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Abstract

Motivation: Duplication and recombination of protein fragments have led to the highly diverse protein space that
we observe today. By mimicking this natural process, the design of protein chimeras via fragment recombination
has proven experimentally successful and has opened a new era for the design of customizable proteins. The in sil-
ico building of structural models for these chimeric proteins, however, remains a manual task that requires a consid-
erable degree of expertise and is not amenable for high-throughput studies. Energetic and structural analysis of the
designed proteins often require the use of several tools, each with their unique technical difficulties and available in
different programming languages or web servers.

Results: We implemented a Python package that enables automated, high-throughput design of chimeras and their
structural analysis. First, it fetches evolutionarily conserved fragments from a built-in database (also available at
fuzzle.uni-bayreuth.de). These relationships can then be represented via networks or further selected for chimera
construction via recombination. Designed chimeras or natural proteins are then scored and minimized with the
Charmm and Amber forcefields and their diverse structural features can be analyzed at ease. Here, we showcase
Protlego’s pipeline by exploring the relationships between the P-loop and Rossmann superfolds, building and char-
acterizing their offspring chimeras. We believe that Protlego provides a powerful new tool for the protein design
community.

Availability and implementation: Protlego runs on the Linux platform and is freely available at (https://hoecker-lab.

github.io/protlego/) with tutorials and documentation.
Contact: birte.hoecker@uni-bayreuth.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins evolved to form diverse structures and perform a multitude
of functions. If we could unravel basic rules to design new proteins
and implement tailored functions, this would address many chal-
lenges of today’s society. The design of customized proteins, how-
ever, has not been an easy task. There are by now impressive
examples for de novo designed protein structures (Huang et al.,
2014, 2016; Kuhlman et al., 2003; Thomson et al., 2014). Yet, the
majority of engineered enzymes are still obtained via directed evolu-
tion starting from a natural protein (Lechner et al., 2018). In add-
ition, the recombination or duplication of natural protein segments
has led to new proteins (Hocker, 2014). Nature seems to have cre-
ated the vast protein space by these latter mechanisms, i.e. via the
duplication and recombination of protein parts. Domain recombin-
ation has led to the development of large multidomain proteins,
whose synergic effects enable differentiation and speciation of func-
tionalities (Dohmen ez al., 2020). Domains are allegedly the basic
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evolutionary unit (Apic and Russell, 2010; Ponting and Russell,
2002), and significant efforts have been made to hierarchically clas-
sify them, such as in the SCOP (Fox et al., 2014), CATH (Dawson
et al., 2017) and ECOD (Cheng et al., 2014) databases. Moreover,
the origin of domains themselves is known today to derive from the
duplication, recombination and differentiation of sub-domain sized
fragments (Lupas et al., 2001; S6ding and Lupas, 2003).

For the TIM-barrel and the flavodoxin-like fold, we could show
that these two major protein folds are evolutionarily related and
share a fragment of common origin (Farias-Rico et al., 2014).
Further, Alva et al. identified a set of 40 peptides of up to 38
amino acids in length whose sequence similarity is evidence of com-
mon ancestry despite appearing in different folds (Alva et al.,
2015). Similarly, we performed an all-against-all comparison of
protein domains representing all existing folds and identified more
than 1000 conserved protein fragments of various lengths across
protein space. These fragments represent building blocks that na-
ture has reused throughout evolution and that can now be browsed
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in the Fuzzle database (fuzzle.uni-bayreuth.de) (Ferruz et al.,
2020).

Engineering efforts have been successful in designing new protein
domains by duplicating or recombining protein fragments. The de-
sign of symmetric protein structures through duplication of the same
fragment has been achieved for several folds (Fortenberry et al.,
2011; Hocker et al., 2004; Reichen et al., 2016; Yadid and Tawfik,
2011). The design via recombination of fragments within as well as
across folds has also been effective (Hocker, 2014). The TIM-barrel
protein HisF and the flavodoxin-like domain CheY were combined
and optimized yielding a robust and well-folded chimera (Bharat et
al., 2008; Eisenbeis et al., 2012). In a follow-up study, the combin-
ation of HisF with NarL led to a protein of even higher stability
(Shanmugaratnam ez al., 2012).

