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Abstract: Adipose tissue is the largest energy storage and protection organ. It is distributed 
subcutaneously and around the internal organs. It regulates metabolism by storing and 
releasing fatty acids and secreting adipokines. Excessive nutritional intake results in adipo-
cyte hypertrophy and proliferation, leading to local hypoxia in adipose tissue and changes in 
the release of adipokines. These lead to recruit of more immune cells into adipose tissue and 
release of inflammatory signaling factors. Excess free fatty acids and inflammatory factors 
interfere with intracellular insulin signaling. In this review, we summarize the characteristics 
of obese adipose tissue and analyze how its inflammation causes insulin resistance. We 
further discuss the latest clinical research progress on the control of insulin resistance and 
inflammation resulting from obesity through anti-inflammatory therapy and bariatric surgery. 
Our review shows that targeted anti-inflammatory therapy is of great significance for obese 
patients with insulin resistance. 
Keywords: obesity, adipose tissue, inflammation, insulin resistance, anti-inflammatory 
therapy

Introduction
Over the past 40 years, the incidence of overweight and obesity has risen in both 
developed and developing countries due to unbalanced diets, inadequate physical 
activity, chronic stress, certain drug intake, and environmental pollutants.1–4 There 
are over 1.9 billion overweight adults worldwide, and more than 650 million were 
classified as obese in 2016. The world’s obesity rate has almost tripled since 
1975.5,6 Obesity may cause many chronic diseases, including cardiovascular and 
cerebrovascular diseases, diabetes, and some cancers.7–12 In particular, non-insulin- 
dependent diabetes (type 2 diabetes) is closely related to obesity.13,14 Obesity is 
defined as “abnormal or excessive fat accumulation that may impair health” by the 
World Health Organization.5 Adipose tissue (AT) remodeling occurs during obesity, 
resulting in hypertrophy, hypoxic necrosis, immune cell infiltration, release of 
adipokines, and changes in inflammatory signaling.15 All these factors lead to AT 
dysfunction and chronic sterile inflammation. By discussing the inflammatory 
changes in obese AT, we will further review the effects of anti-inflammatory 
treatments and bariatric surgery on insulin resistance.

Adipose Tissue Classification
In humans, multiple types of AT are distributed throughout the body. White AT 
(WAT) includes subcutaneous AT (SAT) and visceral AT (VAT). Both types have an 
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important role in regulating metabolism.16 During energy 
supplementation, excess non-esterified fatty acids (NEFA) 
become esterified into triacylglycerols (TAGs). White adi-
pocytes store TAGs in cytosolic lipid droplets (LDs). 
During exercise and fasting, TAGs are mobilized by hor-
mones, releasing fatty acids via lipolysis.17 Compared with 
SAT, VAT is less sensitive to fatty acid synthesis by 
insulin, but has a higher sensitivity to catecholamines, 
which promote lipolysis.18 Higher lipolysis in VAT can 
lead to metabolic complications related to visceral obesity. 
Klein et al found that omental AT removal can signifi-
cantly reduce insulin resistance, but subcutaneous liposuc-
tion has no such effect.19 Hocking et al found that SAT 
transplantation can improve insulin sensitivity in mice, 
especially when transplanting them into VAT.20 In obesity, 
these regulatory functions are impaired, mainly due to the 
decrease in esterification and the increase of lipolysis.

Brown AT may be present in the clavicle, perirenal, 
paravertebral, and other parts of the human body.21 It is 
characterized by more lipid droplets and mitochondria, 
giving it a brown appearance.22 Muscle cells and brown 
adipocytes are derived from Myf5+ cells and they 
uniquely express uncoupling protein 1 (UCP-1) which 
can regulate the conversion of energy to heat by uncou-
pling ATP in mitochondrial respiration.23 Brown adipo-
cytes maintain body temperature through non-shivering 
heat production. They are abundant in human neonates, 
gradually decreasing in adults, and decreasing further in 
obese people.21 Specialized white adipocytes called beige 
adipocytes have the shape and high metabolic activity of 
brown fat cells.24 Because of their high metabolic func-
tions, increasing the number of beige or brown adipocytes 
may be an effective strategy to reduce obesity and insulin 
resistance. More characteristics of different adipose tissues 
and adipocytes are summarized in Table 1.

