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Non‑coding RNA suppresses FUS 
aggregation caused by mechanistic 
shear stress on pipetting 
in a sequence‑dependent manner
Nesreen Hamad1,5, Ryoma Yoneda2,5, Masatomo So3, Riki Kurokawa2, Takashi Nagata1,4 & 
Masato Katahira1,4*

Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding 
protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested 
to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous 
aggregation state as an instant response to the shear stress caused by usual pipetting even at a low 
FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation 
of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. 
These results suggested that the non-coding RNA could be a prospective suppressor of FUS 
aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research 
on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for 
neurodegenerative diseases.

Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is an RNA/DNA binding protein, which regulates 
various biological processes1–5. FUS has been considered as a molecular link between apparently different human 
diseases such as cancer and neurodegenerative diseases6–11. FUS was found as the major component of nuclear 
polyglutamine (polyQ) aggregates in a Huntington disease (HD) cell model8, where FUS was converted from 
a soluble form to insoluble aggregates9. Then, FUS was also found to be a member of the PolyQ aggregates in 
other diseases including spinocerebellar ataxia (SCA) types 1, 2, and 3, and dentatorubral-pallidoluysian atro-
phy (DRPLA)7. Around the same time, FUS mutations were found in amyotrophic lateral sclerosis (ALS)10,11 
and frontotemporal lobar degeneration (FTLD) patients12. Those mutations were found to accelerate the FUS 
transition into an insoluble form13. Although the above-mentioned neurodegenerative diseases have different 
manifestations, FUS aggregation is associated with all of them5, which suggests a common pathway for their 
neuropathologies.

Dysregulation of RNA metabolism is a major cause of various human diseases14,15. The implication of muta-
tions of the RNA-binding domain of FUS in the etiologies of neurodegenerative diseases suggests that the RNA 
binding ability of FUS is necessary to maintain neuron functionality. Therefore, FUS is considered as an emerging 
therapeutic target for neurodegenerative diseases as well as cancer prevention and treatment16.

FUS is known to take on different states such as dispersed, liquid droplet, gel, and fibril ones depending on 
factors such as pH, ionic strength, protein concentration, thermal stress, shear stress, and RNA presence17–20. It 
was found that dynamic liquid-like FUS-containing droplets yielded by liquid–liquid phase separation (LLPS) 
play a key role in the assembly of membrane-less organelles such as stress granules21. It was also found that 
high concentration of RNA can suppress LLPS of FUS18. It was noted that in physiological conditions, FUS can 
interchange between a dispersed phase, liquid droplets, and a reversible gel, while through aging or pathological 
conditions, liquid droplets can be converted into irreversible gels and fibrils17,22.

FUS consists of a low complexity domain (LC domain), three arginine-glycine-glycine-rich domains (RGG 
domains), an RNA recognition motif (RRM), and a zinc-finger domain (ZnF domain). Only the RRM and ZnF 
domains are structured, the others being regarded as intrinsically disordered regions (IDRs). Previously, we 
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showed by fluorescence resonance energy transfer (FRET) and high-speed atomic force microscopy (HS-AFM) 
analyses that FUS takes on a compact conformation in its free-form but becomes extended upon binding to 
RNA/DNA23,24.

In this study we found that mechanistic shear stress caused by pipetting can induce FUS aggregation by means 
of fluorescence spectroscopy, fluorescence microscopy, and transmission electron microscopy (TEM). Then, we 
revealed the difference in the suppressive effect on the FUS aggregation between FUS-binding non-coding RNA 
and irrelevant RNA.

