2:20Þ

and the first derivative is

_Eb ¼ mbv
3ðB2 � A2Þ sinðvtÞ cosðvtÞ �mbgBv sinðvtÞ ð2:21Þ

and

_Eb ¼ mbv sinðvtÞ½v2ðB2 � A2Þ cosðvtÞ � gB�: ð2:22Þ

Stationary points exist when either cos(vt)¼ gB/v2(B2 2 A2)

or sin(vt) ¼ 0. The first condition has real solutions only if

v2 � gB/jB2 2 A2j. When v2 . g/B, the smallest value of A
that prevents a maximum in Eb from arising anywhere but

at t ¼ 0 occurs when cos(vt) ¼ 1, from which the smallest

value of A that minimizes the power can be determined. If

this is an overriding consideration with the need to maintain

visual acuity a secondary concern, this value of A would

seem to be optimal:

Aopt ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g=Bv2

q
: ð2:23Þ

Note that Aopt must be real (because v2 . g/B) and

because A2
opt � B2 at all times, birds have no need to fly

with A . B. Moreover, for given values of A and B, the opti-

mum angular frequency comes to vopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB=ðB2 � A2Þ

p
which exceeds the critical frequency vc ¼

ffiffiffiffiffiffiffiffi
g=B

p
above which

power can be reduced if A = 0. The optimum ratio of A/B
ensures fluctuations in Ky are sufficiently large to avoid

excessive fluctuations in Kz, its value depending only on

the ratio v/vc:

Aopt

B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

c

p
v

: ð2:24Þ

This is plotted in figure 2. The second derivative of the

body energy is

€Eb ¼ mbv
4ðB2 � A2Þ cosð2vtÞ �mbgBv2 cosðvtÞ: ð2:25Þ

The condition that €Eb ¼ 0 at t ¼ 0 yields A ¼ Aopt,

showing that the maximum at t ¼ 0 is then also a stationary

point of inflection. Now, consider the stationary points that

arise when cos(vt) ¼ gB/v2(B2 2 A2). Using the identity

cos(2vt) ¼ 2cos2(vt) 2 1, one finds that

€Eb ¼ 2mbv
4ðB2 � A2Þ g2B2

v4ðB2 � A2Þ2
�mbv

4ðB2 � A2Þ

� mbg2B2v2

v2ðB2 � A2Þ ð2:26Þ

and

€Eb ¼
mb

B2 � A2
g2B2 � v4ðB2 � A2Þ2
h i

: ð2:27Þ

If A2 , B2, the sign of €Eb must be negative if gB , v2

(B2 2 A2). This satisfies the condition required for the stationary

points to exist, establishing that those corresponding to cos(vt)¼
gB/v2(B2 2 A2) , 1 must be maxima if A2 , B2. Considering

the alternative situation in which A2 . B2, the sign of €Eb must

be positive if gB , v2(A2 2 B2). Hence, the stationary points at

which cos(vt)¼ gB/v2(B2 2 A2) , 1 must then correspond to

minima.
Note that the stationary point in Eb at t ¼ p/v has second

derivative

€Ebðp=vÞ ¼ mbv
2½ðB2 � A2Þv2 þ gB�: ð2:28Þ

This is negative if gB , v2(A2 2 B2) so that when A2 . B2,

which gives rise to stationary points at cos(vt)¼ 2gB/

v2(A2 2 B2), the stationary point at t¼ p/v becomes a maxi-

mum. This is a point of inflection when gB¼ v2(A2 2 B2)

corresponding to the maximum value of A at which power is

minimized:

Amax

B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

Bv2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2

c

p
v

: ð2:29Þ

This has a similar form to the earlier expression

Aopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

c

p
=v. The bird has minimized its mean body

power if Aopt � A� Amax or equivalently if v2 , gB/jB2 2 A2j.
When this condition is satisfied and v2 . g/B, flapping flight

demands less power than when forward axis vibrations are

absent altogether (A¼ 0). For a fixed value of B, this is illustrated

in figure 3.
3. Estimation of body power
The calculation of mean body power here involves the inte-

gration of Eb only as it increases according to (2.8). This can

be easily accomplished by subtracting the minima of Eb

from successive maxima of Eb. If t ¼ 0 at t ¼ t0, t ¼ p/v at

t ¼ t1 and t ¼+arccos[gB/v2(B22 A2)]/v at t ¼ t* then

only these times need be considered in order to determine

the minima and maxima of the body energy variation. With

reference to figure 4, it can be seen that there are three

distinct cases to consider with stationary points located at

the following times:

case 1: t ¼ t0 and t ¼ t1: fgB . v2jB22A2jg,
case 2: t ¼ t0, t ¼ t1 and t ¼ t* fgB , v2(B22A2); A2 , B2;

Eb(t*) . Eb(t0)g and

case 3: t ¼ t0, t ¼ t1 and t ¼ t* fgB , v2(A22B2); A2 . B2;

Eb(t*) , Eb(t1)g.
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The body energy at t0 and t1 is simply

Ebðt0Þ ¼
mb

2

� �
ðA2v2 þ 2gBÞ ð3:1Þ

and

Ebðt1Þ ¼
mb

2

� �
ðA2v2 � 2gBÞ; ð3:2Þ

lower traces provide examples). (Online version in colour.)
When t ¼ t*, sin2(vt*) is obtained as 1 2 cos2(vt*):

sin2ðvt�Þ ¼ 1� gB
v2ðB2 � A2Þ

	 
2

: ð3:3Þ

After some algebra, the total energy of the body when

t ¼ t* is found to be

Ebðt�Þ ¼
mbg2

2v2

B2v4

g2
þ B2

B2 � A2

	 