Immune Cells in Obese Adipose 
Tissue Inflammation
Adipocytes account for about 90% of human AT by 
volume. However, in terms of cell diversity, approximately 
4 million other types of cells exist in one gram of AT 
compared to 1–2 million adipocytes per gram.18 Other 
cells include various immune cells, endothelial cells, pre- 
adipocytes, and pericytes. Immune cells are roughly 
divided into lymphocytes and bone marrow cells. 
Lymphocytes include T and B cells, while myeloid cells 
include eosinophils, basophils, dendritic cells (DCs), 

macrophages, neutrophils, mast cells, and so on.25 

During the development of obesity, adipocytes secrete 
adipokines, gradually changing the balance of immune 
cells from anti-inflammatory to pro-inflammatory. This 
process leads to chronic inflammation of AT and insulin 
resistance.

Macrophages have different functions depending on 
environmental stimuli. In acute inflammation and injury, 
macrophages kill infected cells by phagocytosis. In 
chronic inflammation caused by obesity, the production 
of anti-inflammatory macrophages can be insufficient, 
leading to extracellular matrix (ECM) fibrosis.26 In healthy 
AT, M2 macrophages are widely distributed and have anti- 
inflammatory effects. They express IL-4, IL-10, TGF-β, 
and other anti-inflammatory factors.27 IL-10 can antago-
nize the effect of TNF-α and promote insulin sensitivity.28 

Additionally, M2 macrophages and eosinophils can assist 
in the production of beige adipocytes.29 In obesity, more 
adipokines like MCP-1 are secreted from hypertrophic 
adipocytes, inducing monocytes to infiltrate AT and differ-
entiate into macrophages.30,44 Macrophages account for 
only 5% of healthy AT but can account for 50% of obese 
AT.31 In obese AT, type I interferon, LPS, TLR4, saturated 
FFA, and ceramide activation can induce M1 macrophages 
to gather around necrotic adipocytes to form “crown-like 
structures” (CLS)28,32 (Figure 1). Unlike M2 macro-
phages, activated M1 type macrophages express CD11c 
and produce proinflammatory mediators such as resistin, 
IL-6, IL −1β,TNF-α, and NO.33 These mediators further 
induce adipocyte death and downregulate the expression 
of peroxisome proliferator-activated receptor (PPAR-γ), 
which normally promotes adipose synthesis.34 A decrease 
in PPAR-γ activity contributes to insulin resistance.35

In obese AT, the ratio of CD4 + and CD8 + type T cells 
changes.36 Inflammatory factors such as IL-4, and IL-6 
can stimulate CD4 + T cells to differentiate into Th1, 
Th2, Treg, and Th17 cells. These types of cells participate 
in the inflammatory response. In healthy AT, Th2 cells 
secrete anti-inflammatory cytokines such as IL-4 and IL- 
13 that can activate M2 macrophages to secrete IL-10 and 
promote insulin sensitivity.37 As body weight increases, 
Th2 cells and Tregs are gradually polarized into Th1, 
Th17, and CD8 + T cells. These cells produce pro- 
inflammatory cytokines.38–40 In mice with a high-fat diet, 
Treg decreased by 50% and CD8 + T cells doubled. After 
a normal diet, body weight and adipocyte size normalized, 
but the content of CD8 cells and Treg cells in AT did not. 
Insulin resistance did not improve, which indicates that 
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immune cell memory may be the main cause of insulin 
resistance.41 By transferring Th2 cells to diet-induced 
obese mice with immunodeficiency, weight gain and insu-
lin resistance can be reversed. Short-term treatment with 
CD3 specific antibodies or F(ab’)2 fragments can reduce 
Th1 cells, and It can reduce insulin resistance caused by 
high-fat diet.37 In recent years, it has been discovered that 
mucosal-associated invariant T cells (MAIT) induce polar-
ization of M1 macrophages in obese AT, which promotes 
inflammation and intestinal microbiota disorders, leading 
to insulin resistance.42

A relative low number of B cells in healthy visceral fat 
resist bacterial infections from the peritoneal cavity.43 

However, B cells increase in obese AT, promoting the activa-
tion of other immune cells such as T cells and M1 macro-
phages, which affect the metabolic state.40,44 B cells produce 
cytokines and the antibody IgG2c, which may also directly 
interact with adipocytes and affect insulin sensitivity.45 

Treatment with CD20 antibody depletes B cells and can 
reduce insulin resistance and inflammation.38

