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The cerebellum plays vital roles in balance control and motor learning, including in saccadic 
adaptation and coordination. It consists of the vermis and two hemispheres and is anatomically 
separated into ten lobules that are designated as I–X. Although neuroimaging and clinical stud-
ies suggest that functions are compartmentalized within the cerebellum, the function of each 
cerebellar lobule is not fully understood. Electrophysiological and lesion studies in animals as 
well as neuroimaging and lesion studies in humans have revealed that vermian lobules VI and 
VII (declive, folium, and tuber) are critical for controlling postural balance, saccadic eye move-
ments, and coordination. In addition, recent structural magnetic resonance imaging studies 
have revealed that these lobules are larger in elite basketball and short-track speed skaters. Fur-
thermore, in female short-track speed skaters, the volume of this region is significantly correlat-
ed with static balance. This article reviews the function of vermian lobules VI and VII, focusing 
on the control of balance, eye movements, and coordination including coordination between 
the eyes and hands and bimanual coordination.
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Roles of the Declive, Folium, and Tuber Cerebellar Vermian 
Lobules in Sportspeople

INTRODUCTION

The cerebellum, located in the posterior cranial fossa, is a major motor structure of the 
brain. It controls motor-related functions, such as maintaining balance and posture, and 
motor learning including coordination of movements through complex regulatory and 
feedback mechanisms. Cerebellar lesions cause dysmetria, ataxia, and intention tremors.1-3 
The cerebellum is also associated with the control of cognition and emotion, and patients 
with cerebellar dysfunction experience cognitive and affective symptoms.4-6

Mediolaterally, the cerebellum consists of the midline vermis and two cerebellar hemi-
spheres.7 In the anterior-posterior division, it can be divided into anterior, posterior, and 
flocculonodular lobes, which are further separated into ten lobules that are designated as 
I–X.8 The anterior lobe (comprising lobules I–V) is divided from the posterior lobe by the 
primary fissure, and the posterior lobe (comprising lobules VI–IX) is divided from the 
flocculonodular lobe (lobule X) by the posterolateral fissure.9

The medial zone consists of the vermis and nuclei fastigii (NF),7 which is primarily as-
sociated with the control of posture and locomotion. Lesions in the vermis in humans and 
inactivation of the NF in monkeys induce deficits in sitting, standing, and walking.10-12 The 
nucleus interpositus (NI) and those portions of the paravermal cortex that project to these 
nuclei form the intermediate zone.7 Transitory inactivation of the NI and the adjacent por-
tion of the dentate nucleus (DN) in monkeys results in tremor11 and deficits in reaching 
and grasping motions.13-15 The lateral cerebellar zone consists of the cerebellar hemispheres 
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and most of the DN.7 Its anterior portion participates in mo-
tor control, while the posterolateral portion is involved in mo-
tor planning, language production, and cognitive processes 
such as memory function.16-18

Different regions of the cerebellar cortex form microcom-
plexes that process information delivered by the inputs of 
each microcomplex’ equally.3,19 This means that different re-
gions of the cerebellum are involved depending on the na-
ture of the task, and they mediate different functions based 
on their inputs and outputs.3,20,21 Although functions are 
compartmentalized within the cerebellum, the function of 
each cerebellar lobule is not well understood.

Structural anomalies and agenesis of the posterior vermis are 
related to cognitive deficiency and emotional symptoms.22,23 
The volume of vermian lobules VI and VII (also called the de-
clive, folium, and tuber) is significantly correlated with the 
performance in cognitive testing.24 Vermian lobule VI is re-
lated to retrieval in the Sternberg working memory task,25 
and vermian lobule VII is involved in the affective features of 
cerebellar cognitive affective syndrome and posterior fossa 
syndrome.26,27 In addition, vermian lobules VI and VII have 
been found to be significantly smaller in patients with autism.28 
These lobules might play roles in the regulation of cognition 
and emotion. There is evidence from recent neuroimaging 
and clinical studies that these cerebellar regions are critical-
ly associated with balance control and saccadic adaptation.

