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Simple Summary: In the conventional treatment of gynecologic malignancies, most patients receive
similar ‘one-size-fits-all’ treatment. However, it is increasingly clear that standard therapies do not
work in every patient, and it would be very helpful to have pretreatment predictive assays to provide
more personalized regimens. In this study, we describe the routine, successful establishment of
patient-derived organoid models (PDOs) of endometrial and ovarian cancer tissues from consenting
patients and provide an example of how information from drug screening in PDOs may be a useful
predictor of patient response to therapy.

Abstract: Developing reliable experimental models that can predict clinical response before treating
the patient is a high priority in gynecologic cancer research, especially in advanced or recurrent
endometrial and ovarian cancers. Patient-derived organoids (PDOs) represent such an opportunity.
Herein, we describe our successful creation of 43 tumor organoid cultures and nine adjacent normal
tissue organoid cultures derived from patients with endometrial or ovarian cancer. From an initial
set of 45 tumor tissues and seven ascites fluid samples harvested at surgery, 83% grew as organoids.
Drug sensitivity testing and organoid cell viability assays were performed in 19 PDOs, a process
that was accomplished within seven days of obtaining the initial surgical tumor sample. Sufficient
numbers of cells were obtained to facilitate testing of the most commonly used agents for ovarian and
endometrial cancer. The models reflected a range of sensitivity to platinum-containing chemotherapy
as well as other relevant agents. One PDO from a patient treated prior to surgery with neoadjuvant
trastuzumab successfully predicted the patient’s postoperative chemotherapy and trastuzumab
resistance. In addition, the PDO drug sensitivity assay identified alternative treatment options that
are currently used in the second-line setting. Our findings suggest that PDOs could be used as
a preclinical platform for personalized cancer therapy for gynecologic cancer patients.

Keywords: patient-derived organoids (PDOs); endometrial cancer; ovarian cancer; drug sensitivity
testing; personalized medicine

1. Introduction

Ovarian cancer is the fifth leading cause of death of women from cancer worldwide [1].
Due to the lack of symptoms during the early development of ovarian cancer, patients are
usually diagnosed at an advanced stage and have the lowest average five-year survival rate
(46%) among all patients with gynecologic malignancies [2]. In 2020, over 21,000 women
were diagnosed with ovarian cancer and approximately 14,000 deaths occurred from this
disease in the United States [3]. Endometrial cancer is the most common gynecologic
malignancy. Although many patients present at an early stage and enjoy a good prognosis,
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patients with advanced or recurrent endometrial cancer have a very low five-year survival
rate (<20%). In 2020, over 65,000 women were diagnosed with endometrial cancer in
the United States, and nearly 13,000 women died from this disease [3]. Additionally,
endometrial cancer is one of only a few cancers for which the incidence and mortality have
been increasing year after year since the 1970s [4].

Current standard treatments for ovarian and endometrial cancer are very similar and
use a combination of surgery and chemotherapy [5,6]. Radiation and hormone therapies are
two additional methods used to treat endometrial cancer, but for high-grade serous ovarian
cancers and high-risk endometrial cancers, chemotherapy with the doublet of a platinum
compound and a taxane is typically recommended [7,8]. Although most patients with
advanced disease respond well to initial treatment, the majority develop recurrent disease
and become resistant to chemotherapy. For recurrent and platinum-resistant disease,
additional cytotoxic agents such as gemcitabine, topotecan, doxorubicin and liposomal
doxorubicin have been employed as the second-line chemotherapy [9].

Molecular agents which target specific molecules or pathways are also available and
used in the adjuvant setting [10]. A class of targeted agents used in ovarian cancer is PARP
inhibitors, which are most effective for patients with germline or somatic mutations in
BRCA1/2 [11]. In both preclinical studies and translational studies of completed clinical
trials, our group has recently reported that mutations in the tumor suppressor TP53 predict
the benefit of adding the antiangiogenic compound bevacizumab to chemotherapy upfront
in advanced endometrial cancer [4,12]. However, for most patients, there are no genetic
markers available to predict their response to commonly used agents [13]. Today, even as
our knowledge of cancer genetics has increased dramatically, our ability to treat cancers
based on the presence of genetic alterations is very limited. Particularly in gynecologic
oncology, personalization of medical therapy is an unrealized goal [14].