Eosinophils are related to helminth immunity and 
allergy. They are reduced in obese AT and recover during 
intermittent fasting.46 Eosinophils can express IL-4 and 
IL-5, activate alternatively activated macrophages 
(AAMs) and exert anti-inflammatory effects.47 In worm- 
infected mice, eosinophils increased, while AT and blood 

sugar decreased.47 Additionally, eosinophils can activate 
beige fat cells by secreting certain factors such as KLF3, 
thereby reducing obesity-related disease.48

Neutrophils are often the first immune cells to reach the 
site of inflamed tissue. The production of leukotriene B 4 
(LTB 4) in AT promotes the accumulation of neutrophils 
which express IL-1β through the NF-κB pathway to cause 
chronic inflammation.49 Other studies have also shown that, 
when exposed to saturated fatty acids, macrophages release 
nucleotides through pannexin-1. This may promote the 
recruitment of neutrophils into obese AT.50 These results 
indicate that in diet-induced obesity, neutrophils quickly 
infiltrate the abdominal AT and cause chronic inflammation.

Dendritic cells are the most effective antigen present-
ing cells (APC) in the immune system, they can play an 
important role in the transition from innate immunity to 
adaptive immunity by initiating differentiation of CD4 + 
helper T cells into Th1 and Th17. The increase of DCs in 
the AT of obese patients promotes the differentiation of 
Th17, which in turn leads to insulin resistance.51 In diet- 
induced obesity, DCs increase significantly in both the 
liver and in AT which promotes macrophage infiltration.52

Mast cells (MCs) can secrete many immune factors 
that are closely related to human allergic diseases. These 
cells induce obesity and insulin resistance by producing 
IL-6 and interferon-γ (IFN-γ).54 In diet-induced obese 

Table 1 The Characteristics of Different Adipose Tissues

Adipose Tissue 
Classification

Origin and Characteristics Effect

White 

adipose 

tissue 
(WAT)

Subcutaneous 

adipose tissue 

(SAT)

Myf5-cells, mainly including the abdomen, buttocks, and 

thighs; the subcutaneous of the abdomen can be further 

divided into DSAT and SSAT by Scarpa fascia.10

In healthy people, WAT mainly plays an energy 

regulating role, assists in the absorption of blood 

glucose and fatty acid and other synthetic 
triglycerides stored in lipid droplets, under hunger or 

energy consumption, triglycerides break down and 

supply to the liver and Muscle oxidation; besides, it 
also buffers the stimulation of the external 

environment and protects the internal organs. 

But in obesity, adipocytes are hypertrophic, energy 
storage reaches the limit, necrosis occurs, more 

inflammatory signals are released, immune cells are 

polarized, and insulin resistance is caused.

Visceral 

adipose tissue 
(VAT)

Myf5 -cells, abdominal visceral adipose tissue including 

omentum, mesentery, and retroperitoneal adipose tissue; 
Visceral fat is mainly measured by computed tomography 

(CT), magnetic resonance imaging (MRI), and dual-energy 

X-ray absorptiometry (DXA).109

Ectopic 
adipose tissue

Myf5-cells, mainly including ectopic adipose in liver, muscle, 
heart, and pancreas.110,111

Brown adipose tissue (BAT) Myf5 + cells and mitochondria are abundant and uniquely 

express uncoupling protein 1 (UCP-1)23

In infants, uncoupling ATP synthesis produces heat, 

a non-trembling heat-generating effect; and gradually 
degenerates during growth.

Beige adipose tissue Myf5-cells, under cold induction or other stimuli, exhibit 

brown adipose tissue characteristic mitochondria rich and 

uniquely express uncoupled protein 1 (UCP-1)24

Under certain stimulating conditions, oxidation 

increases thermogenesis, maintains homeostasis, and 

has the potential to increase insulin sensitivity
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humans and mice, the number of mast cells increases and 
knocking out mast cells can reduce body weight and 
inflammation.53

We summarize the above immune cell changes in Figure 1. 
During the development of obesity, the immune cells in AT are 

transformed from anti-inflammatory immune cells (eosino-
phils, Th2 cells, and Tregs) to pro-inflammatory immune 
cells (neutrophils, B cells, CD8 T cells, DC, Th1 cells, and 
mast cells), leading to the occurrence of chronic sterile inflam-
mation of AT, which in turn leads to insulin resistance.