While design via recombination is fairly new, its success provides
an alternative to classical approaches. Individual fragments can con-
tribute their unique functional properties to the chimeric protein,
which provides an interesting, and generalizable route for protein
design (Hocker, 2014). However, the in silico automated design of
chimeric proteins as a prior step for experimental studies requires
broad expertise and the use of several tools (Farias-Rico and
Hocker, 2013).

A few algorithms have been made available for the recombin-
ation of sequences. SCHEMA detects segments of homologous pro-
teins that can be recombined without disturbing the integrity of the
structures. The resulting sequences produced folded proteins with a
greater likelihood than by random shuffling (Meyer et al., 2003;
Voigt et al., 2002). Later the RASPP algorithm was described, which
creates chimera libraries enriched in folded proteins without com-
promising the diversity (RASPP) (Endelman et al., 2004). In add-
ition, the software MODELLER is a useful tool for modelling of
protein structures based on a sequence alignment (Sanchez and Sali,
2000), and thus has been used for some chimeras (Farias-Rico and
Hocker, 2013). More recently, machine learning methods have led
to higher-accuracy predictors, such as AlphaFold (Senior ef al.,
2020) or DMPfold (Greener et al., 2019). The Kuhlman lab imple-
mented SEWING, a computational approach which enabled the cre-
ation of chimeric all-alpha structures by joining short ohelical
fragments (Jacobs et al., 2016) and optimizing the chimeras with the
program ROSETTA (Leaver-Fay et al., 2011). To our knowledge,
the method has not been applied to the construction of other than
all-o chimeras.

Here, we present an easy-to-use python package named Protlego
that automates the process of in silico chimera design and structural
analysis. We showcase Protlego’s features by exploring the relation-
ships between two o/fsuperfolds, namely, the P-loop containing nu-
cleoside triphosphate hydrolases (NTPases) and the Rossmann fold.
Tutorials to reproduce these results and guidelines to customize ana-
lysis are available at https://hoecker-lab.github.io/protlego/ and
Supplementary Listing S1. We believe Protlego will be useful for
protein engineers and evolutionary biologists alike.

2 Materials and methods

2.1 Fetching hits from the Fuzzle database

Protlego contains a lightweight Fuzzle database that gets installed
during setup via sqlite3. The database was created by an all-against-
all profile hidden Markov model (HMM) comparison of all domains
in SCOPe 2.07 (Fox et al., 2014) using HHsearch (Soding, 2005).
Fuzzle contains more than 10 million hits among over 28 000
unique domains (Fig. 1). Each hit in Fuzzle contains information
about the two domains that contain a common fragment (denoted
query and subject), start and end of the fragment they share,
HHsearch probability and RMSD, among others (Ferruz et al.,
2020). Protlego enables fetching hits from Fuzzle searching via PDB
identifier (Berman, 2000), domain identifier, or specific SCOPe
group (families, superfamilies and folds). It is also possible to fetch
entire subspaces that fulfil certain criteria (e.g. RMSD below a cer-
tain threshold). An overview of the methods available in this appli-
cation is shown in Supplementary Table S1.
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Fig. 1. Overview of Protlego features. Protlego is mainly divided into five applica-
tions: It is possible to fetch from a built-in Fuzzle database (1) and represent the hits
via similarity networks (2). The hits can also be used to build chimeras (3), which
can later be scored (4) and analyzed (5)

2.2 Network visualization

Protlego facilitates the visualization of evolutionary relationships
via similarity networks (Fig. 1). The Graph class takes a hit or a set
of hits from the built-in database and enables its representation har-
nessing the power of the graph-tool package (https://graph-tool.ske-
wed.de/) . Network nodes represent protein domains and links join
domains that have a fragment in common. It is possible to directly
visualize nodes (the fragment in the context of its domain) and links
(the alignments between two domains) via Protlego’s VMD integra-
tion (Humphrey et al., 1996).