Results
Shear stress caused by pipetting can induce FUS aggregation.  We have been studying the mecha-
nism of the transcription regulation of a cell cycle activator, the cyclin D1 gene (CCND1), by FUS in response 
to DNA damage1,23–25. We showed that a long non-coding RNA that is transcribed from the promoter region 
of CCND1, which was named promoter-associated non-coding RNA (pncRNA), can induce a conformational 
change of FUS. This conformational change enables FUS to interact with transcriptional coactivators, p300/CBP, 
and suppress their histone acetyl transferase activity. This leads to CCND1 transcription suppression and subse-
quent cell cycle arrest, which may provide the time needed for DNA damage repair. We used FRET assaying to 
detect the effect of pncRNA on the conformational change of FUS23. FUS fusion protein with blue fluorescence 
protein (BFP) and green fluorescence protein (GFP) attached to its N- and C-termini, respectively, was used 
for the FRET assays. In that study, we noticed that upon sample pipetting, both the BFP and GFP fluorescence 
intensities decreased. To examine the effect of pipetting more quantitatively, 45 strokes of pipetting were applied 
to a FUS protein sample and fluorescence spectra were measured every three strokes of pipetting (the interval 
between measurements was set to 60 s) (Fig. 1). The sample volume was 150 μL and the pipetting volume was 
set to 140 μL. We supposed that the observed reduction in the fluorescence intensity for the entire wavelength 
range of 415–600 nm is caused by aggregation of FUS. Although the aggregates were not visible by eyes, they 
may precipitate or stay at the bottom of the cuvette and do not contribute to the fluorescence spectrum because 
the light does not pass the bottom of the cuvette. Then, as the concentration of the dissolved FUS is lower, the 
fluorescence intensity may reduce. In order to confirm this idea, the concentration of the protein in the super-
natant of the sample was examined, as the aggregates are invisible by eyes and thus collecting and measuring the 
concentration of the protein in the precipitate were practically difficult. The concentration of the supernatant of 
the sample after 30 strokes of pipetting turned out to be lower than that of the sample without pipetting by ca. 
40%. This reduction in concentration is qualitatively consistent with the reduction in the fluorescence intensity, 
supporting our idea.

Pipetting can subject protein molecules to shear stress due to the velocity gradient; shear stress is most promi-
nent for molecules close to the surface of the pipette tip26. The unequal force distribution on a protein molecule 
might induce some conformational change that leads to aggregation. We checked whether aggregation could 
be induced just by incubating a sample in the fluorescence spectrophotometer cuvette without pipetting. No 
reduction in fluorescence intensity was observed when pipetting was not performed over the same time period 
(~ 15 min) (data not shown).

To verify our assumption that the observed reduction in the fluorescence intensity of the FUS fusion protein 
is caused by FUS aggregation, the effect of pipetting on FUS was visualized by fluorescence microscopy. Another 
fusion protein, streptavidin recognition sequence (Strep)-GFP-FUS, was constructed in order to exclude the 
effects of MBP and BFP on FUS aggregation. We prepared four protein samples with different numbers of strokes 
of pipetting (0, 15, 30, and 45 strokes). Samples were prepared by diluting the stock protein solution 5 times with 
3 gentle strokes of pipetting to get a thoroughly mixed protein solution of 100 nM. For the P0 sample, no further 
pipetting was applied. The P15, P30, and P45 samples underwent a further 15, 30, and 45 strokes of pipetting, 
respectively. All samples were examined by fluorescence microscopy. The number of particles larger than 0.002 
mm2 was counted. More FUS particles were formed as the number of strokes of pipetting increased (Fig. 2a,b). 
Particles can be either droplets formed due to LLPS or aggregates. By using high magnification, the shapes of 
particles were examined. The shape of a droplet is known to be completely round17. The shapes of particles turned 
out to be mostly not round but irregular (Supplementary Fig. S2), indicating that most particles are not droplets 
formed due to LLPS but amorphous aggregates. We also examined the nature of the particles by using 1,6-hex-
anediol, which is known to dissolve liquid–liquid phase separated particles27. 10% 1,6-hexanediol was added to 
each sample, and then the particles were counted again. It was confirmed that the number of FUS particles that 
are resistant to 1,6-hexanediol treatment and thus are supposed to be not droplets but aggregates increased as the 
number of pipetting strokes increased (Fig. 2c,d). The sizes of the particles were also examined. The p45 sample 
has larger particles than the other samples. However, the number of small particles increased for the P45 sample 
as well. Thus, the average of the sizes of particles is nearly the same for all the samples.

