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Use of the gamma method for self-contained
gene-set analysis of SNP data

Joanna M Biernacka1,2, Gregory D Jenkins1, Liewei Wang3, Ann M Moyer3 and Brooke L Fridley*,1

Gene-set analysis (GSA) evaluates the overall evidence of association between a phenotype and all genotyped single nucleotide

polymorphisms (SNPs) in a set of genes, as opposed to testing for association between a phenotype and each SNP individually.

We propose using the Gamma Method (GM) to combine gene-level P-values for assessing the significance of GS association.

We performed simulations to compare the GM with several other self-contained GSA strategies, including both one-step and

two-step GSA approaches, in a variety of scenarios. We denote a ‘one-step’ GSA approach to be one in which all SNPs in a GS

are used to derive a test of GS association without consideration of gene-level effects, and a ‘two-step’ approach to be one in

which all genotyped SNPs in a gene are first used to evaluate association of the phenotype with all measured variation in the

gene and then the gene-level tests of association are aggregated to assess the GS association with the phenotype. The

simulations suggest that, overall, two-step methods provide higher power than one-step approaches and that combining

gene-level P-values using the GM with a soft truncation threshold between 0.05 and 0.20 is a powerful approach for conducting

GSA, relative to the competing approaches assessed. We also applied all of the considered GSA methods to data from a

pharmacogenomic study of cisplatin, and obtained evidence suggesting that the glutathione metabolism GS is associated with

cisplatin drug response.
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INTRODUCTION

Genetic association studies, in particular genome-wide association
studies (GWAS) are a powerful approach in the search for common
alleles with moderate effects on phenotypic traits. Over the last few
years, GWAS have identified loci associated with numerous complex
diseases.1 However, the GWAS approach has limitations. Individual
single nucleotide polymorphism (SNP) effects tend to be small and
explain only a small proportion of the heritable variation in a
phenotype,2 making most SNP associations difficult to detect using
the GWAS approach. To overcome these limitations of single SNP
analysis, pathway or gene-set analysis (GSA) methods for SNP data
evaluate the overall evidence of association of a phenotype with SNPs
in all genes in a given molecular pathway or GS.3,4 Such methods may
enable the detection of subtle effects of multiple genes in the same
pathway that may be missed by assessing each gene individually.

GSA methods were first introduced in the context of gene expres-
sion data analysis.5–9 Many of these methods were subsequently
extended for the analysis of SNP data.10–12 Methods for GSA (for
both expression and SNP studies) can be divided into two types:
competitive and self-contained.6 Competitive or ‘enrichment’ meth-
ods compare the results for genes within the GS with results for genes
outside the GS (complement) to test the hypothesis that genes within
the GS are associated with the phenotype more than genes outside the
GS, whereas self-contained methods only consider results within a GS
of interest to test the hypothesis that SNPs/genes in the GS are
associated with the phenotype. For more details on competitive and
self-contained GS methods, the reader is referred to Fridley and

Biernacka3 and Wang et al.4 In this study, we have focused on only
self-contained GSA methods to ensure fair comparison of methods
testing the same null hypothesis.

In this manuscript we propose the use of the Gamma Method13

(GM) for GSA testing as part of either a one-step or two-step analysis
strategy. We denote a ‘one-step’ GSA approach to be one in which all
SNPs in a GS are used to derive a test of GS association without
consideration of gene-level effects; and a ‘two-step’ approach to be one
in which all genotyped SNPs in a gene are first used to evaluate
association of the gene with the phenotype and then the gene-level
associations are aggregated to test for association of the GS with the
phenotype. A simulation study was completed to compare the use of
the GM for GSA to several other self-contained GSA strategies,
including both one-step and two-step GSA approaches, in a variety
of scenarios. All of the methods considered are self-contained methods
that can be utilized for binary, quantitative or time-to-event pheno-
types. In addition to the simulation study, we performed GSA of data
from a pharmacogenomic study of cisplatin drug response.