The function of the human cerebellum was traditionally 
elucidated using lesion studies. Cerebellar lesions induce spe-
cific behavioral impairments. Conversely, experience-depen-
dent structural plasticity is helpful for providing insights into 
structure-function relationships in the human brain (Fig. 1). 
Longitudinal studies of juggling training demonstrated that 
motor learning induces structural changes in brain regions de-
manded by the task and suggest a causal relationship between 
motor learning and morphological plasticity.29,30 Imaging stud-
ies have revealed structural alterations in the cerebellum of 

sportspeople after they have undergone intense training of 
complex motor skills (Table 1).31-39 Such sports related struc-
tural changes in the cerebellum of sportspeople provide useful 
information for comprehending the specific function of each 
cerebellar lobule as well as neural mechanisms in motor ex-
perts. This review focuses on the function of vermian lobules 
VI and VII associated with balance control and eye move-
ments, including in sportspeople. 

BALANCE CONTROL

Lesion studies of both animals and humans suggest that the 
cerebellum, especially the medial zone (vermis and NF), plays 
a vital role in balance control.11,12,40-45 The medial zone has in-
puts from the primary vestibular afferents and vestibular nu-
clei, reticular nuclei, pontine nuclei, and the spinal cord.46-49 
The medial zone projects mainly to vestibular and reticular 
nuclei through the NF.49,50 Animal studies have shown that 
the medial zone is essential for maintaining balance and 
postural tone and for walking.11,40,41,45,51 In contrast, lesions 
in the lateral cerebellum (including the DN) cause no balance 
anomalies, very mild gait defects, but severe defects in the con-
trol of voluntary limb movements.11,52 The lateral zone has in-
puts mainly from cerebral cortices with the thickest projections 
from the primary motor, premotor, primary somatosensory, 

Table 1. Characteristics of the cerebellum resulting from structural plasticity in sportspeople

Study (year) Sport Characteristics of the cerebellum
        Park et al. (2009)31 Basketball players ↑ Vermian lobules VI and VII

        Park et al. (2015)32 Basketball players ↑ WM of vermian lobules VI and VII

        Park et al. (2012)33 Short-track speed skaters ↑ Vermian lobules VI and VII and right hemisphere 

        Park et al. (2013)34 Short-track speed skaters ↑ Vermian lobules VI and VII

        Wei et al. (2009)35 Divers ↓ GM of right hemisphere

        Hüfner et al. (2011)36 Dancers and slackliners ↑ GM of right hemisphere

        Di et al. (2012)37 Badminton players ↑ GM of right hemisphere

        Di Paola et al. (2013)38 Rock climbers ↑ Vermian lobules I–V

        Hänggi et al. (2015)39 Handball players ↓ WM of left and right hemisphere

↑: Larger volumes, ↓: Smaller volumes. 
GM: gray matter, WM: white matter.

Novice Motor learning Motor expert

Structural plasticity of specific brain areas 
associated with practice demands

Fig. 1. Changes in brain structure in sportspeople have provided 
new insight into brain function.
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posterior parietal, prefrontal cortices, and temporal lobe re-
gions.49,53 The lateral zone projects to the red nucleus through 
the DN and to cerebral cortices including primary motor, pre-
motor, parietal, and prefrontal cortices through the thala-
mus.49,50,54,55 Recent track tracing investigation in non-human 
primates found that the primary motor cortex and several 
cortical motor areas (the supplementary motor, dorsal cingu-
late motor, and the ventral cingulate motor areas) project to 
lobules V–VIII of the vermis.56 This suggests that these re-
gions of the vermis are where the cortical motor areas affect 
the descending control systems associated with the control 
of whole-body posture.