Next, we investigated the appearance of the pipetting-induced FUS aggregates by TEM to determine whether 
the formed aggregates are amorphous or take on a particular structure such as amyloid fibrils. A protein sample 
was examined before pipetting, the P0 sample (Fig. 3a), and after 30 strokes of pipetting, the P30 sample (Fig. 3b). 
For the P0 sample, aggregates were rarely found (Fig. 3a). It should be noted that the observed few dots are pores 
on a coated grid and not protein particles. However, for the P30 sample, many aggregates were found and they 
were mostly amorphous (Fig. 3b). Thus, although it might be difficult to decisively draw a conclusion that the 
FUS aggregates are formed by pipetting just from the observed reduction in the fluorescence intensity, analyses 
with two additional independent methods, fluorescence microscopy and TEM, solidly confirmed the conclusion.

Sequence‑specific suppression of FUS aggregation by non‑coding RNAs.  In our previous stud-
ies, we showed that full-length (602 nucleotide residues) and fragments of pncRNA (Supplementary Fig. S1) can 
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induce a conformational change of FUS23,24. Interestingly, this time we found that the reduction in the fluores-
cence intensity caused by shear stress on pipetting was not observed when full-length pncRNA was added to the 
FUS fusion protein (Fig. 4a). When the full-length pncRNA was added to FUS with a subsequent three strokes 
of pipetting to ensure thorough mixing, the pattern of the fluorescence spectrum changed due to the conforma-
tional change of FUS induced by pncRNA; the fluorescence intensity at 453 nm increased, while that at 506 nm 
decreased (Fig. 4a). We had already revealed that this spectrum change reflects the compact-to-extended confor-
mational change of FUS with pncRNA on the basis of FRET and HS-AFM analyses23,24. When further strokes of 
pipetting were applied, however, the spectrum rarely changed, if any (Fig. 4a). The decrease in the fluorescence 
intensity caused by pipetting for all wavelengths, which was observed in the absence of RNA (Fig. 1a), was not 
seen. This observation indicates that pncRNA can protect FUS from aggregation caused by the shear stress of 
pipetting.

Previously, we examined the extent of the conformational change of FUS caused by pncRNA and its fragments 
on the basis of the change in FRET efficiency (ΔE), where E = IGFP/IGFB + IBFP, and IBFP and IGFP are the fluorescence 
intensities at 453 nm and 506 nm, respectively. As the 31-mer fragment of pncRNA (R31, see Supplementary 
Fig. S1) was revealed to be critical for binding to FUS25, R31 and shorter fragments of it were examined. Then, we 
found that the extent of the conformational change of FUS is greater for full-length pncRNA, R31, R19, and R13 
than for R10, R7, R5, and R4 (see Supplementary Fig. S1 for sequences)23. That is, R13 is a minimum fragment 

Figure 1.   Effect of the number of pipetting strokes on the FUS fluorescence spectrum. (a) Overlaid 
fluorescence spectra of 100 nM FUS fusion protein (MBP-BFP-FUS-GFP-6xHis). The spectra were measured 
every 60 s, during which the sample (150 μL) was mixed by three strokes of pipetting (pipetting volume 140 
μL). The total number of pipetting strokes is indicated on the right. (b) Bar graph showing the BFP (at 453 nm) 
and GFP (at 506 nm) fluorescence intensities of the fluorescence spectra shown in (a). The averages of two 
independent experiments ± standard deviation (SD) are shown.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9523  | https://doi.org/10.1038/s41598-021-89075-w

www.nature.com/scientificreports/

to cause pronounced conformational change of FUS on binding. Here, addition of either R31 or R13 turned out 
to prevent aggregation of FUS (Fig. 4b–d) as well as that of full-length pncRNA. The decrease in the fluorescence 
intensity caused by pipetting for all wavelengths was not seen. Then, we examined the suppressive effect of a 
non-specific counterpart of R13, U13 comprising thirteen uracil residues. It was found that U13 cannot protect 
FUS from aggregation by pipetting. The fluorescence intensity continued to decrease with increasing number of 
strokes of pipetting (Fig. 4e,f). This indicates that suppression of FUS aggregation by R13 is sequence-specific.