MATERIALS AND METHODS

The GM GSA approach
Self-contained GSA of SNP data can be performed using a ‘one-step’ or a

‘two-step’ approach. One-step analysis can be based on combining SNP-specific

P-values to formulate a test of association of the GS with the phenotype,

whereas a two-step analysis can be completed by performing gene-level tests of

association and then combining the gene-level P-values to evaluate the

association of the GS with the phenotype.
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One of the most commonly used approaches for combining independent

P-values is Fisher’s method (FM).14,15 Several extensions and modifications to

FM have been proposed for summarizing results from genetic association

studies.13,16–19 The FM can be shown to be a special case of the GM previously

described by Zaykin et al.13 The GM is based on summing P-values trans-

formed using an inverse Gamma(o, 1) transformation. For a particular shape

parameter o, the test statistic is defined as
PN

i¼1

G�1
o;1ð1� piÞ, where G�1 is the

inverse of a Gamma(o, 1) cumulative distribution function.13 Application of

different transformations to P-values before combining them into a test statistic

varies the emphasis given to individual P-values, with more emphasis being

given to P-values below a particular threshold. This threshold level, which has

been referred to as the soft truncation threshold (STT), is controlled by the

shape parameter o.13 When o is 1, the transformed P-values follow a

w2-distribution, and the GM becomes equivalent to FM with a STT value of

1/e. The shape parameter o corresponding to a particular STT value can be

calculated by solving o ¼ G�1
o;1ð1� STTÞ. By varying the shape parameter of

the Gamma distribution, different transformations of P-values can be achieved,

and thus the GM is a family of related methods with FM as a special case. Other

P-value combination methods such as the truncated product method and rank

truncated product method could also be considered for GSA. However, Zaykin

et al13 found that the GM provided overall higher power in a simulation study.

We therefore focus on the GM, including FM as a special case, for GSA as

described below.

For application of the GM method to GSA, we investigated the use of the

GM for combining SNP P-values for a one-step GSA or gene-level P-values for

a two-step GSA. For the GM, we considered values of STT ranging from 0.01 to

1/e (ie, FM). For the two-step GSA, gene-level tests were performed using several

different methods, before combining the gene-level P-values using the GM to

evaluate association of the GS with the phenotype. Specifically, four commonly

used methods for gene-level testing were assessed, including a global model with

fixed effects (GMFEs), global model with random effects (GMRE),20 principal

components (PCs) analysis,21 and the minimum P-value (MinP) approach.

A limitation of the GMFE approach is that the model is only estimable when

the number of predictor variables (eg, SNPs) is smaller than the number of

subjects in the study (sample size). In contrast, the GMRE proposed for gene

expression GSA by Goeman et al20 is based on a random effects model that can

accommodate a large number of SNPs. A continuous phenotype, Y, is modeled

as Y|XBN(a1+Xb,r2l), where X represents a matrix containing the N SNP

genotypes, coded in terms of the number of minor alleles, b represents a vector

containing the effects of the N SNPs with each of the bj’s, j¼1,y, N having a

common distribution with mean 0 and variance t2. Under the null hypothesis

of no association, the variance of the random effects is zero (t2¼0), which can

be tested with a score test.20 GMRE has been extensively utilized and shown to

outperform other methods for GSA of mRNA expression data.22

We also considered PC analysis for gene-level tests based on SNP data.21 In

this approach, PCs are created using a linear combination of centered SNP

genotypes (based on the number of minor alleles), with a subset of the PCs

included as predictors in a regression model (eg, components that explain 80%

of the variation). A gene-level test can then be based on a global test of

association of the PCs with the phenotype.

Finally, the MinP, or maximum test statistic, over all SNPs in a gene is often

used to represent the evidence of association with the gene in GS analyses.10,11

This approach requires correctly accounting for gene size (number of SNPs)

and LD between SNPs, as genes with more SNPs in lower LD are expected to

have smaller MinP by chance, even in the absence of association between the

genotypes and phenotypes.