A human study using magnetic resonance imaging (MRI) 
revealed that lesions containing the NF and neighboring NI 
are involved in balance-control deficits.42,43,57 Lesions in the 
NF that also include the NI are correlated with posture ataxia 
and gait deficits.58 Furthermore, the volume of the medial and 
neighboring intermediate cerebellum is negatively correlated 
with posture and gait deficits.59 Previous animal studies showed 
that the NF is involved in responses to vestibular stimula-
tion60,61 and controls limb extensor muscle tone for maintain-
ing posture.41,62 This suggests that the cerebellar vermis and 
fastigial nuclei play an essential role in balance control.

MRI-based lesion symptom mapping has also revealed 
that lesions involving the NF, anterior vermal lobules I–III, 
and posterior vermal lobules VIII and IX are associated with 
disorders of balance control.42,43,57 Lesions of the vermal and 
paravermal lobules II, III, and IV are correlated with posture 
and gait ataxia.58 Pathology of the anterior superior cerebellar 
vermis induces balance and gait deficits in detoxified alco-
holics.63-65 In addition, the sway path length and sway promi-
nence in the 2–5 Hz band are associated with the volume of 
the anterior-superior vermis in alcoholics.66

It is thought that tasks requiring sophisticated control of 
balance, such as tandem stance and standing on a cushion, are 
associated with the posterior lobe of the cerebellar vermis, 
whereas pathology in the anterior lobe of the cerebellar vermis 
is involved in balance deficits. Parallel fibers cross the midline 
cerebellar cortex and attach to Purkinje cells on either side of 
the posterior vermis. Purkinje cells might be critical for bi-
lateral coordination of the legs and trunk, which is an essen-
tial function in balance control.45 In addition, the posterior 
vermis gets sparse peripheral somatosensory inputs, vestib-
ular inputs, and some corticopontine inputs from the visual 
areas, whereas the anterior vermis takes more somatosenso-
ry input and little vestibular input.67,68 Because the posterior 
vermis takes principally vestibular information, it has been 
thought to control balance and gait.

Deficits in tandem stance with the eyes open and standing 
on a cushion with the eyes closed are associated with lesions 

in vermal lobules VII and VIII, including the NF and NI.44 
Five children with posterior inferior vermal splits ranging 
from lobules VI to X showed deficits in tandem gait and only 
slight anomalies in self-paced gait and hopping on one leg.12 
Meanwhile, lesions involving vermian lobules VII, IX, and X 
cause lateropulsion.69

It is plausible that maintaining postural balance during 
unipedal gliding on smooth ice involves a more precise co-
ordinating response to postural modification for shifting the 
center of gravity as in tandem stance than normal bipedal 
standing.70,71 Recent structural MRI studies involving elite 
short-track speed skaters, who need exceptional balance con-
trol, indicated that their vermian lobules VI and VII are larg-
er than in control subjects,33,34 and that the volume of this re-
gion is correlated with the static balancing ability of the left 
leg in female skaters.34 This suggests that vermian lobules VI 
and VII play an essential role in controlling postural balance and 
reflect that this brain region is essential to balance function. 

 
MOTOR LEARNING

Saccadic eye movements form an excellent motor learning 
model of the cerebellum because it is possible to slowly alter 
the amplitude of a saccade if the target moves constantly 
while the saccade is being performed.72-74 Physiological and 
lesion researches involving non-human primates as well as im-
aging and lesion researches involving humans have revealed 
that the vermis especially vermian lobules VI and VII (de-
clive, folium, and tuber) is a central area controlling saccadic 
adaptation. Alterations in the spike activities of Purkinje 
cells in vermian lobules VI and VII are correlated with the 
level of saccadic adaptation in primates.74 The saccadic area 
within vermian lobules VI and VII has been defined as the 
oculomotor vermis.75,76