We further confirmed the difference between R13 and U13 as to the suppression of FUS aggregation by fluo-
rescence microscopy (Fig. 5). Thirty strokes of pipetting were applied for 100 nM Strep-GFP-FUS protein in the 
absence of RNA, or in the presence of either R13 or U13. Samples were examined by fluorescence microscopy 
(Fig. 5a), and particles larger than 0.002 mm2 were counted (Fig. 5b). Then, phase separated particles were 
dissolved by adding 10% 1,6-hexanediol to each well (Fig. 5c), and the particles were counted again, only FUS 
aggregates being counted (Fig. 5d). This procedure showed that FUS aggregates were significantly less in the 
presence of R13 than in the presence of U13. This result confirmed that the suppression of FUS aggregation by 
R13 is sequence-specific. Finally, we confirmed the difference between specific and non-specific RNA on the 
suppression of FUS aggregation by TEM imaging (Fig. 6). In the presence of R13, only a few small aggregates 
were observed after applying 30 strokes of pipetting (Fig. 6a). On the other hand, many aggregates of various 
sizes were observed after applying 30 strokes of pipetting in the presence of U13 (Fig. 6b).

Salt effect on FUS aggregation.  Next, the effect of salt on FUS aggregation induced by pipetting was 
examined. Thirty strokes of pipetting were applied to 100 nM FUS fusion protein at 50 mM NaCl concentration 
to induce FUS aggregation. The reduction in fluorescence intensity due to aggregation was more when the num-

Figure 2.   Fluorescence microscope images of FUS aggregates induced by pipetting. (a) Representative 
fluorescence microscope images of FUS fusion protein (Strep-GFP-FUS). The 100 nM Strep-GFP-FUS solution 
was subjected to pipetting 0, 15, 30, and 45 strokes (P0, P15, P30, and P45, respectively) before measurement. 
(b) A bar graph showing the number of particles > 0.002 mm2 observed in (a). The number of particles was 
determined with Fiji software. The bar graphs show the averages of three independent experiments ± standard 
deviation (SD). p values are indicated. (c) Images after addition of 10% 1,6-hexanediol, which is known to 
disrupt the liquid–liquid phase separation, to the samples shown in (a). (d) A bar graph showing the numbers of 
particles > 0.002 mm2 observed in (c).
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ber of pipetting strokes increased (Fig. 7). Then, the NaCl concentration was raised to 300 mM and an additional 
30 strokes of pipetting were applied. In contrast to the situation with 50 mM NaCl, the fluorescence intensity 
was gradually restored as the number of pipetting strokes increased. Then, the NaCl concentration was further 
raised to 500 mM with an additional 15 strokes of pipetting. The fluorescence intensity basically remained the 
same in this case.

Discussion
MBP-BFP-FUS-GFP-6xHis was used for FRET assaying and TEM imaging, while strep-GFP-FUS was used 
for fluorescence microscopy. The aggregation was found on pipetting for both MBP-BFP-FUS-GFP-6xHis and 
strep-GFP-FUS. Thus, it is not likely that either MBP or BFP is the origin of the aggregation. Additionally, it was 
reported that GFP does not aggregate on shearing28. Therefore, it is suggested strongly that FUS is the origin of 
the aggregation.