In the second step of the two-step GSA methods, we combine the gene-level

P-values using the GM with STT ranging from 0.01 to 1/e (ie, FM). All GS

association P-values were determined empirically based on K permutations of

the phenotype. This procedure leads to valid tests in the presence of differences

in gene size and LD between SNPs or genes.

Other self-contained GSA approaches
All of the methods considered within the study are self-contained

GSA approaches that can be applied to any type of phenotype (eg, binary

case–control status, quantitative phenotype, time-to-event phenotype). Many

of these methods were selected based on a prior study of GSA for mRNA

expression data, which demonstrated that a GMRE, FM and PC approaches

generally had the highest power among a number of self-contained GSA

methods.22

In addition to the one-step and two-step GM approaches described above,

we also studied the performance of other one-step GSA methods. In particular,

one-step GSA was also performed using PC analysis with components that

explain 80% of the SNP variation and the GMRE method. For all one-step GSA

methods, permutations were used to determine the empirical P-value for

testing the association of the GS with the phenotype.

Case study: cisplatin pharmacogenomic analysis
The platinum agent cisplatin (CDDP) is a commonly used treatment for

ovarian and lung cancer. To understand the pharmacogenomics of CDDP drug

therapy and the role genetic variation has on the response to CDDP, the Coriell

Human Variation Panel (HVP) lymphoblastoid cell lines (LCLs) from three

racial groups were studied as described previously.23,24 The quantitative drug

response phenotype CDDP IC50 (effective dose that kills 50% of the cells) was

estimated using a four-parameter logistic model per cell line.25

SNP genotyping was completed on the Illumina (San Diego, CA, USA)

HumanHap 550K and HumanHap510S for the LCLs at the Genotyping Shared

Resources at the Mayo Clinic in Rochester, MN, USA. In addition, publically

available SNP data from the Affymetrix (Santa Clara, CA, USA) SNP Array 6.0

Chips were obtained for these cell lines. In total, before completing quality

control, there were 1 698 648 unique SNPs on the three arrays, with 1328 SNPs

mapping within 50 kb of the 27 genes in the glutathione metabolism pathway.

After removing SNPs that failed quality control, 1272 SNPs in 27 genes

remained for GSA of the glutathione metabolism pathway. Table 1 shows the

number of SNPs in each of the 27 genes included in the analysis. Missing

genotypes were imputed before analysis using the program fastPHASE.26 The

association of CDDP IC50 and the glutathione metabolism pathway was

assessed using the one-step or two-step GM approach with various STT values,

along with the other self-contained GSA methods. The quantitative phenotype

IC50 and the genotype–phenotype association models were adjusted for gender,

race, and five PCs within each race group to correct for possible population

stratification effects. Empirical P-values were based on 1000 permutations.

Simulation study for assessing GSA methods
Genotypes were simulated based on the observed SNP data in the glutathione

metabolism pathway for the HVP LCLs from subjects of European descent. The

27 genes within the pathway were mapped to chromosomes, and haplotypes

were phased using the program fastPHASE.26 These haplotype frequencies were

used to represent the underlying population. Three thousand haplotypes were

simulated using the hapsim library in R (http://cran.r-project.org/web/

packages/hapsim/index.html) based on these haplotype frequencies.

Pairs of haplotypes were then assigned in a sequential manner to the 1500

individuals.

Case–control data sets with 500 cases and 500 controls were generated to

evaluate GSA in the commonly used case–control study design. Using the

simulated genotypic data for markers within the glutathione metabolism

pathway, a binary phenotype (Zi) for each subject i was generated conditional

on their genotypic values from a Bernoulli distribution, ZiBBer(pi) with

log(pi/1�pi)¼Xi
Tb. To generate data sets with 500 cases and 500 controls, the

intercept in this model was selected such that the average probability of being

a case was 0.50. From the cohort of 1500 subjects with a simulated binary

phenotype (Zi), 500 cases (Zi¼1) and 500 controls (Zi¼0) were randomly

selected for analysis. The disease/phenotype models varied in the number and

the size of the genetic effects, with odds ratios for individual SNP effects being

1.2 and 1.5 for small and moderate effects, respectively. All causal variants were

observed in the data sets.