Figure 1 Changes of immune cells in obese adipose tissue. In healthy adipose tissue, Eosinophils and Th2 cells secrete IL-4,13 promote the activation of M2-type 
macrophages to produce anti-inflammatory factors such as IL-10 and IL-4. With continuous dietary intake, adipocytes gradually proliferate and hypertrophy, releasing more 
adipokines to regulate body balance, and local hypoxia due to limited capillaries releases hypoxia inducible factor-1 (HIF-1). All these factors will cause more pro- 
inflammatory immune cells to infiltrate the adipose tissue. Pro-inflammatory immune cells secreted inflammatory signals and free fatty acid (FFA) will further lead to insulin 
resistance.
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Adipokine Dynamics in Obese 
Adipose Tissue
In addition to their role in energy regulation, adipocytes 
and AT immune cells secrete adipokines, biologically 
active peptides and proteins that regulate metabolism. 
Various proteomics methods have been used to study adi-
pokines, and more than 600 potential adipokines have 
been identified.55 Cells secrete different types of adipo-
kines depending on AT type and BMI levels. Adipokines 
can be roughly divided into two types: anti-inflammatory 
and pro-inflammatory. Unregulated expression of adipo-
kines may be related to obesity, which further causes 
adipocyte dysfunction, chronic inflammation, and systemic 
insulin resistance. This review summarizes well-studied 
adipokines and the dysfunctions resulting from obesity.

Leptin is a peptide hormone that is produced by differ-
entiated adipocytes in subcutaneous WAT.56,57 Leptin- 
deficient mice will progress to obesity with an unrestricted 
diet, which shows that leptin may suppress the appetite via 
the central nervous system.58 Related studies have shown 
that leptin binds to the leptin receptor (LepR or LRb) 
(Figure 2), and directly inhibits the feeding center by 
activating signal transducers and transcription activators 
(STAT).59,60 Leptin can also increase fatty acid oxidation 
and insulin sensitivity by activating AMP protein kinase 
(AMPK).61 As body weight increases, the level of leptin in 
the body also increases. In obese patients, increased leptin 
does not suppress appetite, which may be due to leptin 
resistance. This may be due to down-regulation of leptin 
signaling by stimulating tyrosine phosphorylation on leptin 
receptor and suppression of cytokine signaling 
3(SOCS3).62

Adiponectin is an insulin-sensitive adipokine that is 
highly expressed in AT. It exists in the blood in three main 
forms: high molecular weight, hexamer, and trimer.63 

Adiponectin mRNA expression level is inversely propor-
tional to BMI and is lower in VAT than in SAT.64,65 

Adiponectin promotes insulin sensitivity by activating 
AMPK and peroxisome proliferator-activated receptor 
(PPAR)-α pathways (Figure 2). These pathways inhibit hepa-
tic gluconeogenesis and increase the oxidation of FFA.28 

Adiponectin can also inhibit the adhesion of monocytes and 
vascular endothelial cells and alleviate inflammation in AT.29

Resistin is so named because it can induce insulin 
resistance by reducing the expression of insulin receptor 
substrate (IRS) and AMPK (Figure 2).66 Resistin increases 
significantly in obese and diabetic people.67 Resistin can 

also directly damage endothelial cells by inducing the 
expression of MCP-1 and vascular cell adhesion molecules 
(VCAM-1).66 Mouse resistin is mainly expressed in AT, 
but in humans it is mainly secreted by monocytes and 
macrophages.68 Resistin also increases the expression of 
inflammatory factors such as IL-6 and TNF-α in AT.69

Omentin is a novel adipokine synthesized mainly in 
visceral stromal vascular cells. In adipocytes, omentum 
enhances the phosphorylation of Akt in insulin signaling 
and improves insulin sensitivity.70 In obese and diabetic 
patients, omentum decreases.71 Omentin can also inhibit 
the expression of endothelial cell adhesion molecules, and 
thus play a protective role in cardiovascular diseases.72,73

Tumor necrosis factor-α (TNF-α) is an adipokine that 
can be secreted by both adipocytes and immune cells.74 

Adipose tissue TNF-α increases in overweight individuals. 
Compared with lean humans adipose tissue, TNF-α 
expression is 2.5 times higher in obesity. There is 
a strong positive correlation with hyperinsulinemia.75 