In this study, we demonstrated that the usual manner of pipetting can induce aggregation of FUS protein. 
FUS aggregates were visualized by TEM as being amorphous. The more the number of strokes of pipetting is, the 
more the number of aggregates is. We assumed that the shear stress caused by pipetting is a driving force for the 
formation of aggregates. The shear stress on the protein structure and the subsequent induction of aggregation 
such as amyloid fibril formation have been studied for decades26,29–32. Regarding the mechanism of shear stress-
induced protein aggregation, there is a general consensus that mechanical perturbation of a protein molecule 
often results in structural destabilization of the native conformation, leading to the exposure of sequestered 
hydrophobic residues to the surrounding medium. Solvent-exposed hydrophobic groups become nucleated via 
hydrophobic interactions and subsequently aggregate26. Shear stress has been reported to induce fibril aggregation 
of the whey protein beta-lactoglobulin29,33. A rheo NMR study of superoxide dismutase 1 (SOD1) showed that 
shear stress can induce the formation of amyloid fibrils from SOD1 monomers, while under static conditions 
there is no change in the monomer state34. Therefore, it is possible that shear stress caused by pipetting induced 
the transition to the amorphous aggregate state.

The formation of aggregates was found at a low FUS concentration, even at 100 nM. This is in contrast to 
the situation that a higher FUS concentration, 1–5 μM, is usually needed for the formation of droplets due to 
LLPS18,20,35. The decrease in the fluorescence intensity of the FUS fusion protein was observed as an instant 
response to the pipetting, occurring in less than 60 s (Fig. 1). This indicates that FUS aggregates were instantly 
formed by shear stress caused by pipetting. This is also in contrast to the situation that a longer incubation time, 
minutes to an hour, is usually needed for the formation of droplets due to LLPS35,36.

Recently, shear-mediated formation of solid fibers of FUS was reported20. It was suggested that backbone-
backbone hydrogen bonding constraints are a determining factor in governing the transition. A difference is 
noted that amorphous aggregates were formed in our case, while fibers were formed in that study. Shear stress 
was applied to FUS at a rather low concentration of 100 nM in our case, while it was applied to a LLPS form 
of FUS in that study. This may be related to the formation of different species, amorphous aggregates or fibers.

Figure 3.   TEM images of FUS aggregates induced by pipetting. (a) A representative image of FUS fusion 
protein (MBP-BFP-FUS-GFP-6xHis) before pipetting (P0). (b) TEM images showing FUS aggregates formed 
after 30 strokes of pipetting (P30).
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The number of liquid droplets might be obtained by calculating the difference in the number of particles 
between Fig. 2b,d, because it is supposed that the number of particles of Fig. 2b is a sum of the number of aggre-
gates and that of liquid droplets while the number of particles of Fig. 2d is the number of aggregates as liquid 
droplets are assumed to be dissolved by 1,6-hexandiol. However, we decided not to evaluate the number of liquid 
droplets, because the difference in the number of particles between Fig. 2b,d is too small and thus not reliable to 
evaluate. We decided to discuss just the number of aggregates, because the corresponding numbers are relatively 
large and thus more reliable to evaluate.

The biological significance of the conformational change caused by shear stress has been suggested. In vivo, 
blood flow in narrow capillaries can induce considerable shear stress in the circulatory system37. The biological 
significance of shear stress can be represented by the conformational change of a human blood plasma protein, 
von Willebrand (vWF), which has an important function in coagulation. It was suggested that high shear stress 

Figure 4.   Sequence-dependent suppression of aggregation of FUS by RNA. (a–c,e) The fluorescence spectrum 
of 100 nM FUS fusion protein (MBP-BFP-FUS-GFP-6xHis) without pipetting is shown in blue (P0). An 
equimolar amount of either the full-length pncRNA (R602) (a), R31 (b), R13 (c), or U13 (e) was added to the 
protein solution. Then, fluorescence spectra were measured after every three stokes of pipetting: cumulative 
numbers of strokes are indicated, e.g., R602_P6 for six cumulative strokes of pipetting after the addition of 
R602 RNA. (d) A bar graph for BFP and GFP fluorescence intensities, at 453 and 506 nm, respectively, of the 
fluorescence spectra shown in (c). (f) The similar bar graph of the fluorescence spectra shown in (e).
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at the site of bleeding injury could induce a structural change in vWF, which is critical for platelet adhesion and 
thrombus formation at the wound site38. Moreover, at the cellular level, the velocity of organelles inside cells is 
not uniform. Therefore, a velocity gradient arises, which in turn creates shear stress on proteins inside the cells.