To assess the impact of the number of genes within a GS on the power and

type I error rate, we also varied the size of the GS by removing 10 genes from

the pathway for some simulations, so that the GS size was 17 or 27. LD between

SNPs within the genes was also varied by tagging each gene at an r2 of 0.60 or

0.90. The different simulation scenarios are listed in Table 2. Four ‘null’
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scenarios (all bi¼0) with no association of SNPs within the GS or pathway and

20 ‘non-null’ scenarios (some bia 0) were simulated. In total, 1000 data sets

were generated for each scenario, and all simulated data sets were analyzed with

the GM one-step and two-step approaches, along with the other approaches.

Individual SNP association P-values were based on the Armitage trend test. For

GSA using the PC approach, the top k PCs needed to explain 80% of the

variation in the SNP genotypes within each gene (for the two-step GSA), or GS

(for the one-step GSA), were used as predictors of case–control status in the

logistic regression model. The R library ‘globaltest’ with the logistic model

option was used to fit the GMRE (http://bioconductor.org/packages/2.6/bioc/

html/globaltest.html). Empirical gene-set association P-values were based on

1000 permutations of the phenotype. Power and type I error rates were

estimated based on a 0.05 significance level.

RESULTS

Simulation study
All methods had correct type I error rates (Supplementary Table 1).
Summaries of the power for the various methods across different
simulation scenarios are presented in Tables 3 and 4, and Figure 1.
Supplementary Table 2 presents the entire set of results for all
simulation scenarios. The distribution of power for each method
over all investigated scenarios (disease association models 1–5 with
different levels of LD and GS size) is summarized in Table 3, whereas
the mean power of each method by scenario is shown in Table 4. The
results show that, on average across the considered scenarios, the
two-step approaches had higher power than the one-step approaches.
The one-step FM (GM with STT¼1/e), PC, and GMRE approaches

had the lowest average power (mean power¼0.57, 0.58 and 0.60,
respectively). Their power was low compared with the two-step
methods especially under scenarios with a smaller number of genes
in the GS (ie, for the reduced GSs with 17 rather than 27 genes).

A comparison of a range of STT values for the GM for performing
the second step of the two-step GSA (ie, summarization of the gene-
level association P-values to a gene-set P-value) found that power was
improved when a smaller STT was used, with STT between 0.05 and
0.20 providing the highest power for our simulation scenarios
(Figure 2). On average, there was little difference in power between
the four approaches (PC, GMRE, GMFE and MinP) for obtaining a
gene-level P-value in step one of the two-step methods, with slightly
higher mean power across scenarios for the PC approach over the
fixed-effects (GMFE), random effects (GMRE) or MinP approaches.
For the scenarios investigated, the level of LD used for SNP selection
(and thus number of SNPs per gene) had little effect on the power of
the GSA methods. In general, the various GSA methods were more
powerful under scenarios with a smaller number of genes in the GS
(ie, reduced GSs with 17 rather than 27 genes); however, this power
increase was only observed for the two-step methods, and not when
one-step analyses were performed.

Comparing the power across scenarios (Table 4), indicates that
power of the one-step GSA methods and the MinP-GM two-step
method was much more dependent on the true underlying disease
model. In contrast, the other two-step approaches, such as the PC-GM
approach, had consistently good power, relative to other approaches,