2.3 Chimera modelling

Protlego builds all possible chimeras between two protein parents
(Figs 1 and 2). The chimeras are built by combining N- and C-ter-
minus from query and subject, and thus present a single recombin-
ation point. All possible chimeras from the two combinations are
built, where combinationl refers to those chimeras where the N-ter-
minus comes from the query, and combination2 to those where it
comes from the subject. The Builder class takes a hit as an argument
and uses the HHsearch alignment as a template to create the models.
The amino acids in the local alignment get mapped to their corre-
sponding alpha carbon atoms in the two PDB structures (Fig. 2a).
The alignment of these PDB structures is performed with TMalign
(Zhang and Skolnick, 20035) taking only into account the fragment’s
Co atoms. There are two ways to perform this alignment, either by
minimizing the RMSD taking all the alpha carbons into account in a
global fashion, or by performing stepwise partial alignments. In the
case of a long fragment, the partial mode iteratively finds the best
alignments for shorter regions such as, for example, fo-motifs.
These regions are defined by the sequence alignment: sequence align-
ment gaps constitute the boundaries that define each shorter region.
Once the alignment is performed, Protlego computes the distance of
each pair of aligned alpha carbons (Fig. 2b).

Low distances, sometimes found in secondary structure elements,
confer ideal fusion points for recombination, as the merging of the
two parents ensures that the resulting structure will be minimally
perturbed. We use the default value of 1 A as a maximum distance,
albeit users can define their own thresholds. Once the optimal fusion
points are found, we recombine query and subjects at these positions
(Fig. 2¢). Only chimeras that do not present backbone-backbone
clashes are kept. The handling of PDBs is performed with the mole-
culekit package (Doerr et al., 2016).

2.4 Potential energy evaluation
Protlego allows the estimation of the potential energy of Chimera
objects with the Charmm (Vanommeslaeghe et al., 2009) and
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Fig. 2. Chimera building in Protlego. The amino acids in the HHsearch alignment
are mapped onto the corresponding PDB structures (a). These fragments are then
superimposed by minimizing the RMSD of each pair of alpha carbons with
TMalign (b). Distances for each fusion are computed and each one below a cut-off
is defined as a fusion point. Each fusion point can produce 2 chimeras, one with the
query N-terminus (combination1) and the other with the subject N-terminus (com-
bination2) (c). The process is repeated for each fusion point. Chimeras are accepted
if no backbone-backbone clashes are observed

Amber (Ponder and Case, 2003) forcefields (Fig. 1). The structures
can be scored or minimized accounting the protein backbone when
desired. GPU acceleration is supported. This potential energy esti-
mation uses the functionality of the openMM package (Eastman et
al., 2017).

2.5 Structural analysis

Protlego enables the computation of several properties for the
designed chimeras or natural proteins (Fig. 1). The user can auto-
matically fetch a PDB or SCOPe domain within the Chimera class.
Among others, the computation of solvent accessible surface area
(SASA), distance matrices, contact orders, contact maps and
HHbond plots (Bikadi et al., 2007) is implemented. Protlego’s VMD
integration (Humphrey et al., 1996) enables the automatic visualiza-
tion of structural features in the protein. The computation of hydro-
gen networks utilizes some of the functionality of the MDtraj
package (McGibbon et al., 2015). Protlego also includes a Python
reimplementation of the CSU algorithm (Sobolev et al., 1999) which
enables the computation of hydrophobic clusters in a high-through-
put fashion (Supplementary Text S1).

3 Results

Here, we present Protlego’s main applications by showcasing the ex-
ample of the P-loop and Rossman o/f-superfolds. The P-loop
NTPases are a superfamily of enzymes that catalyze the hydrolysis
of nucleoside triphosphate molecules (NTP). Despite extreme se-
quence and topology divergence, P-loop proteins are characterized
by the presence of the sequence pattern GxxxxGKS/T known as the
Walker A motif (Walker et al., 1982), which binds the terminal
phosphate groups of NTPs, and the flanking f-strand and a-helix
(Romero Romero et al., 2018). Due to their sequence dissimilarity,
several attempts have been made to classify P-loop proteins (Leipe et

Domain: diwa5a_ Family: c.37.1.8 Domain: d1i0za1 Family: c.2.1.5

Fig. 3. Exemplary topologies of the P-loop (a) and Rossman folds (b). Both folds be-
long to the o/f class. Whereas the P-loop containing nucleoside triphosphate hydro-
lases (SCOPe classification: ¢.37) have a 5- or 6-stranded f-sheet in the order
23145(6), the NAD(P)-binding Rossmann fold (c.2) has a 6-stranded f-sheet with
the order 321456

al., 2003; Lupas and Martin, 2002; Pathak ez al., 2014). SCOPe
classifies P-loop NTPases within the ¢.37 fold, all belonging to the
¢.37.1 superfamily (P-loop containing nucleoside triphosphate
hydrolases). The domains are divided into 26 families based on their
B-sheet topologies. While all P-loop NTPases have three layers, with
two and three helices sandwiching a 5- or 6-stranded parallel 8-
sheet, the order of strands varies. The great majority has the order
23145(6) as shown in Figure 3a.