Understanding patient and tumor genetic diversity and their influence on drug re-
sponses is an important step towards personalized medicine. In addition to research
models to identify biomarkers of response to novel therapeutics or combinatorial regi-
mens, we propose that patient-derived organoids (PDOs) hold great promise as valuable
preclinical models which can provide insights into drug responses that are case-specific.
Accumulating evidence indicates that PDOs can predict clinical outcomes in cancer pa-
tients [15–17]. Studies in several cancer types have established that PDOs recapitulate both
the histologic and genomic features of the lesion from which they were derived [18–20].
Additionally, PDOs can grow with high efficiency in a short period of time which is much
faster than generating a patient-derived xenograft (PDX model), enabling a priori predic-
tion of responsiveness to chemotherapy, with the potential to substitute other regimens if
primary resistance is demonstrated [21]. PDOs can also be tested for response to novel reg-
imens including combinations of chemotherapy with targeted agents or multiple targeted
agents which can be added to the patient’s initial round of therapy [22,23].

In this study, we describe progress on the generation of novel endometrial and ovarian
cancer PDOs and drug testing. As an example of the power of PDOs to predict clinical
outcomes, we present a case in which the PDO results reflected patient resistance to
standard therapy, something we argue could be predicted upfront in the future using the
PDO method for screening.

2. Materials and Methods
2.1. Clinical Features

All the studies were reviewed and approved by the University of Iowa’s IRB, protocol
#201809807. The electronic medical record was reviewed to determine oncologic history,
diagnosis, neoadjuvant and adjuvant treatment(s) and clinical responses. For patients
who received platinum-based chemotherapy, platinum sensitivity was defined as progress-
free survival of at least six months after the last platinum-containing therapy. Platinum
resistance was defined as recurrence or persistence of disease within six months after the
last platinum-containing treatment. Outcome data had not yet matured for some cases
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at the time of manuscript preparation; these cases are denoted “TBD” (to be determined).
HER immunochemistry (IHC) was performed using clinical standards by the Central
Pathology Laboratory at the University of Iowa, a CLIA-certified laboratory.

2.2. Generation of Patient-Derived Organoid Models Using Tumor and Normal Cells

Informed consent was obtained under the University of Iowa’s IRB protocol #201809807.
Fresh tumor tissue was collected from each patient’s interval debulking surgery. Each pa-
tient’s ascites fluid, tumor and normal tissues were obtained, processed and cultured to
create PDO cultures as previously described [20,23]; see additional details in the Supple-
mentary Methods and Supplementary Figure S1. For H&E staining and IHC for HER2,
organoids were exposed to 4% paraformaldehyde (PFA) for fixing cells and dissolving
Matrigel. After pelleting by centrifugation, histologic gel was added to each sample.
The samples were then transferred to a cassette, fixed in 70% ethanol overnight, sectioned
and stained with either H&E or the HER2/neu antibody as for the biopsy and primary
patient tumor specimens by the Central Pathology Laboratory at the University of Iowa.

2.3. Organoid Viability Assay

Viability of the tumor and normal organoids following drug treatment was performed
as previously described [23]; see additional details in the Supplementary Methods. Briefly,
organoids were collected with an organoid harvesting solution (Cultrex, R&D Systems,
Minneapolis, MN, USA) and digested to single cells with TrypLE Express (Gibco, Waltham,
MA, USA). Single cells were suspended in AdDE+++ medium with 10% Matrigel and
seeded at a density of 10,000 cells/well in an ultra-low attachment 96-well U-bottom white
plate. After 1–4 days, the organoids were exposed to carboplatin (1 µM), cisplatin (1 µM),
paclitaxel (10 nM), bevacizumab (1 µM), gemcitabine (100 nM), topotecan (100 nM) or
different combinations for 72 h at 37 ◦C. At the end of the incubation, an equal volume
of the CellTiter-Glo 3D reagent (Promega, Madison, WI, USA) was added to each well
and incubated for 25 min at room temperature. Luminescence, reflective of cell viability,
was measured using a Gen5 Microplate Reader (BioTek, Winooski, VT, USA). All the tests
were conducted in triplicate and the data were normalized to untreated controls (set at
100% viability).