Table 1 Single SNP and gene-level results for the CDDP pharmacogenomic study

Min. single SNP P-value Gene-level association results

Chromosome Gene

No. of SNPs

in gene

No. of

PCs Observed

Permutation-corrected

for multiple testing GMRE PCA GMFEa

16 ABCC1 200 14 0.0099 0.543 0.184 0.504 1.000

10 ABCC2 44 4 0.0440 0.468 0.218 0.307 0.495

17 ABCC3 37 10 0.0889 0.904 0.902 0.817 0.371

13 ABCC4 526 34 0.0032 0.552 0.663 0.329 NA

6 GCLC 115 16 0.0228 0.782 0.780 0.513 9.75E-04

1 GCLM 25 3 0.0729 0.533 0.870 0.622 0.219

3 GPX1 2 1 0.9353 0.995 0.995 0.755 0.934

14 GPX2 4 2 0.0965 0.313 0.579 0.355 0.653

5 GPX3 61 7 0.0055 0.153 0.636 0.596 0.256

19 GPX4 7 2 0.3785 0.896 0.908 0.677 0.937

6 GPX5 16 3 0.0794 0.460 0.610 0.586 0.102

1 GPX7 21 4 0.1503 0.853 0.756 0.914 0.047

8 GSR 18 5 0.0147 0.171 0.330 0.173 0.218

20 GSS 13 3 0.0874 0.537 0.485 0.417 0.255

6 GSTA1 14 2 0.3756 0.848 0.757 0.977 0.361

6 GSTA3 40 4 0.0670 0.677 0.778 0.911 0.410

6 GSTA4 64 6 0.0461 0.652 0.312 0.392 0.021

1 GSTM1 5 3 0.0227 0.113 0.055 0.08 0.131

1 GSTM2 4 2 0.1858 0.554 0.411 0.354 0.452

1 GSTM3 11 2 0.0645 0.288 0.430 0.215 0.193

1 GSTM4 7 2 0.0779 0.310 0.161 0.248 0.046

1 GSTM5 7 2 0.0085 0.049 0.094 0.111 0.133

10 GSTO1 28 2 0.0506 0.304 0.134 0.07 0.143

10 GSTO2 27 3 0.0244 0.237 0.315 0.09 0.104

11 GSTP1 15 2 0.0015 0.008 0.008 0.001 0.011

22 GSTT2 2 2 0.5955 0.831 0.835 0.929 0.929

14 GSTZ1 16 3 0.0188 0.170 0.192 0.216 0.670

aOnly computed for genes with PoN.
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for all scenarios assessed. Nevertheless, the one-step approaches
performed very well for scenarios 3 and 5, with average power ranging
from 0.986 to 1.0 and 0.925 to 1.0, respectively. These scenarios
represent the case in which there are three moderate effects in three
genes (one large and two smaller genes) (scenario 3) and the setting in
which there are two small effects in each of three genes (scenario 5).

CDDP pharmacogenomic study
Results from the application of the one-step and two-step GM
approaches as well as the other investigated GSA methods to the
glutathione metabolism GS are presented in Table 4. The only method
that produced a P-value less than 0.05 was the PC-GM approach
with STT of 0.01 or 0.05 (PC.GM_0.01 P-value¼0.023, PC.GM_0.05
P-value¼0.043). This is consistent with the idea that the two-step GM
method with small STT is generally more powerful than the other
methods, as we had found in the simulation study. The one-step
approaches resulted in the largest P-values, ranging from 0.23 to 1.0.

In addition to the one-step approaches producing large GS P-values,
the two-step approaches that used a full model with fixed effects to
determine the gene-level P-values for association with IC50 followed by
the GM also produced large P-values for association of the glutathione
metabolism GS with IC50 (P-values ranging from 0.443 to 0.627).

DISCUSSION AND CONCLUSIONS

In this manuscript we propose a novel GSA approach that uses the
GM to combine gene-level P-values to determine the association of the
GS with a phenotype. In our simulations the two-step GM approach,
with either PC analysis or GMRE for determining gene-level P-values,
followed by GM with a STT value between 0.05 and 0.20 for
combining the gene-level P-values, had the best power across a
range of disease models. The GM was previously proposed by Zaykin
et al13 as a method for combining single SNP P-values in the context

Table 3 Summary of power for PC-GM and other GSA methods

Type of

method Method Min.

First

quartile Median Mean

Third

quartile Max.