The Rossmann fold is another of the most ancient and function-
ally diverse folds, catalyzing more than 300 enzymatic reactions
(Bukhari and Caetano-Anollés, 2013). Like the P-loop fold, most
Rossmann enzymes use NTPs as cofactors and are formed by an o/-
sandwich, in this case by 6 parallel $-strands with the order 321456
(Fig. 3b). Similar to P-loop NTPases, Nicotinamide adenine di-
nucleotide (NAD) and flavin adenine dinucleotide (FAD)-utilizing
enzymes contain a Gly-rich motif that resides between o1 and f1
and is able to bind the phosphate group of several NTPs. Besides,
Rossman domains usually have an Asp/Glu residue at the top of 52
that provides a conserved and well-studied carboxylate-ribose
bidentate interaction (Laurino et al., 2016).

The two folds comprise highly similar topologies but deviate by
the order of the core -strands (23145 versus 321456) and their dif-
ferent binding motifs at their N-termini. We explored the interaction
between these o/f-superfolds further to (i) determine whether there
are homologous regions in their sequence and (ii) showcase the ap-
plication of the Protlego package on an interesting example. The
code and computational costs to reproduce these examples is pro-
vided in Supplementary Listing S1.

3.1 Fetching related fragments from the P-loop and

Rossmann folds

We first fetched all hits between the P-loop and Rossmann folds in
the built-in Fuzzle database. The corresponding SCOPe identifiers
for these folds are .37 and c.2, respectively. We filtered for hits that
have an HHsearch probability > 70%, an RMSD < 3 A, fragment
length between 10 and 200 amino acids, and TM-score below 0.3 in
line with previous studies (Alva ez al., 2015). The fetch_group func-
tion retrieved 1737 hits, containing 432 different unique domains.
Each hit contains information about query and subject, start and
end of the fragment they share, HHsearch probability, and RMSD,
among others. The hits had an average length of 37.9 = 17.0 amino
acids (median 34.0) with a bimodal distribution with centres at 38
and 105 amino acids (Supplementary Fig. S2), but they markedly
lean towards short length: 93% of the hits are below 45 amino
acids, and only 5% over 100. Regarding other average properties,
the hits have a mean RMSD of 2.3 = 0.3 A, an HHsearch probability
of 77.0 = 5% and a mean TM-score of 0.59 + 0.1, which is indica-
tive of a very good structural alignment (Xu and Zhang, 2010).
Family composition does not cover all possible P-loop and
Rossmann families: 13/26 and 4/13 families in the ¢.37.1 and ¢.2.1
superfamilies, respectively, are not involved in these hits.
Supplementary Figure S3 depicts the number of hits between each
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family pair: leaving apart hits between the automated matched fami-
lies (¢.37.1.0 and ¢.2.1.0), the majority of hits involve the ¢.37.1.10,
¢.37.1.1 or ¢.2.1.2 families.

The hits between P-loop and Rossmann domains reveal that
these two folds have homologous fragments, possibly at different
regions of their sequences. To learn how many different types of
fragments there are, about their lengths, and specific location in the
proteins’ sequences, we used similarity networks.

3.2 View of evolutionary relationships via networks
Similarity networks allow the study and visualization of the protein
universe or subregions of it, where the nodes represent protein
domains and the links connect two domains when they have a frag-
ment in common. In this case, we fetched 1737 hits that overall con-
tain 432 different domains. The similarity network for these hits is
shown in Figure 4. Domains belonging to the P-loop and Rossmann
folds are coloured in green and blue, respectively. The network con-
tains 460 nodes and 1213 links. For further details on the construc-
tion of the network and definitions we refer to our previous
publication on Fuzzle (Ferruz et al., 2020). Each of the ‘island-like’
motifs (called components in network theory) correspond to a set of
domains that contain a common fragment. The network consists of
17 components with very diverse sizes. The largest component is
composed of 361 nodes, whereas 7 components present only 2
nodes. We focus on three of the most populated components
(Table 1).