It was reported that RNA regulates the phase behavior of FUS18. Low RNA/FUS ratios promote the formation 
of droplets due to LLPS, whereas high ratios prevent the droplet formation in vitro. Reduction of nuclear RNA 
levels or genetic ablation of RNA binding causes the formation of cytotoxic solid-like assemblies in cells18. So far, 
on the other hand, an effect of RNA on the shear-mediated formation of solid fibers of FUS from the liquid–liquid 
phase separated form has not been reported in the literature. Here, we showed that full-length pncRNA and its 
fragments, R31 and R13, can protect FUS from aggregation caused by shear stress on pipetting (Figs. 4, 5, 6). We 
also showed that U13 cannot protect FUS from aggregation although its length is the same as that of R13. That 
is to say, the suppressive effect of RNA is sequence-dependent. This is one of the limited cases where the RNA 
sequence-specific suppression of aggregation of a protein was clearly revealed.

It was reported that the prion-like domain (residues 1–239) comprising the LC domain and a part of the 
first RGG domain in the N-terminal region and the second RGG domain (374–422) in the C-terminal region 
are essential for aggregation39. Previously, we revealed that pncRNA and its fragments bind to the C-terminal 

Figure 5.   R13 represses the aggregation of FUS caused by pipetting while U13 cannot, as revealed by 
fluorescence microscope images. (a) Representative fluorescence microscope images of 100 nM FUS fusion 
protein (Strep-GFP-FUS) after the addition of an equimolar amount of either no RNA, R13 or U13 and 
subsequent application of 30 strokes of pipetting. (b) A bar graph showing the numbers of particles > 0.002 
mm2. The bar graphs show the averages of 3 independent experiments ± SD. p values are indicated. (c) Images 
after addition of 10% 1,6-hexanediol to the samples shown in (a). (d) A bar graph showing the numbers of 
particles > 0.002 mm2 for images shown in (c).
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region of FUS comprising the second RGG domain (374–422), a ZnF domain (423–453), and the third RGG 
domain (454–526)25. Therefore, there is the possibility that RNA bound to the C-terminal region of FUS masks 
the interface required for the formation of aggregates, resulting in the prevention of aggregate formation. It was 
also reported that the cation-π interaction between the N-terminal LC domain and C-terminal RGG domain 
is critical for LLPS of FUS35,40. Therefore, it is also likely that RNA bound to the C-terminal region of FUS neu-
tralizes the cations and reduces the cation-π interaction. The reduction of the interaction may prevent FUS not 
only from LLPS but also from aggregation. Specific RNAs bind to FUS with higher affinity than non-specific 
ones. This can explain why the suppressive effect on aggregation of FUS is RNA sequence-dependent. It might 
also be the case that non-specific RNA does not necessarily bind to the interface needed for the formation of 
aggregates, resulting in a lower suppressive effect. The correlation between the extent of conformational change 
of FUS caused by each RNA, which was estimated by ΔE, and resistance to aggregation by each RNA may also 
imply that the FUS conformation induced by RNA is unfavorable for the formation of aggregates. It would be 
added that TEM images of aggregates of FUS in the presence of U13 looked different from those of FUS alone. 
This may be due to involvement of U13-bound FUS to some extent in aggregates in the former case.