: ð3:4Þ

3.1. Case 1
This case corresponds to the shaded region in figure 3 and the

central traces of figure 4 for which the calculation of mean

power is particularly simple:

kPb1l ¼ v

2p
Ebðt0Þ � Ebðt1Þ½ � ¼ mbgBv

p
: ð3:5Þ

3.2. Case 2
This case corresponds to the zone below the shaded region

in figure 3 (see also the uppermost trace in figure 4). The

stationary point at t0 is now a minimum and two new

maxima arise at t ¼ t*. Recalling that in this case, B2 . A2,

the power is

kPb2l ¼ v

2p
Ebðt�Þ � Ebðt0Þ þ Ebðt�Þ � Ebðt1Þ½ � ð3:6Þ

and

kPb2l ¼ mb

2pv
v4ðB2 � A2Þ þ g2B2

B2 � A2

	 

ð3:7Þ

3.3. Case 3
This case corresponds to the zone above the shaded region in

figure 3 (see also the lowermost trace in figure 4). The station-

ary point at t1 is now a maximum and new minima arise at

t ¼ t*. One has A2 . B2, and the power now comes to

kPb3l ¼ v

2p
Ebðt0Þ � Ebðt�Þ þ Ebðt1Þ � Ebðt�Þ½ � ð3:8Þ

and

kPb3l ¼ mb

2pv
v4ðA2 � B2Þ þ g2B2

A2 � B2

	 

: ð3:9Þ

The poles appearing in the expressions for kPb2l and kPb3l
as A! B are avoided because when v2 . gB/jB2 2 A2j one

has A2
= B2. It is apparent that the results for cases 2 and 3

are equivalent but for the reversal of sign in the B2 2 A2

terms. Therefore, it would be acceptable to take the modulus

of either expression without expressly checking whether

A2 . B2. In the limiting cases where gB¼ v2jB2 2 A2j, the

prediction of case 1 coincides with that of case 2 or 3. For

instance, when A ¼ Aopt ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g=Bv2

p
then B2 2 A2 ¼

gB/v2 and it can be seen that kPb2l reduces to kPb1l:

kPopt
b2 l ¼ mb

2pv

v4gB
v2
þ g2B2

gB=v2

	 

¼ mbgBv

p
¼ kPb1l: ð3:10Þ

The importance of correctly distinguishing between

case 1 and cases 2 and 3 is stressed, because kPb2l and

kPb3l overpredict the true power when gB . v2jB2 2 A2j
and kPb1l underpredicts the true power when gB ,

v2jB2 2 A2j.



Table 1. Variables used in this study.

variable units description

a m s22 acceleration vector

arms m s22 r.m.s. acceleration

adyn m s22 dynamic acceleration

A m relative forward displacement

amplitude

Aopt m smallest value of A that minimizes

power

B m relative vertical displacement

amplitude

Eb J body energy
_Eb J s21 first-time derivative of body energy
€Eb J s22 second-time derivative of body

energy

f Hz wingstroke frequency

fh beats min21 heart-rate

g m s22 Earth’s gravitational acceleration

Ky J relative forward kinetic energy

Kz J relative vertical kinetic energy

Kyz J total kinetic energy
_K yz J first-time derivative of total kinetic

energy

L m dimension of length

M kg dimension of mass

mb kg body mass

ODBA m s22 overall dynamic body acceleration

v rad s21 wingstroke angular frequency

vopt rad s21 optimal value of v

vc rad s21 first critical value of v

v0 rad s21 second critical value of v

Pb W biomechanical body power

Popt
b W optimal biomechanical body power

f rad rotation angle

T s dimension of time

t s time

u rad relative phase angle

U J gravitational potential energy

VeDBA m s22 vectorial dynamic body acceleration
_V O2 ml min21 oxygen consumption rate

y m relative forward displacement

_y ms21 relative forward velocity

€y m s22 forward acceleration

€yrms m s22 r.m.s. forward acceleration

z m relative vertical displacement

_z m s21 relative vertical velocity

€z m s22 vertical acceleration

€zrms m s22 r.m.s. vertical acceleration
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3.4. Deriving body power using data from
accelerometers

The root mean square (or r.m.s.) value of a quantity is a

measure commonly used in physics and engineering and

can lend itself to the description of DBA (table 1). As such,

it offers an alternative to ODBA and VeDBA. The r.m.s.

value of a discrete set of N dynamic single axis accelerations

adyn is arms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

dyn=N
q

, and that of a simple sinusoid such as

c ¼ b sin(t) is

crms ¼
ffiffiffiffiffiffiffiffiffi
kc2l

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

ðb sin tÞ2dt

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4p

ð2p

0

ð1� cos 2tÞdt

s
¼ bffiffiffi

2
p : ð3:11Þ

Static and dynamic accelerations can be respectively

derived from raw acceleration data using low-pass and

high-pass filtering techniques. While the static acceleration

is useful in determining the vertical, gravity-aligned axis,

there are many circumstances where the direction of the

forward axis is more ambiguous. However, birds will gen-

erally adjust the roll of their bodies during flight so that the

static acceleration vector remains dorsally aligned. It is

therefore likely that the r.m.s. value of the dynamic sway,

€xrms, will be appreciably smaller than the r.m.s. value of

the dynamic surge, €yrms. In principle, this allows for reor-

ientation of accelerometry data during post-processing by

application of a rotation matrix whose components can be

inferred by analysis of the data. A method for achieving

reorientation is outlined in appendix A. Estimates of the

dynamic surge, €yrms, and the dynamic heave, €zrms, are

readily obtained after high-pass filtering of the reoriented

acceleration components. These relate to v, A and B as

follows:

€yrms ¼
ffiffiffiffiffiffiffiffi
k€y2l

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðAv2 sinvtÞ2l

q
¼ Av2ffiffiffi

2
p ð3:12Þ

and

€zrms ¼
ffiffiffiffiffiffiffiffi
k€z2l

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðBv2 cosvtÞ2l

q
¼ Bv2ffiffiffi

2
p : ð3:13Þ

Hence, body power can be directly evaluated from r.m.s.

heave and surge:

kPb1l ¼
ffiffiffi
2
p

mbg€zrms

pv
ð3:14Þ

and

kPb2;3l ¼ mb

2pv
2€z2

rms � 2€y2
rms þ

g2€z2
rms

€z2
rms � €y2

rms


: ð3:15Þ

These expressions conveniently obviate the need to

double integrate acceleration data in order to obtain the

values of A and B directly, which is generally challenging

due to the baseline drift introduced when integrating.

However, A and B each feature in the true-or-false test

gB , v2jB2 2 A2j that determines which expression for

power is valid. Therefore, a reformulation of the discrimi-

nant is also desirable, and because €yrms=€zrms ¼ A=B it
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follows that

gB
v2jB2 � A2j ¼

gB=
ffiffiffi
2
p

jB€zrms � A€yrmsj

¼ g=
ffiffiffi
2
p

j€zrms � ðA=BÞ€yrmsj

¼ g€zrmsffiffiffi
2
p
j€z2

rms � €y2
rmsj

: ð3:16Þ

It is therefore possible to determine, without knowledge

of either A or B, nor indeed v, the regime in which the

bird is flying. kPb1l should be used when g€zrms .
ffiffiffi
2
p

j€z2
rms � €y2

rmsj, otherwise kPb2,3l is applicable.

The critical frequency ratio, v/vc, can similarly be trans-

lated using (3.13) and the knowledge that vc ¼
ffiffiffiffiffiffiffiffi
g=B

p
v

vc

� �2

¼
ffiffiffi
2
p

€zrms

g
: ð3:17Þ

It is also possible to express v/vopt using only r.m.s.

accelerations:

v

vopt

� �2

¼
ffiffiffi
2
p

€zrms

g
1�A2

B2

� �
¼

ffiffiffi
2
p

€zrms

g
1�

€y2
rms

€z2
rms

 !
: ð3:18Þ
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3.5. Relative body power
According to this model, body power retains linearity with

wingstroke frequency until, and as illustrated in figure 5,

the angular frequency exceeds

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gB
jB2 � A2j

s
: ð3:19Þ

This can also be conveniently gauged from r.m.s. accelera-

tions alone because

v

v0

� �2

¼
ffiffiffi
2
p
j€z2

rms � €y2
rmsj

g€zrms
: ð3:20Þ

The expressions for kPb2l and kPb3l can be recast as

kPb2;3l ¼ mb

2pv
v4jB2 � A2j þ g2B2

jB2 � A2j

� �
ð3:21Þ

and

kPb2;3l ¼ mbg2v2
0

2pv2
c

1þ v4=v4
0

v

� �
: ð3:22Þ

It is now apparent that when v� v0, the response

becomes asymptotically cubic at higher wingstroke fre-

quencies, i.e. kPb2,3l/v3. However, at lower wingstroke

frequencies, flight proceeds within the linear regime of

(3.5). For case 1, it is possible to write kPb1l ¼ mg2v=pv2
c ,

allowing the ratio of kPb1l/kPb2,3l to be expressed in a particularly

simple form

kPb1l
kPb2;3l

¼ 2v2=v2
0

1þ v4=v4
0

: ð3:23Þ

The response is plotted in figure 6 and can be compared

with figure 5 where the wingstroke frequency is expressed

in units of v/vc. If v , v0, then the expression for kPb2,3l is

not physically meaningful, and the mean power is always

given by kPb1l. When v . v0, power can always be reduced,
because the ratio kPb2,3l/kPb1l then exceeds unity. Further-

more, it grows without limit as v!1.

Power is always minimized when A ¼ B but it is interesting

to know how the ratio kPb2,3l/kPb1l grows for other values of A/

B when v . v0. First, note that v0 is related to vc according to

v2
c ¼ v2

0 1� A
B

� �2


: ð3:24Þ

The relative flight cost ratio kPb2,3l/kPb1l can be expressed

either in terms of v/v0 or A/B and v/vc:

kPb2;3l
kPb1l

¼ 1

2

v

v0

� �2

þ 1

2

v0

v

� �2
ð3:25Þ
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and

kPb2;3l
kPb1l

¼ 1

2

v

vc

� �2

1� A
B

� �2


þ 1

ðv=vcÞ2 j1� ðA=BÞ2j

" #
:

ð3:26Þ

A colour-coded contour plot of this function is presented

in figure 7 (online).
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Figure 9. The quadrature phase assumption potentially overpredicts the body
power for ascending or descending flight. The error is plotted here for climb
rates within the range +0.9 m s21, where the optimum phase appears to
deviate linearly from u ¼ 2908 in figure 8. The model is relatively accurate
for sustainable rates of ascent but errors grow rapidly for high rates of descent.
4. Non-quadrature phase
We reiterate that this modelling pertains to steady, horizontal

flight. The possibility exists that departures from quadrature

phase may be advantageous during ascent or descent, but

the mathematics in such cases is considerably more involved.