With 361 nodes component 1 is the major component of the net-
work. The populations somewhat deviate towards Rossmann
domains, with 48 and 313 nodes for the P-loop and Rossmann folds,
respectively. These numbers can be appreciated in the component
topology, with most Rossmann nodes connecting around P-loop
nodes that act as hubs. Not surprisingly, the 16 most connected

Component 1
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- /4

[ /

gl

Domain: d1lvga_ Family: ¢.37.1.1

nodes in the component correspond to P-loop domains.
Interestingly, all these nodes belong to either the ¢.37.1.10 family
(Nitrogenase iron protein-like) or the ¢.37.1.0 family (automated
matches) (Supplementary Fig. S4). On the other hand, most of the
Rossmann domains belong to the ¢.2.1.2 family (tyrosine-dependent
oxidoreductases). The nodes in this component share a fragment
with an average length of 33.7 = 3.5 amino acids which is located at
the N-terminal end in both folds and consists of the f1a182 frag-
ment, which contains both the Walker and Gly-rich motif. Figure 4
shows two representative P-loop and Rossmann domains for this
component: dlg3qa_, the cell division regulator MinD from the
¢.37.1.10 family (Hayashi et al., 2001) and d3lz6a, 11-beta-hydrox-
ysteroid dehydrogenase 1 protein from the ¢.2.1.2 family (Cheng et
al., 2010). Representative domains shown in Figure 4 for each com-
ponent are also depicted in red in the network.

The second largest component contains 35 nodes, with 25 and
10 P-loop and Rossmann domains, respectively. The fragment these
domains have in common has an average length of 102.8 =2.2
amino acids and is defined by the first five strands and four helices
(Fig. 4). The most connected domain is d2dfdal, a malate dehydro-
genase NAD binding Rossmann domain, with 18 connections.
Figure 4 shows two representative domains, dlwaSa_, a G-protein
with an antiparallel 2, and d2dfda itself. The domains in this com-
ponent, besides the families of automated matches, belong to the
families ¢.37.1.8 (G-proteins) and ¢.2.1.5 (LDH N-terminal do-
main-like).

Component 3 contains 15 nodes, with two P-loop domains that
connect to 13 Rossmann nodes, each connecting 7 domains. The
Rossmann domain d2yvlal, a succinyl-CoA binding domain, acts
as a bridge between the two P-loop domains (Fig. 4). They corres-
pond in fact to the same domain d2g0tal, that due to slight differen-
ces in the sequence where the fragments are present was assigned to

Component 2

Domain: d1waba_
Family: c.37.1.8

(o
Jal

Domain: d2dfda1
Family: c.2.1.5

Domain: d1itlra2 Family: c.2.1.3

Fig. 4. Similarity network for hits between the P-loop and Rossmann folds that surpass the thresholds (see main text). Nodes coloured in green and blue represent P-loop and
Rossmann domains, respectively. Representative domains and their common fragments are shown for components 1, 2 and 4
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Table 1. Summary of properties for components 1, 2 and 4 in the similarity network

Component No. nodes Size (aa.) Fragment topology Involved families
(P-loop/Rossmann) (Excluding automated matches and singletons)
1 361 (48, 313) 33.7+3.5 plalp2 c.2.1.2: 78;¢.2.1.5: 205 c.2.1.6: 12; ¢.2.1.3: 4;¢c.2.1.7: 3;
c.2.1.9:2,¢c.2.1.4: 2;¢.37.1.10: 14;¢.37.1.1: 4;¢c.37.1.4: 2
2 35(25,10) 102.8 £2.1 P1BSola 4 c.2.1.5:4;¢.37.1.8: 20
4 13 (10, 3) 29.5+1.6 Blalf2 €21.3:3;¢37.1.1: 7

different clusters (d2g0tal_2 and d2g0ta1_13). This domain belongs
also to the ¢.37.1.10 family, but when looking in detail at its struc-
ture, we observe that it contains an extra N-terminal Rossmann fold
which has not been classified by SCOPe as a different domain. The
hit with the Rossmann domain d2yvlal is thus expected as both
domains have the same fold. Component 3 exemplifies a case of mis-
classification occurring sometimes in hierarchical databases and as
such it is not presented in detail in Table 1 and Figure 4.