It should be added that the FUS-RNA interaction was not likely to be affected by the presence of MBP, GFP, 
and BFP. MBP has no RNA binding activity41. Fusion of GFP to FUS is widely used for marking FUS even in 

Figure 6.   R13 represses the aggregation of FUS caused by pipetting while U13 cannot, as revealed by TEM. 
(a) Representative TEM images of FUS fusion protein (MBP-BFP-FUS-GFP-6xHis) after the addition of an 
equimolar amount of R13 and subsequent application of 30 strokes of pipetting. (b) Representative TEM images 
of FUS protein after the addition of an equimolar amount of U13 and subsequent application of 30 strokes of 
pipetting.
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the studies of the FUS-RNA interactions18,42, which indicates that GFP is not supposed to interact with RNA. 
Additionally, BFP whose sequence similarity with GFP is 93% is not supposed to interact with RNA, either.

The recovery of the florescence intensity of FUS on pipetting with 300 mM NaCl (Fig. 7) indicated that the 
FUS aggregates can be dissolved, at least partially, at 300 mM NaCl. This suggests that the electrostatic interac-
tion and/or the cation-π interaction contribute to the formation of the aggregates and that weakening of the 
interaction(s) at higher NaCl concentration results in the partial dissolution of the aggregates. Previously, it 
was reported that LLPS of FUS is not affected by raising of the NaCl concentration from 50 to 150 mM but that 
LLPS is significantly reduced at 300 mM NaCl43. The suppressive effect of NaCl is suggested to be common to 
LLPS and aggregation of FUS.

In conclusion, we found that the shear stress caused by pipetting instantly induces the transition of FUS to 
amorphous aggregates even at low FUS concentration. The non-coding RNA we previously identified, pncRNA, 
can suppress this transition in a sequence-dependent manner. Our finding might serve for the development of 
therapies for neurodegenerative diseases by using RNA as aggregation inhibitors.

Materials and methods
Protein preparation.  MBP-BFP-FUS-GFP-6xHis protein was expressed and purified as described 
previously23,24. Briefly, the fusion protein was expressed in BL21 Gold (DE3) Escherichia coli cells. The pro-
tein was induced by the addition of 0.1  mM isopropylthio-β-d-galactopyranoside (IPTG) for 20  h at 20  °C. 
Cell pellets were sonicated in lysis buffer comprising 50 mM Tris–HCl (pH 7.6), 25 mM glucose, 1% CHAPS, 
10 mM benzamidine, 5 U/mL DNase I, 1 mg/L RNase, and 0.2 g/L lysozyme. The supernatants were purified by 
nickel-affinity column chromatography using Ni-sepharose beads (GE Healthcare Bio-Sciences), followed by 
size exclusion chromatography (SEC) using a HiloadTM 16/60 SuperdexTM 200 prep grade column (GE Life 
Sciences). Protein was stored at 4 °C. 5 mM fresh dithiothreitol (DTT) was added to a purified fusion protein 
solution on the same day as the experiment. The protein sample was diluted five times to obtain ~ 100 nM FUS 
fusion protein in 10 mM Tris–HCl (pH 7.6), 5 mM glucose, 0.2% CHAPS, and 50 mM NaCl. This fusion protein 
was used for FRET assaying and TEM imaging.

Strep-GFP-FUS protein was expressed using BL21. The cells were collected and frozen in −80 °C overnight, 
and then resuspended in WCE buffer (25 mM HEPES (pH 7.9), 150 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 
0.05% Triton X-100, and 10% glycerol). Cells were lysed by sonication on ice. The cell lysates were centrifuged 
at 110,000g for 40 min. The supernatants were purified on a Strep-Tactin Sepharose column (gravity flow, IBA 
Lifesciences). The column was washed with wash buffer (100 mM Tris–HCl (pH 8.0) 150 mM NaCl, and 1 mM 
EDTA), and protein was eluted with elution buffer (100 mM Tris–HCl (pH 8.0), 300 mM NaCl, 1 mM EDTA, 
and 2.5 mM desthiobiotin). The protein was concentrated with Amicon ultra-0.5 centrifugal filters to a final 
concentration of around 5 μM. For the aggregation assays, 100 nM sample was dissolved in 10 mM Tris–HCl 
(pH 7.5) and 50 mM NaCl. This fusion protein was used for fluorescence microscopy.