Nevertheless, these situations were numerically investigated

under the assumption that A ¼ B with an additional power

component representing the change in gravitational energy

with time, whose mean value can be estimated using an alti-

meter or GPS device [34,35]. The results are presented in

figure 8. It can be seen that predictions of the quadrature

phase model are still accurately upheld in most circumstances

involving realistic rates of ascent or descent.

Although the optimal arrangement is never far from

quadrature phase, the error is sensitive to the rate of ascent,

and is asymmetrical in that it grows faster with descent

than ascent. This is evident from the plot presented in

figure 9. It has been reported that the power requirements

of moderate ascending and descending flight in pigeons

can be accurately estimated by summing the power required

for level flight with the rate of change of gravitational

potential [36]. Interestingly, the same study found that a dis-

crepancy did arise for high descent rates but not for high

climb rates, descent being clearly more expensive than antici-

pated. When flying steeply downwards at a descent angle of

2608, the pigeons flew at a horizontal velocity of 3.6 m s21

and a vertical rate of descent exceeding 3 m s21. Hence, one

possible explanation for this could be that flight costs

during rapid descent are so minor and so rarely encountered
that there is little need for birds to acquire biomechanical

flexibility that would allow significant deviations from quad-

rature phase. However, this descent rate is more rapid than

that which would be expected if the bird were simply gliding

(typically no more than 2 m s21 for a pigeon).

If more accurate estimates of biomechanical power are

required then direct integration is an option, obtaining rela-

tive velocities and displacements for the forward and

vertical axes from which the individual energy terms can

be derived, combining this information with altitude data
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(if available) to obtain body energy, and calculating power

by numerically evaluating the mean rate of energy increase

with time, being careful to ignore periods when the total

energy of the bird is decreasing. This approach may offer

improved precision, particularly when power is not all

concentrated at the fundamental wingstroke frequency or

when large departures from quadrature phase are expected.
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5. Discussion
Despite the considerable complexities involved in flapping

flight, by focusing on the consequences for the mechanical

motions of the body, this oscillatory energy fluctuation

model provides a useful initial step in theoretically underpin-

ning the use of body-mounted accelerometers to estimate the

relative costs of horizontal flapping flight in birds or bats.

Acceleration-based proxies for the power detectable in the

body of an animal during flight have been derived from

first principles ((3.5), (3.7) and (3.9)) and in the appropriate

units of ML2T23. Within these equations, the DBA formalism

is encapsulated very naturally via r.m.s. acceleration ((3.14)

and (3.15)), or aRMS. These expressions represent a substan-

tial improvement over attempting to estimate the

biomechanical energy expenditure or metabolic rate of

flying animals from ODBA or VeDBA alone. The magnitude

of ODBA varies with orientation, and different rescaling fac-

tors must be applied to single axis projections of ODBA and

VeDBA if they are to be used to estimate €yrms or €zrms (appen-

dix B). We point out that aRMS, which is more closely related

to VeDBA than ODBA, is just as straightforward to calculate.

Furthermore, aRMS may be more universally applicable in

future mathematical and empirical studies of animal loco-

motion. DBA measures lack the units of power and so will

always require a direct calibration against the rate of energy

turnover. Their use in estimating the biomechanical costs of

flapping flight has generally lacked a firm theoretical basis,

pays no heed to sensor orientation relative to gravity, ascribes

undue significance to accelerations in the horizontal plane

and overlooks the significance of wingstroke frequency. As

can be seen in (3.22), body power is rather sensitive at

times to wingstroke frequency, so may in itself provide a

valuable means of gauging flight effort independently of

body power estimation.

This analysis furnishes several novel parameters that

may provide insights into the kinematics of flight. In par-

ticular, it predicts that there may be two regimes of flight

with regard to power production and wingstroke frequency

and that there may be a transition from slow to moderate

intensity flight, when equation (3.23) and figures 6 and 7

suggest power savings may sometimes be possible. For

steady horizontal flight involving sinusoidal vibrations on

the forward and vertical axes, it has been shown that a

quadrature phase arrangement is potentially advantageous.

If flight strategies could exploit this, temporarily storing

and retrieving energy during each wingbeat cycle, it might

be possible for some species to avoid or curb what would

otherwise be a third-order sensitivity in mean body power

to wingstroke frequency. Due to the ubiquity of predators,

the need to catch airborne prey and the general requirement

for economy of locomotion, there may have been consider-

able evolutionary pressure for birds to waste very little

energy at wingstroke frequencies exceeding v0.
Nevertheless, body-mounted accelerometry is not privy to

the subtleties of wing flexion, angle of attack and feathering,

so this model leaves open the possibility that birds have

considerable scope to adjust their flight style without

necessarily compromising efficiency.

When birds are flying in the linear regime then equation

(3.14), which reflects the costs of combating gravity, shows

that only the vertical, gravity-aligned component of the accel-

eration should enter into the calculation of body power.