2.4. Statistical Analysis

The data were analyzed using the GraphPad Prism software. Statistical significance of
differences was determined using two-way ANOVA with the Greenhouse–Geisser correc-
tion and Tukey’s multiple comparison test, with individual variances computed for each
comparison, or one-way ANOVA with Tukey’s multiple comparison test. All values are ex-
pressed as the mean ± standard deviation (SD) of at least three independent experiments
unless otherwise indicated; * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. Feasibility of Organoid Culture Creation from Freshly Resected Endometrial and
Ovarian Cancer

At the time of each patient’s surgical debulking, ascites fluid, tumor and normal tissues
were obtained, processed and cultured to create PDO cultures (see the Supplementary
Methods and Supplementary Figure S1).

We successfully generated tumor organoid cultures from 43 of 52 tumor samples, an es-
tablishment success rate of 83% (Table S1). Successful cultures included 21 ovarian tumors,
22 endometrial tumors and nine normal organoids from normal uterine or fallopian tube
samples. While the majority of models were generated using tumor tissues, seven ascites
fluid samples were used to create PDOs; among those, six PDOs were generated. Successful
growth of PDOs typically occurred within two–three days of surgical resection. In 12 cases
with neoadjuvant therapy, six PDOs were generated, for the establishment success rate of
50%. In 40 non-neoadjuvant therapy cases, 37 tumor organoids were generated (success



Cancers 2021, 13, 2901 4 of 13

rate of 93%). We also observed that PDO generation using normal tissues was less success-
ful than using tumor tissues, with the 33% establishment rate. The limited success rate may
be due to the small size and the prevalence of stromal cells in the samples.

Next, drug screening was performed on 19 PDOs, a process that can be completed
within 7–10 days from the time of surgery. Detailed information on the 19 models tested
for drug sensitivity is summarized in Table 1.

3.2. Endometrial and Ovarian Cancer PDO Drug Response

Drug response assays were performed on 19 ovarian and endometrial cancer PDOs
(Table 1) using therapeutic agents which are most commonly employed to treat patients
with gynecologic cancer: carboplatin, paclitaxel, cisplatin, bevacizumab, gemcitabine and
topotecan. PDO models that were created using ascites fluid samples are indicated with an
* in Table 1.

Table 1. Patient and tumor characteristics corresponding to the 19 PDOs used for drug screening studies. IV: intravenous;
IP: intraperitoneal; NED: no evidence of disease; N/A: not available; TBD: to be determined; * indicates the PDOs that were
generated using the ascites fluid samples.

Patient ID Cancer
Type Stage Neoadjuvant

Treatment
Adjuvant
Treatment

Platinum-
Sensitive?

Disease
Status

O
va

ri
an

C
an

ce
r

ONC-5942 High-grade
serous IVB

Six cycles of carboplatin
and paclitaxel followed by
two cycles of carboplatin

Three cycles of
doxorubicin and
bevacizumab followed by
bevacizumab

No NED

ONC-6007 * High-grade
serous IVB No Six cycles of IV/IP

cisplatin and paclitaxel Yes
Alive
with
disease

ONC-6045 * High-grade
serous IIIB No

One cycle of a single
agent, carboplatin,
followed by six cycles of
carboplatin and paclitaxel