Two-step PC-GM

STT¼0.01 0.770 0.838 0.875 0.866 0.893 0.960

STT¼0.05 0.780 0.838 0.890 0.882 0.915 0.980

STT¼0.10 0.770 0.845 0.890 0.888 0.943 0.980

STT¼0.15 0.780 0.830 0.895 0.889 0.950 0.990

STT¼0.20 0.770 0.820 0.895 0.884 0.950 0.990

STT¼1/e 0.610 0.700 0.810 0.800 0.900 0.940

GMRE-GM

STT¼0.01 0.720 0.770 0.880 0.850 0.933 0.960

STT¼0.05 0.730 0.798 0.895 0.873 0.943 0.980

STT¼0.10 0.760 0.800 0.890 0.879 0.953 0.980

STT¼0.15 0.740 0.798 0.880 0.878 0.963 0.980

STT¼0.20 0.690 0.785 0.900 0.863 0.953 0.970

STT¼1/e 0.540 0.630 0.780 0.770 0.910 0.960

GMFE-GM

STT¼0.01 0.710 0.745 0.815 0.810 0.870 0.940

STT¼0.05 0.730 0.785 0.845 0.836 0.893 0.970

STT¼0.10 0.730 0.800 0.860 0.848 0.903 0.970

STT¼0.15 0.720 0.795 0.865 0.855 0.913 0.980

STT¼0.20 0.710 0.770 0.875 0.848 0.905 0.980

STT¼1/e 0.610 0.660 0.800 0.780 0.880 0.960

MinP-GM

STT¼0.01 0.208 0.782 0.901 0.816 1.000 1.000

STT¼0.05 0.239 0.783 0.927 0.832 1.000 1.000

STT¼0.10 0.239 0.757 0.926 0.828 1.000 1.000

STT¼0.15 0.246 0.727 0.916 0.823 1.000 1.000

STT¼0.20 0.249 0.704 0.904 0.816 0.999 1.000

STT¼1/e 0.229 0.621 0.857 0.785 0.997 1.000

One-step PC 0.100 0.290 0.500 0.580 0.970 1.000

GMRE 0.070 0.290 0.620 0.600 0.990 1.000

GM

STT¼0.01 0.187 0.782 0.908 0.810 1.000 1.000

STT¼0.05 0.137 0.712 0.902 0.786 1.000 1.000

STT¼0.10 0.122 0.587 0.862 0.742 1.000 1.000

STT¼0.15 0.107 0.492 0.812 0.706 0.999 1.000

STT¼0.20 0.097 0.419 0.752 0.674 0.998 1.000

STT¼1/e 0.082 0.251 0.529 0.569 0.949 0.987

Abbreviations: GM, Gamma Method; GMFE, global model with fixed effects; GMRE, global
model with random effects; minP, minimum SNP P-value for gene.
For approaches that use the GM, the STT is listed after the name of the method.
For each GSA method, the distribution of power over all investigated scenarios (disease
association models 1–5 with different levels of LD and gene set size) is summarized.