Lastly, component 4 contains 13 nodes, with 3 Rossmann
domains connecting to 10 P-loop domains. The most connected do-
main is d1t1ra2, a 1-deoxy-p-xylulose-5-phosphate reductoisomer-
ase belonging to family ¢.2.1.3, with 7 connections (Yajima et al.,
2004). The fragment in this component has an average length of
29.5 *+ 1.6 amino acids. It also corresponds to the N-terminal faf-
fragment containing the conserved motifs. Major differences with
component 1 are the slightly smaller size of this fragment and the
different families which contain it. While component 1 mainly con-
tains ¢.37.1.10 domains, component 4 contains domains of the nu-
cleotide and nucleoside kinase family (c.37.1.1). In this case, the
network has discerned fragments into different components that are
present in different P-loop families. Figure 4 depicts this fragment in
two representative domains, d1lvga_ (Sekulic et al., 2002), a guany-
late kinase from the nucleosides kinase family (c.37.1.1) and
ditlra2 from family ¢.2.1.3.

3.3 Automatic construction of chimeras

Protlego builds all possible chimeras between two domains based on
their sequence alignment (Section 2.3 and Fig. 2). Here we have cre-
ated all possible chimeras between all P-loop/Rossmann pairs of
domains (Supplementary Listing S1). As we previously noticed a
misclassification of domain d2gOtal with an extra N-terminal
Rossmann domain, we removed all its hits, leading to 1693 hits (pre-
viously 1737). We first performed chimeragenesis using a global
alignment (Section 2.3), which led to a total of 1158 chimeras.
Remarkably, only 5% of hits led to chimeras without backbone
clashes, with hits presenting short alignment lengths producing very
few chimeras (Supplementary Fig. S5a). Besides the average short
length of these hits and their subsequent lower number of possible
fusion points, another reason for the low number of chimeras is the
intrinsic topology of the -strands in the parents. The shifting of 52
in the strand order (23145 versus 213456) leads to backbone clashes
once the two termini are combined. We decided to perform partial
alignments instead, to see if stepwise alignments of shorter motifs
improved the statistics. Indeed, the partial alignment provided 2503
chimeras coming from 27% of the hits, with hits of shorter lengths
producing more chimeras (Supplementary Fig. S5b). Constructing
chimeras for the 1693 hits took around 3 h on a desktop worksta-
tion (Supplementary Listing S1).

We had a look at those combinations of families that produced
most chimeras. The combination of ¢.37.1.8 and ¢.2.1.5 led to 709
chimeras, despite only having 34 hits (Supplementary Fig. S6). In se-
cond place, the pair ¢.37.1.1 and ¢.2.1.3, gave 17 hits and produced
a total of 104 chimeras. The third most abundant pair corresponds
to families ¢.37.1.10 and c.2.1.2 that with 202 hits gave rise to 48
chimeras. Remarkably, these three examples exactly correspond to
the predominant families found in component 2, 4 and 1, respective-
ly (Fig. 4).

We focused on the first example. We built all possible chimeras
between domains dlwaSa_ and d2dfdal, already chosen as repre-
sentatives of component 2 in Figure 4. The hit has an HHsearch
probability of 81.7%, a fragment length of 101 amino acids that
superimpose with an RMSD of 2.89 A over 85 Ca atoms and a TM-
score of 0.55. The alignment identity is 14%. The algorithm first
maps all amino acids in the sequence alignment to their correspond-
ing positions in the PDB (Fig. 2).

In this case, the 101 amino acids were successfully mapped to
the structures. Then, the partial alignment divided the (B«)_4f5 frag-
ment into six sections and distances between Cu pairs were com-
puted. From the 101 aligned positions, a maximum of 202 offspring
chimeras could be expected in the ideal scenario when the structures
align perfectly, and the resulting chimeras do not have backbone
clashes. In this case, 32 of those 101 points had a distance between
Co atoms below the default cut-off of 1 A. From the possible 64 chi-
meras altogether in combination1 and 2, 43 of the built chimeras
did not pass the last quality filter due to backbone-backbone clashes.
Overall, 21 chimeras passed all criteria and were successfully built.
Supplementary Figure S7 summarizes the outcome of each fusion
point. This chimera building process took 6s (Supplementary
Listing S1).