Yes NED

ONC-6069 High-grade
serous Recurrent

Six cycles of carboplatin
and paclitaxel followed by
olaparib

Olaparib followed by
gemcitabine No Dead of

disease

ONC-6072 High-grade
serous IC No None N/A

Lost to
follow-
up

ONC-6134 High-grade
serous IIIA No Six cycles of carboplatin

and paclitaxel Yes NED

ONC-6163 High-grade
serous Recurrent No

Six cycles of carboplatin
and doxorubicin followed
by olaparib

TBD NED

ONC-7052 High-grade
serous IIIC No Six cycles of IV/IP

cisplatin and paclitaxel TBD NED

ONC-6061 Low-grade
serous IIIC No

Two cycles of carboplatin
and paclitaxel followed by
seven cycles of a single
agent, carboplatin,
followed by letrozole

No
Alive
with
disease

ONC-7063 Clear cell IC1 No Three cycles of carboplatin
and paclitaxel TBD NED

ONC-6092 Clear cell IC No Three cycles of carboplatin
and paclitaxel Yes NED
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Table 1. Cont.

Patient ID Cancer Type Stage Neoadjuvant
Treatment

Adjuvant
Treatment

Platinum-
Sensitive? Disease Status

En
do

m
et

ri
al

C
an

ce
r

ONC-6096 Endometrioid,
grade 1 IA No Observation N/A NED

ONC-6191 Endometrioid,
grade 1 IB No N/A N/A NED

ONC-6051 Endometrioid,
grade 2 IA No Observation N/A NED

ONC-6173 Endometrioid,
grade 2 IA No Observation N/A NED

ONC-6071 Endometrioid,
grade 3 IA No Observation N/A NED

ONC-6057 Serous IVB
Three cycles of
carboplatin, paclitaxel
and trastuzumab

Three cycles of
carboplatin, paclitaxel
and trastuzumab
followed by a single
agent, bevacizumab

No Alive with
disease

ONC-6099 Serous IVB
Six cycles of
carboplatin and
paclitaxel

Three cycles of
paclitaxel and
bevacizumab

No Dead of disease

ONC-7003 Mixed serous/
endometrioid IA No Patient declined

adjuvant therapy N/A NED

*: PDO models that were created using ascites fluid samples.

Carboplatin, paclitaxel and their combination are the most frequently used in first-line
chemotherapeutic regimens for gynecologic malignancies. PDO responses to these agents
are shown in Figure 1A. As compared to the untreated controls, nine of the 19 PDOs
exhibited a notable decrease in viability when treated with the combination of carboplatin
and paclitaxel, with viability ranging from 46.1% to 72.7% after 72 h of treatment. In the
combinatorial setting, the effects of the taxane, and not the platinum compound, appear to
be the predominant driver of therapeutic effectiveness.

Bevacizumab is an antiangiogenic agent frequently used as an adjuvant therapy in
gynecologic cancer [12,24–26]. Therefore, we also screened the PDOs for sensitivity to
bevacizumab alone and in combination with the first-line standard chemotherapy. In
general, bevacizumab as a single agent had only a modest impact on cell viability and little
additional impact on cell killing when combined with chemotherapy (Figure 1B).

As an alternative to the first-line standard chemotherapy via the intravenous (IV)
route, cisplatin combined with paclitaxel provides another option for patients to receive
chemotherapy by the intraperitoneal (IP) route or via heated intraperitoneal chemother-
apy [27,28]. In general, compared to the combination of carboplatin and paclitaxel, cisplatin
combined with paclitaxel had similar impacts on cell viability (Figure 1C).

Gemcitabine and topotecan are two commonly used second-line agents for cases of
recurrent platinum-resistant gynecologic cancer [29–33]. Herein, we compared the effects
of gemcitabine, topotecan and gemcitabine plus bevacizumab on cell viability. For some
patients (ONC-6051, ONC-6072, ONC-6092), second-line therapies were more effective
with respect to PDO cell killing than the first-line agents, but for most patients, the impact
of those agents was not superior (Figure 2).
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and ovarian cancer PDO response to (A) the standard chemotherapy, (B) the standard chemotherapy ± bevacizumab and
(C) the most common alternative chemotherapy regimen. PDO models were treated with the indicated agents for 72 h,
followed by assessment of cell viability. The data were calculated as the change in viability relative to the control which was
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multiple comparison test. Significant differences vs. the control are annotated on each panel. All the statistical comparisons
are provided in Supplementary Table S2, including specific p-values and comparisons of single agents vs. control or
dual treatments.