There is very strong evidence that vermian lobules VI and 
VII participate in the control of eye movements. The Pur-
kinje cells of these lobules project to the caudal part of the 
NF, which in turn projects to the vestibular nuclei and sac-
cade-related brainstem nuclei;77 indeed, this cerebellar re-
gion contains saccade-related neurons.78 Stimulation of this 
region of the vermis can evoke saccadic eye movements in 
both monkeys76,79,80 and humans,81 whereas lesions in this re-
gion result in a permanent inability to adjust the amplitude of 
saccades.82,83 Numerous studies performed over the past decade 
that have employed functional MRI (fMRI) and positron 
emission tomography have revealed the cerebellum to be as-
sociated with the control of eye movements. In humans, visu-
ally guided saccades activate vermian lobules VI and VII,84-86 
and saccadic adaptation is correlated with increased blood 
flow in these lobules.87,88
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Transiently impairment of the function of the posterior 
cerebellum (including vermian lobules VI and VII) using re-
petitive transcranial magnetic stimulation in healthy human 
subjects significantly weakened the ability to adjust the am-
plitude of saccades.89 Clinical studies have revealed that pa-
tients with focal cerebellar lesions or cerebellar degeneration 
are less able to adjust saccades.90-92 In addition, lesions in-
volving vermian lobules VII, IX, and X cause nystagmus.69

Motor learning probably underlies coordination between 
the eyes and hands and bimanual coordination.93,94 There-
fore, interactions between these two systems can be con-
trolled exactly. An fMRI study demonstrated bimanual coor-
dination-related activity within vermian lobule VI, suggesting 
its involvement in the executive function of bimanual coordi-
nation and the control of spatiotemporal complexity of co-
ordination patterns.95 Coordination between eye and hand 
movements involves activation of vermian lobule VII.93 In 
addition, a three-dimensional MRI volumetric study pro-
posed that greater volume of vermian lobules VI and VII in 
basketball players than in control subjects might be involved 
in the coordination between the eyes and hands and biman-

ual coordination, which are required for shooting and drib-
bling the ball.31

Several studies have revealed that learning acrobatic tasks 
that require substantial coordination of gross and fine motor 
skills not merely simple motor activity such as in locomotion 
or running drives synaptogenesis in the cerebellar cortex be-
tween the parallel fibers and dendritic spines of Purkinje 
cells.96-100 In addition, increases in the astrocytic glial volume 
per Purkinje cell,101,102 the volume of the molecular layer per 
Purkinje cell,96 and the dendritic spine density and length 
of Purkinje cells,103 as well as dendritic hypertrophy of stel-
late cells104 in the cerebellum have been observed after com-
plex motor skill learning. Alterations in white matter involve 
the number and diameter of axons, myelin thickness, axon 
branching, axon trajectories, and myelination, and they ef-
fect the speed of impulse transmission.105 These might un-
derlie the increased volume of vermian lobules VI and VII 
in sportspeople at the structural level (Fig. 2). Furthermore, 
this lobule might be closely associated with the acquisition 
of exceptional, specialized skills under broad activation of 
other motor movements. 

Gray matter changes
- Synaptogenesis
- Increased astrocytic glial volume
- Larger volume of the molecular layer
- Increased dendritic spine density and length
- Dendritic hypertrophy of stellate cells

White matter changes
- Axonal remodeling

Fig. 2. Demonstrative image of a three-dimensional model of the cerebellum. The structural plasticity of vermian lobules VI and VII in sportspeo-
ple might be reflected by morphological changes detectable at microscopic level. Yellow: cerebellar hemisphere, orange: vermian lobules I-V (lin-
gual, centralis, and culmen), red: vermian lobules VI and VII (declive, folium, and tuber), violet: vermian lobules VIII-X (pyramis, uvula, and nodulus). 
Park et al. Cerebellum 2009;8:334-339, with permission of Springer.31
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CONCLUSIONS

Both human and animal studies indicate that vermian lob-
ules VI and VII (declive, folium, and tuber) of the cerebel-
lum might be associated with various features of balance 
control and motor learning, such as visually guided saccades 
and motor coordination, including coordination between 
the eyes and hands and bimanual coordination. Understand-
ing the functional roles of vermian lobules VI and VII may 
lead to insights into the anatomical foundations and clinical 
signs. The findings of the present review may help understand 
neuroimaging findings in the context of cerebellar contribu-
tion in a wide range of motor functions.
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