Although forward accelerations become relevant to power esti-

mation for the asymptotically cubic regime, equation (3.15)

shows that their contribution to body power is subtractive.
This somewhat counterintuitive need to subtract €yrms from

€zrms in (3.7) stems from the fact that variations of gravitational

energy do not always mask variations in kinetic energy. How-

ever, quadrature oscillations in Ky tend to erase fluctuations in

Kyz, not reinforce them.

While the model directly considers vibrations only on the

body of the bird, owing to mechanical coupling, the same

kind of oscillations and trade-offs should also apply to the

horizontal and kinetic components of the wings. However,

because the centre of mass of the wings must travel a much

greater distance during each wingstroke than the centre of

mass of the body, for any given wingstroke frequency,

fluctuations in wing kinetic energy grow quadratically with

wingstroke excursion, but variations in wing gravitational

potential grow only linearly. Therefore, the onset of the tran-

sition between the linear and asymptotically cubic flight

power regimes might be generally expected to occur at a

lower frequency for the wings than for the body. The kin-

ematics of the wings, which cannot be directly measured by

the accelerometer, should generally dominate the overall bio-

mechanical costs of flight. Indeed, kinetic energy fluctuations

might easily become a more important consideration than

compensating for the gravitational energy losses of each

wingbeat. If the gravity terms are neglected, then (3.7)

and (3.9) simplify somewhat and predict kPbl � 4p2mbf3
w

jB2 � A2j. This could be especially true of energetic high-

speed flight, even though there may then be significant

wing retraction and supination to avoid undue aerodynamic

drag [37,38]. Because the forces involved in wing retraction

tend to cancel on the body due to bilateral symmetry,

the costs are hidden from body-mounted accelerometers.

Hence, the ratio of perceived body power to true total bio-

mechanical power might be somewhat reduced during

intense flight for some species, which may well require the

tailoring of flight models to each species in the future, follow-

ing empirical observations and extensions of the modelling.

A number of other original summary statistics could

prove useful to the interpretation of body-mounted accelero-

metry data obtained from flying birds. The ratio A/B may

help to characterize the mode of flight performance and per-

haps also evaluate the skill and dexterity of individual birds.

With the possible exception of hovering flight when birds

may be able to recoup some of the kinetic energy stored in

the air during the previous half-stroke, flying animals

generally have no means of recovering energy lost to the

environment. However, vibrations on the forward axis offer

convenient energy storage which may also be exploited to

reduce pitching of the body. Many birds use various reflex

mechanisms during flight to subdue head vibrations and

thereby avoid vision impairment [33]. Body accelerations

have a total amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€y2 þ €z2

q
¼ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2
p

which for
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small A/B can be approximated by v2B(1 þ A2/2B2). Hence,

the additional loss of visual acuity due to a small A/B ratio

would be relatively imperceptible, implying little need for

A/B! 0.

The ratio A/B may also be particularly sensitive to effort in

realistic situations, correlating with wingstroke frequency and

increasing at higher forward velocities. The relative phase lag u

between the vertical and forward axes may act as a marker of

ascending or descending flight, or reflect efforts to synchronize

wingstroke frequency with other birds during V-formation

flight. We also expect the ratios v/vc, v/vopt and v/v0 to

be informative regarding flight intensity and flight efficiency.

Collectively, these measures may also crudely encode hints

as to the altitude at which the bird is flying. Due to the com-

plexities of wing kinematics and anatomical constraints, it is

very likely that no simple unifying pattern will adequately

summarize all species, but departures from normality are

often the most interesting aspects of biological research and

so additional parameters can prove very useful in highlighting

departures from non-conformity. Therefore, these flight vari-

ables may be particularly valuable in helping to unpick the

challenges involved in flying efficiently. The static acceleration

also offers a potentially illuminating variable for flying ani-

mals which has been largely ignored to date. Birds can

sustain prolonged banking when circling or jostling for pos-

ition within a cluster flock [39], and any drift in the mean

direction of the momentum vector induces a non-gravitational

contribution to the static acceleration. Thus, when the static

acceleration deviates appreciably from gravity, it would

suggest that the bird is not undergoing steady horizontal

flight. However, the converse is not true, because one also

expects the static acceleration to tally with gravity during

steady non-banking ascending or descending flight. Therefore,

the distribution and time variability of the static acceleration

can be informative.

Dimensional considerations may allow the results

obtained here to be extrapolated to some degree, parti-

cularly regarding the estimation of biomechanical power

from accelerometry for aquatic animals. Due to the buoy-

ancy afforded by water, the estimation of inertial costs for

aquatic species during swimming is not encumbered by

gravitational considerations [2]. This invulnerability to grav-

ity suggests that the cost of swimming should correlate with

the product of body mass, the period of the swimming

stroke and some function of the square of the decomposed

r.m.s. accelerations, dependent upon the anatomy of the

species under consideration. Locomotion costs in terrestrial

animals are likely to be more complex: weight support

can either be provided continuously or episodically by

the ground.

Naturally, there are limitations to what a body-mounted

accelerometer alone can glean about flight. During free-

ranging flights, there could be circumstances where basic

inferences may be misleading, particularly if the rate of

ascent or descent is unknown. In addition, special care may

be needed when attempting to disentangle the static and

dynamic accelerations for birds using intermittent modes of

flight such as flap-gliding or flap-bounding. Accelerometers

cannot infer absolute velocities in any direction, and many

birds exploit the assistance of thermals, following winds

and airflow over uneven terrain, all of which are capable

of drastically altering the power requirements of flight.