TNF-α can increase lipolysis by increasing the level of 
cAMP.76 TNFα can also increase FFA release by directly 
activating hormone-sensitive lipase (HSL), which in turn 
promotes insulin resistance in the liver and skeletal mus-
cle. TNFα inhibits the phosphorylation of insulin receptor 
substrate 1 (IRS-1) by activating c-Jun N-terminal kinase 
(JNK) and IκB kinase (IKK), thereby preventing insulin 
signal transduction (Figure 2).17 In human obesity, TNF-α 
can also accelerate atherosclerosis by inducing vascular 
cell adhesion molecule 1 (VCAM1).77

IL-6 directly stimulates lipolysis.78 IL-6 in AT can 
stimulate the liver to produce C-reactive protein (CRP), 
which is an important cardiovascular risk factor.79 

Omentum AT releases 2–3 times IL-6 than subcutaneous 
AT. IL-6, like leptin, can suppress appetite via STAT3 
signaling in the central nervous system. In addition, IL-6 
can inhibit the phosphorylation of IRS-1 in adipocytes and 
liver cells by increasing the expression of suppressor of 
cytokine signaling 3 (SOCS3) (Figure 2). This inhibits 
insulin conduction and leads to insulin resistance.80,81

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is 
a CC chemokine family member.82 During the develop-
ment of obesity, macrophages and adipocytes secrete 
MCP-1. It binds to monocytes in the blood, causing them 
to accumulate in AT. These monocytes differentiate into 
M1 macrophages that secrete proinflammatory factors, 
accelerating AT inflammation and systemic Insulin 
resistance.83,84 Palmitate (PA) induces MCP-1 secretion 
of macrophages through the MAPK/TLR4 signaling 
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pathway.85 BMI and obesity are positively correlated with 
the expression level of MCP-1. Weight loss causes 
a decrease in MCP-1 expression.86

In recent years, many other adipokines have been found 
which may be related to obesity metabolism. They are sum-
marized in Table 2. In obese patients, the levels of these 
adipokines and inflammatory signals undergo changes. 
These changes are closely related to obesity-related conditions 
such as insulin resistance, cardiovascular disease, and cancer.

Anti-Inflammatory Therapeutic 
Effect of Some Drugs
We already know that chronic sterile inflammation of 
obese AT leads to insulin resistance. Can it be targeted to 

prevent the transmission of inflammation signals and 
improve insulin sensitivity? Many studies have confirmed 
that this is feasible. Anti-inflammatory treatment has visi-
ble potential. Biological inhibitors of classical inflamma-
tory molecules (including TNF-α, IL-6 and IL-1) are being 
used in the clinical treatment of rheumatoid arthritis (RA), 
and there are several prospective clinical trials for RA 
patients with insulin resistance. The results have shown 
that the use of anti-TNF drugs such as infliximab, etaner-
cept, and other treatments can increase AKT phosphoryla-
tion and can significantly improve insulin sensitivity.87 

After 3–6 months of anti-TNF treatment in patients with 
rheumatoid arthritis and insulin resistance, insulin sensi-
tivity and β-cell function were significantly improved.88 

Additionally, the non-steroidal anti-inflammatory drug 

Figure 2 Intracellular signal transduction of adipokines and insulin resistance. In obese adipose tissue, inflammatory factors IL-1 and TNF-α can enter cells through the JNK/ 
AP-1 and IKK/NF-κB signaling pathways, which increases the transcription of adipokines MCP-1, recruits more pro-inflammatory immune cells, and produces more 
inflammatory factors IL-1 and TNF-α; they can also directly inhibit the phosphorylation of IRS-1, leading to insulin resistance. Leptin and IL-6 can increase the expression of 
suppressor of cytokine signaling 3(SOCS3) through the JAK-STAT3 signaling pathway, and also inhibit the phosphorylation of IRS-1. Adiponectin and leptin can directly 
activate glucose transporters through the AMPK pathway and increase insulin sensitivity. Arrows express promotion, T-bar represent inhibition.
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aspirin can also inhibit TNF-α levels and NF-κB activation 
to improve insulin sensitivity, with 8 weeks of aspirin 
treatment in diabetic rats, insulin resistance and inflamma-
tory factors reduced.89 However, some related studies 
indicate of TNF-α inhibitors that have not replicated 
these findings.90 The latest systematic analysis of retro-
spective studies concluded that anti-TNF therapy can 
improve insulin sensitivity.91 Other studies also provided 
promising evidence that anakinra, an IL-1 receptor antago-
nist, can significantly improve insulin resistance and 
related inflammation in RA and T2D participants.92 The 