Figure 7.   The effect of NaCl on FUS aggregation caused by pipetting. A fluorescence spectrum of 100 nM FUS 
fusion protein (MBP-BFP-FUS-GFP-6xHis) was measured at an initial NaCl concentration of 50 mM. Then, 
spectra were recorded after every three strokes of pipetting until the cumulative stroke number of 30. After that, 
the NaCl concentration was increased to 300 mM. Then, a total number of thirty stokes of pipetting was applied 
in the same way. After that, NaCl was further increased to 500 mM. Then, a total number of fifteen stokes 
of pipetting was applied similarly. Blue and green bars represent the BFP and GFP fluorescence intensities, 
respectively. The averages of two independent experiments ± standard deviation (SD) are shown.
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Fluorescence spectroscopy.  A final concentration of 100 nM FUS in 10 mM Tris–HCl (pH 7.6), 0.2% 
CHAPS, 5 mM glucose, 50 mM NaCl, and 1 mM DTT was prepared in a total volume of 150 µL by diluting the 
FUS stock solution (50 mM Tris–HCl (pH 7.6), 1% CHAPS, 25 mM glucose, 250 mM NaCl, and 5 mM DTT). 
For the experiments in the presence of RNA, an equimolar amount of RNA was added to the FUS solution. 
Fluorescence spectra were collected with a steady-state photon counting spectrofluorometer (JASCO FP-8500 
spectrometer, Japan Spectroscopic Co.) using a standard quartz cuvette with an optical path length of 1 cm. The 
excitation wavelength was 402 nm. The spectra slit width of 5 nm was used for excitation and emission with 
an integration time of 1 nm/s from 415 to 650 nm. All the measurements were carried out at 25 °C. A blank 
was measured and subtracted from all the spectra. Data were processed using a JASCO Spectra Manager of the 
FP-8000 series.

Pipetting was carried out in a cuvette using a pipette tip whose point orifice and root diameters, and length are 
ca. 0.5 mm, 3.9 mm, and 36 mm, respectively. Sucking up was done in ca. 0.5 s, followed by extruding in ca. 0.5 s, 
one stroke of pipetting being accomplished every one second. The concentration of the sample after pipetting 
was measured as follows; after spinning the sample solution, the supernatant was collected and its concentration 
was measured on the basis of UV absorbance.

Fluorescence microscopy.  100 µL of 100 nM protein was placed in a 96-well plate and visualized under 
different pipetting conditions. GFP fluorescence was observed under a fluorescence microscope (Keyence 
BZ-X710). Images were converted to black and white. Fiji software (RRID: SCR_002285) was used to set parti-
cle size parameters to count particles > 0.002 mm2 to exclude background noise. To distinguish between LLPS 
particles and aggregates, 10% 1,6-hexanediol was added to each well, with which LLPS particles are dissolved, 
while aggregates are preserved. p values were calculated by two-tailed T test using T.TEST function of Microsoft 
Office Excel (2019).

Transmission electron microscopy.  A sample solution was diluted tenfold up to 10 nM and then spot-
ted onto a collodion‐coated copper grid (Nisshin EM Co., Tokyo, Japan). After 1 min, the remaining solution 
was removed with filter paper and 5 μL of 1% (w/w) phosphotungstic acid (PTA) was spotted onto a collodion‐
coated copper grid. The solution was removed immediately with filter paper. Then, the grid was washed with 
5 μL pure water to remove excess PTA. After 1 min, the remaining solution was removed in the same manner. 
Images were obtained using a H‐7650 TEM (Hitachi, Tokyo, Japan) operating at 80 kV.
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