Nevertheless, the present model offers a practical and non-
invasive method of extracting from accelerometry a variety

of parameters that could be informative concerning flight

style and performance, while also providing an explicit

procedure for determining biomechanical body power in

free-flying birds which may be generally proportional to

overall flight power. In the complex processes that transform

the biochemical energy of birds into atmospheric vortices,

turbulence and heat, aerodynamic costs lie downstream of

the biomechanical costs. While it might eventually be poss-

ible to incorporate them within an extended model, the

formidable challenges of contending with complicated

wake patterns, vortex interactions and chaotic flow patterns

continue to plague theoretical models, and quasi-static

approximations to the Navier–Stokes equations commonly

used in aerodynamic analysis inherently limit their accuracy

and usefulness [40]. A more realistic near-term goal would

be to broaden the present modelling to include wing kin-

ematics and morphology. This will inevitably necessitate

the input of anatomical information allowing the body

power relationship to accommodate allometric differences

between species and also address wing-propelled locomotion

in the media of differing densities. Due to the intrinsic com-

plexities, we anticipate that experimental data collected from

a variety of species will be required. Birds are graceful aero-

nauts, skilfully adjusting their posture and technique in

ways we have only started to perceive [41]. However, a

battery of physiological, biomechanical and aerodynamic

techniques can augment and refine one another when quan-

tifying flight costs. These complementary approaches to

studying avian energetics hold much promise in arriving at

a more unified understanding of the compromises involved

when animals fly—whether they are foraging for food,

migrating, chasing airborne quarry or evading predators.
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Appendix A. Reorientation during
post-processing
When flying in a straight line, the static acceleration

as ¼ ð�a1;�a2;�a3Þ, where �ak represents the time-averaged

mean of the kth accelerometer channel, should equal the

gravitational acceleration, g. When this does not hold, it is

possible that the bird is turning, undulating, bounding or

flying through zones containing vertical air currents. Centri-

petal acceleration combines with gravity during turns, the

direction of the resultant vector determining the degree of

banking necessary in order that the bird experiences the

net acceleration dorsally so that the forces on the wings

are symmetrically balanced. At such times, the increase in

the static acceleration relative to gravity is a useful guide-

line as to the departure from linear motion. For uniform

rectilinear motion, the mode of the distribution of the

static acceleration magnitude can be identified with gravity.

To some degree, this allows for the self-calibration of accel-

erometry data.

When jjasjj � jjgjj, a condition that is easily checked, it is

straightforward to calculate the vertically aligned com-

ponent of the acceleration avert using the scalar projection
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of a onto as:

avert ¼
a1�a1 þ a2�a2 þ a3�a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a2
1 þ �a2

2 þ �a2
3

q � a1�a1 þ a2�a2 þ a3�a3

g
: ðA 1Þ

This vertical acceleration is the combination of both static

and dynamic components, so the dynamic vertical accelera-

tion az can be obtained by subtracting the time-averaged

value of avert using

az ¼ avert � �avert: ðA 2Þ

Projections of a orthogonal to the vertical axis will then lie

in the horizontal plane:

ahor1
¼ a1�a2 þ a2�a3 þ a3�a1

g
ðA 3Þ

and

ahor2
¼ a1�a3 þ a2�a1 þ a3�a2

g
: ðA 4Þ

As before, the dynamic acceleration is obtained by

subtracting the static acceleration (ah1 ¼ ahor1
� �ahor1

and

ah2 ¼ ahor2
� �ahor2

). A means of determining ax and ay from

ah1 and ah2 is then required. By symmetry, one expects the

dynamic acceleration of the forward (y) axis to exceed that

on the lateral (x) axis. One way to proceed would be to

first determine the fundamental wingstroke frequency

using az then bandpass filter ah1 and ah2 using fast Fourier

transforms so that only frequencies near the fundamental

wingstroke frequency are retained. Following this, one

could compute the angles f ¼ arctan(ah2/ah1), compile a

circular histogram of the results and use the angle corre-

sponding to the peak in the histogram F, to reorient ah1

and ah2 as follows:

ax ¼ ah1 sinF� ah2 cosF ðA 5Þ

and

ay ¼ ah1 cosFþ ah2 sinF: ðA 6Þ

There is a potential ambiguity in this result concerning

the polarities of ax and ay. It arises due to the fact that

one expects two peaks in the angular histogram separated

by p. Therefore, one should also evaluate ax and ay using

F F þ p. In practice, there may be no need to calculate

ax because it is unlikely to represent interesting information,

but the polarity of ay is potentially important if one is eager

to know, for example, how the phase shift between the for-

ward and vertical axes varies with time. This model expects

that the displacement on the y-axis will always lag behind

that of the z-axis, and hence az should always lead ay, resol-

ving the ambiguity. One can again apply bandpass filtering

to ay and az around the detected wingstroke frequency in

order to test which value of F is appropriate. The phase

shift can be accurately measured in the recovered time

domain after bandpass filtering using linear interpolation

between samples in the vicinity of the positive/negative

going zero crossings. If the orientation of the accelerometer

is fixed with respect to the body of the bird, then this pro-

cess need only be performed once, and the value of F can

then be reused without recalculation.
Appendix B. Relationship between overall
dynamic body acceleration, vectorial dynamic
body acceleration and r.m.s. acceleration
Consider the instantaneous dynamic acceleration ad¼ (ax, ay, az)