IL-6 inhibitor, tocilizumab, produces a rapid beneficial 
effect on insulin sensitivity.93 The JAK inhibitor, tofaciti-
nib, can reduce insulin resistance and hyperglycemia in 
T2D patients.94 Erythropoietin (EPO) has been found in 
recent years to not only promote erythropoiesis, but also 
activate phosphatidylinositol 3-kinase (PI3K)/AKT path-
way and promote PPAR-γ transcription. EPO can promote 
fat synthesis and glucose transport, so it is a potential drug 
for the treatment of insulin resistance.95,96 At present, 
these targeted therapies to inhibit inflammatory signaling 
have achieved limited success for insulin-resistant patients 

Table 2 Some Other Adipokines Related to Obesity Metabolism

Adipokine Introduction Function and Expression Reference

Fibroblast 
Growth Factor 

21 (FGF21)

FGF21 can be secreted from the liver and adipose 
tissue, and is mainly involved in the homeostasis of 

lipids, glucose and energy. It is an effective activator of 

glucose uptake. In obese patients, FGF21 may be 
tolerated, and increasing FGF21 sensitization may be 

an effective strategy for the treatment of obesity and 

type 2 diabetes.

Cold exposure will increase, leading to the activation 
and lipolysis of brown adipocytes and browning of 

WAT;

[112,113]

Plasminogen 

activator 
inhibitor (PAI-1)

PAI-1 can be secreted from adipose tissue, endothelial 

cells and liver cells, it leads to the decrease of 
fibrinolytic ability, and it is more likely to form blood 

clots, so it is a risk factor for cardiovascular disease.

PAI-1 induced hypothalamic leptin resistance under 

the condition of HFD feeding.

[114–116]

Zinc- 

α2-glycoprotein 
(ZAG)

ZAG is a soluble fat factor, which mediates lipid 

mobilization through the activation of β 
3-adrenoceptor through cyclic AMP pathway. In 

addition, it can increase thermogenesis by activating 

ucp-1 expression in brown adipose tissue and muscle.

ZAG decreased in obese patients, ZAG mRNA is 

positively correlated with adiponectin mRNA and 
promotes insulin sensitivity.

[117,118]

Retinol binding 

protein 4 (RBP- 
4)

It can be secreted by the liver, adipocytes and 

macrophages, induces hepatic expression of the 
glycogen xenobiotic enzyme phosphoenolpyruvate 

carboxykinase and inhibits insulin signal transduction 

to cause insulin resistance.

Elevated RBP4 levels may cause insulin resistance by 

stimulating basal lipolysis and activating macrophages 
in adipose tissue.

[119–121]

Chemerin Described as an adipokine in 2007, it contributes to 

the differentiation of adipocytes. It can increase the 
sensitivity of adipose tissue by promoting tyrosine 

phosphorylation of IRS-1.

It can increase insulin sensitivity by inhibiting the 

expression of inflammatory factors IL-6 and TNF-α, 
and increasing the expression of adiponectin.

[122,123]

Visfatin (PBEF) Visfatin can promote the maturation of B cell 

progenitor cells, so it is also known as pre-B cell 

colony enhancer factor (PBEF);It has insulin-like 
hypoglycemic effect. Tyrosine phosphorylation of IRS-1 

and IRS-2 was induced to promote glucose uptake by 

muscle cells and adipocytes. In inflammation, PBEF 
plays an anti-apoptotic effect by inhibiting caspase-3 

and-8.

Visceral adipose tissue synthesizes and secretes it with 

insulin-like effect.

[124,125]

Abbreviations: AT, adipose tissue; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; CLS, crown-like structures; FFA, free fatty acids; IRS, insulin receptor 
substrate; TNF-α, tumor necrosis factor-α; MCP-1, monocyte chemoattractant protein-1; TLR4, toll-like receptors-4; RA, rheumatoid arthritis; IR, insulin resistance; SOCS3, 
suppressor of cytokine signaling 3.
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without other complications, and further studies are 
needed. The harmful immunosuppressive effects and pos-
sible harmful side effects of any anti-inflammatory treat-
ment must be carefully examined.