3.3. Proof-of-Concept: A PDO Model Reflects Treatment Response
3.3.1. Patient Characteristics

Tissues were obtained from a 70-year-old woman who initially presented with short-
ness of breath, early satiety and postprandial right upper quadrant pain. Imaging was
significant for a right pleural effusion, and the patient underwent a thoracentesis with
temporary relief in symptoms. Cytology from her thoracentesis revealed PAX8-positive
adenocarcinoma indicative of a gynecologic origin. Further imaging revealed multiple
pulmonary emboli (PE), carcinomatosis, omental caking, ascites and a thickened endome-
trial stripe. Her history was negative for postmenopausal bleeding. An endometrial
biopsy was obtained, which showed high-grade serous endometrial carcinoma, and HER2
immunostaining was positive (Figure 3A, pretreatment biopsy).

Given her new PE diagnosis and advanced-stage disease, the patient received three cy-
cles of neoadjuvant carboplatin, paclitaxel and trastuzumab, a monoclonal antibody against
HER2 (Figure 3B) [34]. Her CA125 decreased from 487 pre-treatment to 141 after the third
cycle. Posttreatment imaging showed resolution of ascites, peritoneal carcinomatosis and
omental cake. The patient subsequently underwent an exploratory laparotomy, total ab-
dominal hysterectomy with bilateral salpingo-oophorectomy, infragastric and infracolic
omentectomy, argon beam coagulation of tumor implants and optimal interval debulking.
Final pathology from her debulking revealed her tumor to be of mixed serous and clear cell
uterine histologies. Her postoperative course was uncomplicated, and she completed three
more cycles of carboplatin, paclitaxel and trastuzumab with plans to continue maintenance
trastuzumab until progression or toxicity. The patient received one cycle of maintenance
trastuzumab, but before she was able to receive her second cycle (eighth overall), she expe-
rienced a rising CA125 and increasing shortness of breath. Imaging showed a recurrent
pleural effusion, and a thoracentesis revealed recurrent adenocarcinoma.

Immunohistochemistry (IHC) performed on the cytology from this thoracentesis was
estrogen receptor/progesterone receptor (ER/PR)-negative, suggesting that her pleural
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effusion was from the clear cell component of her cancer since the clear cell component of
the primary tumor specimen was also negative for ER and PR. The patient then received
three cycles of a single agent, bevacizumab, during which her CA125 continued to rise,
and her dyspnea was stable. Repeat imaging showed no evidence of intraabdominal
disease, but she had persistent pleural effusions. Due to poor tolerance of bevacizumab,
the patient requested a chemotherapy holiday with as-needed thoracenteses.
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3.3.2. Trastuzumab Response in the Patient-Derived Tumor Organoid Model

This patient’s tumor was among the PDOs we created. We examined whether the
tumor previously exposed to trastuzumab in the neoadjuvant setting before surgical re-
section would continue to demonstrate sensitivity to this agent or whether neoadjuvant
treatment would select for resistant cell clones by the time surgery was performed. Thus,
we assessed sensitivity of PDO cells to increasing concentrations of trastuzumab. Our re-
sults reflected potential resistance to trastuzumab based upon a lack of reaching an IC50
even at supraphysiologic concentrations (200 µg/mL) (Figure 3D). The lack of response to
trastuzumab was also predicted by the lack of HER2 immunostaining in the postsurgical
specimen and the organoid sample (Figure 3A,B). Pathological analysis of the postsurgical
specimen indicated some HER2 immunoreactivity in the cystically dilated glandular areas
(Figure 3A, right margin of the posttreatment surgical specimen), whereas the stromal
region and clear cell component (left side of the posttreatment surgical specimen) were
devoid of HER2.
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for the corresponding PDO model. Additional images are provided in Supplementary Figure S3.
(C) Timeline of the patient’s clinical course. (D) PDO cells were treated with increasing concentrations
of trastuzumab for 72 h, followed by assessment of cell viability. The data were calculated as the cell
viability (%) relative to the untreated control which was set at 100%. The graph is annotated with the
Cmin and Cmax values for trastuzumab used clinically in breast cancer. Note that an IC50 was not
achieved with trastuzumab, even at concentrations greater than the Cmax.