Table 2 Simulation scenarios

Number of SNPsa Scenariob

Chromo-

some Gene r2¼0.6 r2¼0.9

All

SNPs 1 2 3 4 5

In reduced

gene

set

16 ABCC1 43 83 200 Y

10 ABCC2 10 16 44 Y

17 ABCC3 21 28 37 Y

13 ABCC4 139 254 526 Y

6 GCLC 46 76 115 S S M S 2 S Y

1 GCLM 8 11 25 Y

3 GPX1 2 2 2 S Y

14 GPX2 3 4 4 Y

5 GPX3 16 24 61 Y

19 GPX4 4 6 7 S S M 2 S Y

6 GPX5 5 10 16 Y

1 GPX7 10 14 21 Y

8 GSR 7 10 18 Y

20 GSS 7 8 13 Y

6 GSTA1 1 3 14 S Y

6 GSTA3 7 14 40 S Y

6 GSTA4 16 25 64 Y

1 GSTM1 3 3 5 N

1 GSTM2 1 2 4 N

1 GSTM3 3 5 11 N

1 GSTM4 2 3 7 N

1 GSTM5 3 6 7 S N

10 GSTO1 3 4 28 N

10 GSTO2 0 3 27 N

11 GSTP1 2 7 15 N

22 GSTT2 2 2 2 N

14 GSTZ1 5 8 16 S S M 2 S N

aThe number of SNPs per gene shows the total number of SNPs for each gene available in the
original data, as well as the number of SNPs after tag SNP selection with an r2 threshold of 0.6
or 0.9. Data sets analyzed in the simulations were those based on tag SNP selection with these
two thresholds.
bScenarios are described in terms of the number of small (S, odds ratio ¼ 1.2) or medium (M,
odds ratio ¼ 1.5) SNP effects simulated in each gene:
Scenario 1: one small effect in each of five different genes (five causal SNPs).
Scenario 2: one small effect in each of one large gene and two small genes (three causal
SNPs).
Scenario 3: one moderate effect in each of one large gene and two small genes (three causal
SNPs).
Scenario 4: one small effect in each of three genes that are on the same chromosome (three
causal SNPs).
Scenario 5: two small effects in each of three genes (six causal SNPs).
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of genetic association studies. Here we extended this idea by con-
sidering the GM in combination with various gene-level tests of
association, including fixed and random effects models and PC
analysis, for a two-step GSA. We compared this approach with
alternatives, including the GM applied to individual SNP P-values
for a one-step GSA.

The presented simulation results showed that among the two-step
GSA methods, the PC-GM, GMRE-GM and GMFE-GM preformed
similarly, regardless of disease model (scenario); however, the perfor-
mance of the MinP-GM approach depended greatly on the true
underlying disease model (eg, high power when one moderate SNP
effect within a gene and low power when small SNP effect within a
gene). Under the scenarios considered in our simulation study, for the
second step in the two-step GSA, combining gene-level P-values using
the GM with STT values between 0.05 and 0.20 was more powerful

than GM with STT¼1/e (ie, FM). However, depending on the true
underlying disease risk model, other STT values may lead to higher
power. One option, therefore, is to consider a range of shape
parameters for the Gamma transformation when combining P-values
with the GM, selecting the minimum GSA P-value, and correcting for
multiple testing. However, such an approach would introduce new
challenges (eg, deciding on an appropriate correction for multiple
testing) and may actually reduce power as a result of running more
analyses requiring a correction for multiple testing.

The results of our simulation study also indicate that two-step
methods are generally more powerful for detecting GS association as
compared with one-step methods. For two of our simulated scenarios
(scenarios 3 and 5), the one-step PC and one-step GMRE analyses
were more powerful than the two-step analyses. In one of these
scenarios there were three moderate effects in three genes, whereas

Table 4 Power for GSA methods under the five-disease-model scenarios of the simulation study, and P-values from application of the methods