Anti-Inflammatory Therapeutic 
Effect of Bariatric Surgery
In 1991, the National Institutes of Health established the 
initial surgical intervention standard for obesity. Patients 
with a BMI ≥ 35 kg/m2 with comorbidities, such as cardio-
vascular disease, diabetes, arthritis, respiratory barriers, 
reproductive disorders, etc., or those with BMI ≥40 kg/m2 

are suitable candidates for bariatric surgery.97,98 Compared 
with lifestyle changes and medication management, bariatric 
surgery can lead to sustained weight loss (20% to 30%). Type 
2 diabetes remission rates range from 23% to 60%, and the 
risk of surgery is as low as ordinary appendectomy and 
cholecystectomy.99 Bariatric surgery aims to physically 
limit the intake or absorption of food. It can produce lasting 
weight loss and health benefits by changing metabolism and 
reducing appetite.100 In 2018, the number of bariatric sur-
geries in the United States reached 250,000. Sleeve gastrect-
omy (SG) was the most common operation at 61.4%, 
followed by Roux-en-Y gastric bypass (RYGB) at 17.0%, 
laparoscopic adjustable gastric banding (LAGB) at 1.1%; 
biliopancreatic diversion at 0.8%, and a modified surgery, 
bioenterics intragastric balloon and vagal blockade.101 

Sjostrom’s study showed that the adjusted mortality rate of 
bariatric surgery was 30.7% lower than that of non-surgical 
group.102 Jouan et al found that chemerin may play a key role 
in inflammation caused by obesity. In addition, there was 
a significant correlation between weight loss and improve-
ment of inflammatory parameters. After surgery, weight loss 
reached (39.5±13.8 kg), and pro-inflammatory markers (IL- 
6, CRP, leptin, and resistin) were significantly reduced. The 
anti-inflammatory markers (IL-10 and adiponectin) 
increased.103 In another prospective observational study, the 
levels of inflammation markers like high-sensitivity CRP and 
soluble urokinase gradually decreased, and the secretion of 
pro-inflammatory interleukins (1, 6, and 8) decreased within 
one year after RYGB surgery.104 Many clinical studies have 
also shown that inflammatory factors and TLR receptors are 
significantly reduced after surgery, but adipokines like leptin 
and adiponectin have not shown consistent results.105–107 

Some bariatric surgery patients regained weight after weight 
loss, but the inflammatory factors continued to decrease, 

indicating that bariatric surgery may have a long-term effect 
on inflammation control.108

Conclusion
In conclusion, AT is a multifunctional organ with complex 
energy regulation and immune functions throughout the 
body. White AT regulates metabolism through esterifica-
tion and lipolysis, while brown and beige AT utilize fatty 
acids for heat production and energy consumption via 
UCP-1. In healthy individuals, adipocytes can resist the 
lipotoxicity of non-esterified fatty acids through hyperpla-
sia and hypertrophy. They also secrete adipokines such as 
leptin and resistin to regulate appetite and fatty acid oxida-
tion. However, in obese individuals, with excessive energy 
intake, adipocytes proliferate and hypertrophy, blood sup-
ply decreased, AT secretes more hypoxia factors and adi-
pokines such as HIF-1, MCP-1, leptin, resistin, etc. These 
dysregulated adipokines attract more pro-inflammatory 
cells such as M1 macrophages, neutrophils, Th1, and 
Th17 cells, into the AT. These pro-inflammatory cells 
will secrete more inflammatory signals such as TNF-α, 
IL- 6, which will increase lipolysis and decrease synthesis. 
AT releases more FFA and proinflammatory adipokines 
will interfere with the insulin-glucose transport pathway, 
which will lead to the occurrence of insulin resistance. 
Therefore, for obese people with insulin resistance, anti- 
inflammatory therapy has great potential.

Future Perspectives
In recent years, there have been more and more clinical 
studies on drugs and surgery for obese individuals. We also 
summarized the effects of anti-inflammatory and surgical 
treatments on inflammation and insulin resistance. The results 
show that both anti-inflammatory treatments and surgical 
treatments benefit insulin resistance and reduce inflammatory 
factors in circulation. Therefore, controlling AT inflammation 
may be an effective approach to treat obesity and insulin 
resistance. However, these studies are still in the early stages. 
In the future, researchers may focus on finding inhibitors of 
specific inflammatory signals without the immunosuppressive 
side effects of existing anti-inflammatory drugs.
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