To further assess which agents might be therapeutically effective, the PDO was
screened for sensitivity to alternative agents (Figure 4). The patient’s PDO model showed
a clear lack of response to platinum compounds with no change in cell viability after
treatment with carboplatin or cisplatin as compared to the untreated control. Furthermore,
the PDO was not sensitive to bevacizumab (105.9% viability vs. the control), the agent the
patient received after failing trastuzumab. Organoid cells were more susceptible to pacli-
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taxel, with 48.7% cell viability after exposure to this single agent. The patient’s PDO was
also more sensitive to gemcitabine (65% decrease in viability) and topotecan (56% decrease
in viability) as compared to the chemotherapy regimen previously received, carboplatin
+ paclitaxel.
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Figure 4. Varying drug sensitivity to the standard and alternative therapeutic options for the ONC-6057 PDO. Waterfall plot
of the patient’s (ONC-6057) tumor organoid drug sensitivity with the paired normal uterine drug sensitivity. The cytotoxic
agents in the chemotherapy regimen (carboplatin + paclitaxel and bevacizumab) the patient received after resistance to
trastuzumab was observed are highlighted in yellow. The change in viability was calculated relative to the control which
was set at 100% (i.e., no cell death). Statistical significance was assessed by ordinary one-way ANOVA with Tukey’s multiple
comparison test; ** p < 0.01, *** p < 0.001 vs. the paired control (normal or tumor specimen).

We also assessed drug sensitivity using a subset of agents in normal tissue organoids
from the same patient (Figure 4). Gemcitabine, topotecan and paclitaxel, which induced
more than 50% cell death in tumor organoids, all resulted in minimal cell killing of
organoids derived from non-malignant tissues.

4. Discussion

We intuitively know that each patient’s tumor is different, with potentially unique
genetic and phenotypic characteristics. It is becoming increasingly clear that the conven-
tional way to treat patients using a limited panel of first-line agents may miss important
opportunities to optimize therapy. In contrast, personalized medicine strives to match the
unique patient and tumor characteristics with innovative treatment regimens tailored to
each case; however, progress in implementing precision therapies has been hampered by
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the lack of sufficient biomarkers that predict response to each therapeutic agent. One way
to improve outcomes without the long and laborious process of biomarker identification
and validation is to utilize tumor cells themselves as a patient avatar.

PDO culture technology is a novel and powerful tool for generating and maintaining
three-dimensional patient tumor and normal tissues in vitro [35]. Since the time from
surgical resection to drug testing results takes 7–10 days, use of organoids from primary
patient tissues enables the testing of a range of compounds for efficacy even before clinical
treatment decisions must be made. In addition, the establishment of organoids from
non-malignant tissues from the same patient provides an opportunity to test potential
drug toxicities. The methods reported in this study as well as the results reported by
others [36] strongly support the concept that establishment of PDOs from patients under
treatment for gynecologic cancers is feasible and potentially useful to understand the
impact of therapeutic agents on cell viability in a time frame that is congruent with making
actionable treatment decisions [37,38]. We propose that testing PDOs for therapeutic
response is a methodology worthy of expansion as a means to achieve precision medicine
in clinical practice.