Supplementary Figure S8 represents the 21 chimeras coloured
according to the fragments they inherited from their parents
(d1waSa_: P-loop, green, d2dfdal: Rossmann, blue). Chimeras in
combinationl, (with d2dfdal at the N-terminus) have the topology
321456, whereas the topology for chimeras in combination2 is
strand order 23145.

3.4 Energy evaluation

We energetically evaluated the 21 chimeras with the Amber force-
field with backbone flexibility enabled. Results are summarized in
Supplementary Table S2. Chimera scoring could be useful in con-
texts when only a few chimeras can proceed to the experimental as-
sessment and fast means to rank them are necessary. As expected,
the chimeras tend to score better when allowing backbone rear-
rangements during minimization. When ranking the chimeras by
their score per residue, we observe that the first four correspond to
the chimeras in combination2 with the most P-loop content
(comb2_109-118). In the middle part of the table, we find mostly
chimeras from combination1 that contain three -strands from each
parent. The last part of the ranking is mostly populated with com-
bination2 chimeras with less P-loop content (comb2_80-107). One
possibility explaining the striking differences observed between chi-
meras from comb2_80-107 and comb2_109-118 is that the first
group involves a fusion point right in the middle of the helix coming
from p4 while the four chimeras in comb2_109-118 conserve the na-
tive helix from the P-loop domain (Supplementary Fig. S8). We have
also minimized and scored the parent domains to allow direct com-
parison. Interestingly, the parent domains have scores at the two
extremes of the chimera distribution: domain dlwaSa_, confers the
better scoring domain (-22.1kcal/mol) and domain d2dfdal the
worst (-18.1kcal/mol). We questioned whether the order in
Supplementary Table S2 reflects the partial content of the two chi-
meras, with higher-scoring chimeras having more P-loop content.
Although some trend is observed for the first chimeras, with high P-
loop content and very negative scores, an overall trend between the
two variables could not be found (R* = 0.25).
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Fig. 5. Some of the structural analysis included in Protlego. (a) The two largest hydrophobic clusters shown in black and in white computed for chimera comb1_72. (b)
Computed salt bridges. Acidic residues are shown in red and basic in blue. (¢) Computation of contact maps. Distances color-coded and listed in A: Regions in green are close

whereas those in blue are far apart

3.5 Structural analysis

Protlego enables the analysis of several structural features, such as
hydrophobic clusters, hydrogen bond plots (Bikadi et al., 2007),
salt-bridge and hydrogen-bond networks, solvent-accessible surface
area (SASA), contact orders and contact map representations,
among others. Here, we show some of these analyses with chimera
comb1_72, as it provides an interesting structure with three inher-
ited B-strands from each parent and being one of the highest scoring
members in the set.

We started by analyzing hydrophobic clusters (Section 2.5 and
Supplementary Text S1). To allow direct comparison, we performed
the same computation on the parents dlwaSa_ and d2dfdal, in all
cases after minimization. Both parents contain two main hydropho-
bic clusters, flanking both sides of the f-sheet (Supplementary
Fig. S9). While clusters in domain d2dfda consist of 16 (black) and
15 (white) residues, both clusters in domain d1wa5a_ are composed
of 9 residues, despite dlwaSa_ containing more residues overall
(172 versus 147). We have often observed that the chimeras do not
inherit the hydrophobic cluster conformation from their parent pro-
teins, due to non-hydrophobic new residues in places that can break
the cluster continuity. However, comb1_72 contains two major
clusters consisting of 16 and 11 residues (Fig. 5S¢ and Supplementary
Fig. S9¢). Although the largest cluster fails to reproduce the large
area of the Rossmann parent d2dfdal (1996.7 versus 1755.3 Az) it
contains residues from the parent P-loop domain d1wa$a_, forming
a continuous entity. A similar behaviour is observed for the second
cluster which covers an area of 1519.3 A? with 11 residues spanning
the two regions.