derived from a triaxial accelerometer. The generalized mean or

Lp-norm of the components of ad is defined as

jjadjj ¼ ðjaxjp þ jayjp þ jazjpÞ1=p: ðB 1Þ

Therefore, the magnitude of ad according to VeDBA isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y þ a2

z

q
; whereas its magnitude according to ODBA is

jaxj þ jayj þ jazj. Converting to spherical coordinates (r, u, f ),

one has

ax ¼ r sin u cosf; ðB 2Þ
ay ¼ r sin u sinf ðB 3Þ

and az ¼ r cos u: ðB 4Þ

The magnitude of ad using VeDBA is thusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y þ a2

z

q
¼ ðr2 sin2 u cos2 fþ r2 sin2 u sin2 f

þ r2 cos2 uÞ1=2

¼ r: ðB 5Þ

This confirms the standard expectation of Euclidean

trigonometry and the Pythagorean theorem. However, the

magnitude of ad in the case of ODBA generally disagrees

with this because

ODBA

VeDBA

� �2

¼
jaxj þ jayj þ jazjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
x þ a2

y þ a2
z

q
0
B@

1
CA

2

ðB 6Þ

and

ODBA

VeDBA

� �2

¼ 1þ 2
jaxayj þ jayazj þ jaxazj

a2
x þ a2

y þ a2
z

: ðB 7Þ

Due to the second term, ODBA will exceed VeDBA unless

at least two of the three acceleration components are zero.

The two will agree only when there is alignment of the accel-

eration with one of the three measurement axes. Hence, the

response of ODBA varies according to orientation.

To find the maximum error in ODBA, let ay ¼ ax þ a and

az ¼ ax þ b where, without loss of generality, it can be

assumed that neither ax, ay nor az are negative. Now let z ¼

(ODBA2/VeDBA2 2 1)/2 so that the stationary points of z

will be identically located to those of ODBA/VeDBA:

z ¼
axay þ ayaz þ axaz

a2
x þ a2

y þ a2
z
¼

3a2
x þ 2aax þ 2bay þ ab

3a2
x þ 2xðaþ bÞ þ a2 þ b2

: ðB 8Þ

Equating to zero the partial derivatives of z with respect

to a and b gives

ða2
x þ a2

y þ a2
zÞð2ax þ bÞ ¼ 2ðax þ aÞðaxay þ ayaz þ axazÞ ðB 9Þ

and

ða2
x þ a2

y þ a2
zÞð2ax þ aÞ ¼ 2ðax þ bÞðaxay þ ayaz þ axazÞ ðB 10Þ

These expressions reduce to

ðax þ aÞð2ax þ aÞ ¼ ðax þ bÞð2ax þ bÞ ðB 11Þ

and

ðaþ bÞða� bÞ ¼ �3axða� bÞ: ðB 12Þ
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The first condition is satisfied only if a ¼ b, which also

ensures the second is satisfied. When a = b, the second

condition holds if a þ b ¼ 23ax which cannot be true given

that neither ay nor az are negative, which implies that

a þ b � 22ax. This leaves only a ¼ b and hence jayj ¼ jazj
after restoring moduli. For jaxj ! 0, one then finds that

(ODBA/VeDBA)2 can be no less than 2. This can be seen

by letting g ¼ jayj ¼ jazj and jaxj ¼ e with e	g:

ODBA

VeDBA

� �2

¼ 1þ 2
g2 þ 2eg

2g2 þ e2

� �
� 2þ 2e=g � 2: ðB 13Þ

However, as jaxj ! jayj ¼ jazj one finds that (ODBA/

VeDBA)2 can be no greater than 3. This can be seen by

letting jaxj ¼ g+ e where, once again, e	g and g ¼ jayj ¼ jazj:

ODBA

VeDBA

� �2

¼ 1þ 2
3g2 + 2eg

3g2 + 2egþ e2

� �

� 1þ 2

1þ e2=3g2
� 3: ðB 14Þ

Hence, ODBA/VeDBA is maximized when the accelera-

tion components on each axis have an identical magnitude.

Because the minimum is already known to occur when two

of the components are zero, one may conclude that ODBA

is confined to the range

VeDBA � ODBA �
ffiffiffi
3
p

VeDBA. ðB 15Þ

It is interesting to ask whether VeDBA can be recovered

from historical records of ODBA. This is possible only in

an approximate statistical sense, and best results would

be obtained when data have been collected from animals

whose orientation in space varies considerably or in situ-

ations where the orientation of the accelerometer itself is

free to drift. In order to determine the rescaling factor, it is

first necessary to calculate the mean exaggeration of ODBA

relative to the true acceleration magnitude. Due to symmetry,

it is sufficient to consider the solid angle V ¼ p/2 corre-

sponding to the octant 0 � u � p/2, 0 � f � p/2. Although

the mean value of VeDBA is simply the vector length r, the

mean value of ODBA is

kODBAl ¼ 2

p

ð
V

ODBA dV ¼
ð
V

ðjaxj þ jayj þ jazjÞ dV; ðB 16Þ

¼ 2

p

ðp=2

0

ðp=2

0

ðr sin u cosfþ r sin u sinf

þ r cos uÞ sin u df du;

ðB 17Þ

¼ 2r
p

ðp=2

0

½sin2 u sinf� sin2 u cosf

þ f sin u cos u�p=2
0 du;