to the CDDP pharmacogenomic study

Power

Type of

method Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

CDDP gene set

P-value

Two-step PC-GM

STT¼0.01 0.883 0.858 0.863 0.858 0.868 0.023

STT¼0.05 0.893 0.868 0.875 0.895 0.878 0.043

STT¼0.10 0.893 0.865 0.888 0.908 0.888 0.080

STT¼0.15 0.888 0.868 0.898 0.903 0.888 0.106

STT¼0.20 0.883 0.855 0.888 0.900 0.893 0.135

STT¼1/e 0.780 0.765 0.810 0.820 0.808 0.210

GMRE-GM

STT¼0.01 0.858 0.855 0.835 0.853 0.848 0.176

STT¼0.05 0.870 0.880 0.858 0.880 0.875 0.223

STT¼0.10 0.883 0.885 0.860 0.878 0.890 0.279

STT¼0.15 0.878 0.880 0.860 0.880 0.890 0.310

STT¼0.20 0.848 0.855 0.848 0.870 0.893 0.322

STT¼1/e 0.755 0.763 0.763 0.765 0.785 0.358

GMFE-GM

STT¼0.01 0.830 0.805 0.820 0.775 0.818 0.596

STT¼0.05 0.845 0.815 0.835 0.828 0.855 0.626

STT¼0.10 0.848 0.830 0.843 0.845 0.875 0.627

STT¼0.15 0.850 0.838 0.848 0.850 0.890 0.608

STT¼0.20 0.835 0.825 0.853 0.850 0.878 0.569

STT¼1/e 0.765 0.773 0.775 0.785 0.808 0.443

MinP-GM

STT¼0.01 0.902 0.789 1.0 0.387 1.00 0.655

STT¼0.05 0.929 0.792 1.0 0.438 1.00 0.600

STT¼0.10 0.928 0.769 1.0 0.445 1.00 0.515

STT¼0.15 0.920 0.748 1.0 0.445 0.999 0.448

STT¼0.20 0.907 0.730 1.0 0.447 0.999 0.413

STT¼1/e 0.862 0.656 1.0 0.413 0.993 0.402

One-step PC 0.497 0.307 0.995 0.141 0.949 0.294

GMRE 0.622 0.300 0.997 0.114 0.980 0.230

GM

STT¼0.01 0.908 0.789 1.000 0.352 1.000 1.000

STT¼0.05 0.901 0.728 1.000 0.299 1.000 1.000

STT¼0.10 0.860 0.606 1.000 0.246 1.000 1.000

STT¼0.15 0.811 0.506 1.000 0.215 0.998 1.000

STT¼0.20 0.756 0.428 1.000 0.192 0.993 0.991

STT¼1/e 0.535 0.254 0.986 0.143 0.925 0.432

For the simulation results, for each disease model (scenarios 1–5) power is averaged over the scenarios with different LD and gene set size.
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in the other scenario, there were two small effects in each of three
genes. For the remaining scenarios, the two-step GSA approaches were
much more powerful than the one-step GSA approaches. Under the
scenarios for which the one-step PC and GMRE methods were more
powerful (scenarios 3 and 5), univariate analysis of individual SNPs
with a Bonferroni correction for the number of SNPs in the GS has
very high power to detect the SNP effects. Thus, the genetic effects in

these two scenarios could have been detected by a typical GWAS single
SNP analysis. In the remaining scenarios, where the two-step GSA
approaches were much more powerful than the one step approaches,
the analysis of individual SNPs had low power. These are scenarios for
which analysis of each SNP individually may not have detected any
significant association, but aggregation of the small effects via GSA
may have identified significant GSs. These represent the situations
that motivate GSA, and in these situations the two-step GSA was
particularly advantageous.

GSA of data from the CDDP pharmacogenomic study using the
two-step GM approach with gene-level P-values determined by PC
analysis (PC-GM) suggested the glutathione metabolism GS is asso-
ciated with the IC50 phenotype (Po0.05). Although analysis of a
single data set cannot be used to compare power of alternative
approaches, the fact that these analyses provided stronger evidence
for the association than did the other methods is consistent with the
idea that the two-step GM approach, in particular the PC-GM
method, is more powerful than other GSA approaches, as suggested
by our simulation study.

In summary, GSA is a compelling approach for analysis of complex
genetic data. On the basis of this study, we found that a two-step GM
approach, with STT between 0.05 and 0.20, is a powerful approach for
GSA, and in particular the PC-GM or GMRE-GM approaches. Once a
GS is shown to be associated with a complex phenotype, further
research is needed to assess the relationships between the SNPs and
genes within the GS and the phenotype, and to reveal the biological
pathways underpinning this relationship. GSA of existing GWAS data
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Figure 1 Comparison of power between the various two-step and one-step methods across all the simulation scenarios. All methods using the GM used the

STT value of 0.15 (oE0.07654).
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Figure 2 Plot of mean power (average across LD and gene-set size) by STT

for the two-step GSA method PC-GM. Note that STTE0.368 or 1/e
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is expected to contribute to insights into the complex relationships
between genomic variation and clinical phenotypes.
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