We then turned to the computation of salt bridges. The
Rossmann domain contains fewer salt bridges, summing up to only
five (Supplementary Fig. S10a). The P-loop domain, however, has a
total of 14 salt bridges, mostly located in the region defined by the
last three f-strands (Supplementary Fig. S10b). Comb1_72 contains
9 salt bridges, 8 of them inherited from parent dlwaSa_
(Supplementary Fig. S10c). Comb1_72 forms a new interaction be-
tween 83 and «3, perhaps a consequence of repacking between o3
and o4 after minimization. The salt bridge between 1 and 4 on
the other hand was lost after fusion.

On a different note, contact maps reduce the dimensionality of
proteins to a 2D-plot that reveals which positions in the protein are
close in space. An advantage of contact maps is that they are invari-
ant to rotations and translations and often used for protein superim-
position (Holm and Sander, 1996). As expected, the chimera contact
map presents a combination of the maps of their parents, with resi-
dues 1-71 reflecting the Rossman map, and 71-165 resembling the
P-loop map (Fig. 5 and Supplementary Fig. S11).

Another interesting property is the contact order, which
describes the average sequence distance between residues that are in
structural contact. Contact orders have been studied in the context
of protein folding, and it is suggested that higher contact orders

indicate longer folding times (Plaxco et al., 1998). Interestingly,
designed proteins tend to have lower contact orders than distribu-
tions observed in natural proteins (Bonneau et al., 2002). Their typ-
ical value ranges anywhere from 5% to 25%. In line with these,
parent domains and chimera have a contact order of 14.1%
(d2dfdal), 18.3% (d1waSa_), and 15.2% (comb1_72), respectively.

Solvent-accessible surface area is the area of a protein that is ac-
cessible to a solvent molecule. For chimera comb1_72 we calculate a
total area of 8470 A2 the Rossmann domain d2dfdal has a total
area of 7340 A% and the P-loop domain d1waSa_ contains surfaces
of 8870 A2 in total.

4 Conclusion

The design of novel proteins via recombination of sub-domain sized
fragments provides an attractive new route for the design of custom-
izable proteins. The modelling and ranking of several hundreds of
chimeric proteins prior to its testing in the lab requires however the
use of several techniques and a considerable degree of expertise.
Here, we have implemented Protlego, a Python-based open-source
software for the automatic construction of chimeras and their struc-
tural analysis. Protlego contains a lightweight version of the Fuzzle
database which enables fetching hits from specific SCOPe groups or
that fulfil a specific user-defined criterion. The retrieved Fuzzle hits
can then be represented via similarity networks, facilitating the
understanding of convoluted evolutionary relationships. Selected
hits can be used to build chimeras with one recombination point,
whose structural features can be further analyzed in detail, or their
potential energies estimated and ranked.

In this work, we chose to showcase Protlego’s features on a bio-
logically relevant example that has attracted the attention of many
groups in the past: The relationship of the P-loop and Rossmann
folds (Longo et al., 2020) . By fetching hits from Fuzzle, we obtained
a total of 1737 domains of these two folds. We represented these
hits via a network, which nicely separated their different fragments
by length, position and family relationships. In fact, not all P-loop
and Rossmann families are homologous, rather only a subset of
them, with families ¢.37.1.10 and c.2.1.2 being predominantly con-
nected (Fig. 4). We selected the hit between domains d1waSa_ and
d2dfdal to illustrate the process of automatic chimera construction.
In particular, this hit leads to 21 chimeras with different parent con-
tent and estimated potential energies (Supplementary Table S2). We
selected one chimera for further analysis, which indicated that it is
potentially well-folded. Specifically, the hydrophobic clusters com-
ing from the two parents coalesced nicely spanning the two com-
bined regions, and other features showed values similar to those of
natural proteins.

Despite these observations, the correlation between structural
features and experimental success is not yet clear. Protlego provides
a comprehensive set of analysis tools, such as potential energy
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calculations and easy-to-use characterization of the most commonly
studied intramolecular interactions. These can be used to guide the
selection of a few designs for experimental validation. In the long
run, once more chimeras have been tested and biochemical and
structural data of a broader set are available, this will in turn pro-
vide data for future benchmarking and further development of chi-
mera scoring. We made Protlego available on conda and GitHub at
https://github.com/Hoecker-Lab/protlego and welcome participa-
tion from the scientific community. Examples, documentation and
installation guidelines are also available.
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