ðB 18Þ

¼ 2r
p

ðp=2

0

1� cos 2uþ p

4
sin 2u

� �
du; ðB 19Þ

¼ 2r
p

u� sin 2u

2
� p cos 2u

8

	 
p=2

0

¼ 2r
p

p

2
þ p

8
þ p

8

� �
¼ 3r

2
:

ðB 20Þ

Therefore, on average, ODBA exaggerates the true accel-

eration magnitude by 50% and so, in some circumstances,

ODBA data records can be translated into estimates of

VeDBA simply using

VeDBA � 2
3 ODBA. ðB 21Þ
A highly significant linear relationship between these two

measures has already been experimentally observed, with the

best fit corresponding to VeDBA � 0.014 þ 0.6418 ODBA for

units of g [27]. The slope of this empirical relationship agrees

with the theoretical value to within 4%. In the same work, the

envelope of figure 2 exhibits a wedge distribution whose

upper and lower slopes are approximately unity and 1=
ffiffiffi
3
p

,

corresponding to the anticipated range in error of ODBA

due to changes in orientation.

When evaluating r.m.s. accelerations, there is no explicit

requirement to calculate vector lengths, but we stress that

the Euclidean formulation, as adopted by VeDBA, is implicit

in the present modelling. While VeDBA and r.m.s. accelera-

tion are in agreement here, and one would generally expect

to find an excellent correlation between them, their magni-

tudes are anticipated to differ whenever there is any spread

in the distribution of the dynamic acceleration data. For com-

plex or aperiodic acceleration profiles, we recommend the

r.m.s. method over VeDBA in all cases, because the am-

biguity implies that no single rescaling factor will suffice.

However, for sinusoidal motion c ¼ b sin(t) along a straight

line, a simple rescaling is possible. The time-averaging used

by VeDBA follows that of ODBA, namely the L1-norm or

arithmetic mean. However, that of the r.m.s. prescription

follows the L2-norm or quadratic mean which, as found

previously in (3.11), yields kcrmsl ¼ b=
ffiffiffi
2
p

. If follows

from the properties of the generalized means that kcVeDBAl
will never be smaller than kcrmsl and its value is

kcVeDBAl ¼ b

p

ðp
0

sinðtÞdt ¼ b

p
� cosðtÞ½ �p0¼

2b

p
: ðB 22Þ

For this simplified situation, one finds 2
ffiffiffi
2
p

kcrmsl �
pkcVeDBAl and hence

aRMS � pffiffiffi
8
p VeDBA � pffiffiffiffiffi

18
p ODBA. ðB 23Þ

In applications where approximate alignment of the accel-

erometer’s z-axis with gravity is attempted, small changes in

orientation occurring at frequencies that are not rejected by

the sampling window will cause ODBA to increase even in

the absence of vibration. Because the magnitudes of ax and

ay are then much smaller than gravity one finds that

ODBA

VeDBA

� �2

¼ 1þ 2
jaxj þ jayj
jazj

ðB 24Þ

Hence, the lack of rotational invariance in ODBA (as

depicted in figure 10) then causes it to respond linearly to tilt-

ing of the accelerometer, tending to accentuate the sensitivity

of ODBA to activity. Dependent on the moment of inertia

there can be a cost associated with periodic adjustments in

attitude, as might occur in animals exercising on a treadmill,

and ODBA may be sensitive to it. For arbitrary orientations

with respect to gravity, ODBA can both exaggerate and

underestimate changes in the acceleration magnitude

caused by rotation. Almost any acceleration measure is vul-

nerable to errors when the rotation of a transducer is not

limited to low frequencies because it is then impossible to

accurately separate the static and dynamic accelerations with-

out information from a gyroscope.

When significant rotation exists, in the absence of a

gyroscope, some measure of the variability of the instan-

taneous magnitude of the total acceleration vector a could



Figure 10. Variation of the error in ODBA with orientation, rising from a minimum of zero (six centres of the square contours) to a maximum of 73.2% (eight
centres of the circular contours) with a mean error of 50% (contours at 10% intervals). A single contiguous contour is obtained when ODBA/VeDBA ¼

ffiffi
2
p

. (Online
version in colour.)
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offer an alternative proxy for biomechanical effort. For

instance, one might calculate the standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y þ A2

z

q
for all the raw outputs of the accelerometer

falling within some time interval. This could prove

informative whenever a significant component of animal

activity involves body rotation. Because accelerometers

remain sensitive to gravity even within buoyant media,

this may be especially useful in the context of aquatic

animals as they are not constrained by gravity when swim-

ming underwater. In circumstances where the dynamic

acceleration is extremely small, activity can also be

estimated by quantifying the rate of body reorientation

df/dt. This can be approximated as Df/Dt using pairs
of static acceleration vectors As1 ¼ ðAx1;Ay1;Az1Þ and

As2 ¼ ðAx2;Ay2;Az2Þ separated by a fixed time interval Dt
appropriate to the rotation rates of interest:

Df ¼ arcsin
jjAs1 
 As2jj
jjAs1jj � jjAs2jj

ðB 25Þ

and

Df ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAy1Az2 � Ay2Az1Þ2 þ ðAx1Az2 � Ax2Az1Þ2

þðAx1Ay2 � Ax2Ay1Þ2

ðA2
x1 þ A2

y1 þ A2
z1ÞðA2

x2 þ A2
y2 þ A2

z2Þ

vuuuut
:

ðB 26Þ
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