Overall, our success rate in generating PDOs was quite high. Among the nine cases
which failed to culture, two thirds were from the patients who received neoadjuvant
chemotherapy. Neoadjuvant therapy has been shown to negatively affect the success rate
of PDO generation [39]. We speculate the reason why tumor tissues from the patients who
received neoadjuvant chemotherapy failed to generate organoids is because the tumors may
already be undergoing chemotherapy-induced cell death. Accordingly, after we collected
the tumor and isolated cells from the tumor, cell viability was too low for organoid culture.
In addition, for the vast majority of tissues that were not successfully cultured, we observed
that the time from surgical removal to culture was greater than 45 min, though some PDO
models were successfully cultured after a delay of several hours. Nonetheless, mitigating
the delay from surgical excision to tissue processing will undoubtedly improve the success
rate of PDO creation. Other variables include the sample size and the percentage of viable
cells within the specimen.

To illustrate how PDO data could be used in the future to predict clinical outcomes,
tumor and normal PDOs were established from a patient with advanced high-grade serous
endometrial carcinoma. Drug sensitivity testing reflected resistance to all agents given in
the neoadjuvant setting. This raises the possibility of tumor evolution after initial exposure
to drugs and brings into question the continued use of agents used in the neoadjuvant
setting for ongoing adjuvant treatment, i.e., after surgical removal of the tumor. We propose
that drug sensitivity testing of PDOs may provide more insight into which agents are most
effective at later timepoints. This is based on our proof-of-concept data that the PDO model
successfully predicted the patient’s clinical platinum and trastuzumab resistance despite
her initial response to neoadjuvant chemotherapy.

Although PDOs have proved useful for many applications in basic research and con-
tributed to biomedical advances [40], the road to real-life applications is long, with many
technologies to be explored in this area. PDOs have not yet been widely used for trans-
lational studies yet due to some limitations [41]. For example, compared with cancer
cell lines, organoid culture consumes more time and resources [40]. For most models
we created, the amount of tumor tissue we received from the operating room was quite
small, and we prioritized drug screening experiments. This precluded extensive molecular
characterization for each model, such as comparison of biomarkers between the primary
tumor and the PDO model. Given the potential for evolution with prolonged culture,
we performed the bulk of experiments on passage 1–2 samples rather than expanding
them to get enough cells for additional analyses. While we stored some organoids in
liquid nitrogen, we found that the growth rate is significantly slower after cryopreservation.
Another limitation is PDO culture may not reflect the tumor environment due to lack of
stroma, blood vessels and immune cells [42]. Incomplete representation of intratumoral
heterogeneity is another limitation for PDO culture. Many studies have proved that PDOs
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can retain the heterogeneous genetic composition of the primary tumor [43,44]. However,
each PDO is derived from a small part of the tumor and may not reflect different cell
populations of the primary tumor. For example, Roerink et al. have shown the extensive
genetic diversification in organoids derived from different regions of the same tumor using
comprehensive genetic analysis [45]. Despite these limitations, organoids have emerged
as a physiologically relevant ex vivo model to study cancer. In addition, there are several
co-clinical trials ongoing in different cancer types that compare drug responses in PDOs to
corresponding patient outcomes (e.g., NCT03979170, NCT04859166, NCT04555473).

In conclusion, PDOs provide a valuable preclinical model system to support new
opportunities for personalized medicine. Our results demonstrate, first, that PDOs can
be established in a high percentage of cases; second, that drug testing on PDOs can be
performed in a timely manner and that PDOs have the potential to identify agents with
the greatest efficacy in each individual case. This is an important first step in establishing
a feasible functional treatment response platform to help more patients with gynecologic
cancer receive precision therapeutic care.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13122901/s1, Supplementary Methods: Protocol for Organoid Generation, Figure S1:
Schematic presentation of procedures for the organoid culture of endometrial and ovarian cancer
cells derived from patient tumors, Figure S2: Pretreatment biopsy specimen for ONC-6057, Figure S3:
Additional H&E and HER2 IHC images of the ONC-6057 PDOs, Table S1: Characteristics of all the
specimens attempted to be cultured as PDO models, including the paired normal tissue specimens,
Table S2: Statistical analyses for drug screening in Figures 1 and 2.
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