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Circulating tumor cells (CTCs) represent a subset of heterogeneous cells,

which, once released from a tumor site, have the potential to give rise to

metastasis in secondary sites. Recent research focused on the attempt to

detect and characterize these rare cells in the circulation, and advancements in

defining their molecular profile have been reported in diverse tumor species,

with potential implications for clinical applications. Of note, metabolic

alterations, involving mitochondria, have been implicated in the metastatic

process, as key determinants in the transition of tumor cells to a mesenchymal

or stemness-like phenotype, in drug resistance, and in induction of apoptosis.

This review aimed to briefly analyse the most recent knowledge relative to

mitochondria dysfunction in CTCs, and to envision implications of altered

mitochondria in CTCs for a potential utility in clinics.

KEYWORDS

CTC, mitochondria, ROS, drug resistance, invasiveness
Liquid biopsy for tumor diagnostics

Cancer metastasis occurs through a series of sequential steps, which include epithelial

mesenchymal transition (EMT) of primary tumor cells into tumor-initiating cells (TICs)

and their intravasation into the bloodstream as circulating tumor cells (1), and

subsequent extravasation at distant sites, with generation of metastasis upon

mesenchymal epithelial transition (MET) (2–4). CTCs have been detected in the

majority of patients with tumors, they have been proven to be heterogeneous and a

subgroup of them represents cancer stem-like cells (CSLCs) or TICs (5, 6).

Recent progress in the identification of cancer biomarkers opened a new field of

cancer diagnostics (7). Due to the non-invasive nature of liquid biopsy, repeated

sampling and testing of blood have been performed for the accurate early disease

detection and monitoring of treatment responses (8). In clinics, enumeration and

phenotyping of CTCs have been proven as novel biomarkers to estimate the risk for

metastatic relapse or disease progression in various tumors (9). CTCs have been detected
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in 30-50% of patients with metastatic colon, prostate and/or

breast cancer (9–11). High CTC levels, as enumerated with the

CellSearch™ assay, which specifically detects tumour cells with

epithelial phenotype, defined as 4’,6-diamidino-2-phenylindole

(DAPI)+, CK+, CD45- cells, are associated with poor clinical

outcome, i.e. shorter progression free survival (PFS) and overall

survival (OS), in breast, colorectal, and prostate cancers (3, 9, 10,

12–18). Advanced cancer patients with high CTC counts even

after systemic therapy have poor clinical outcome, and elevation

of CTC levels during follow-up predicts a high risk of

progression (10, 19–21). The prognostic potential of CTCs for

monitoring metastasis or the efficacy of chemotherapy has been

reported: in metastatic breast cancer, persistently elevated CTC

levels after one cycle of treatment correlates with a poor

prognosis (9), while a reduction in CTC levels indicates

improved prognosis (22–24).

Further, detection of CTCs might represent an alternative

approach for early diagnosis (25). Technical advances have

assessed the feasibility of detecting and profiling CTCs at the

very early steps of tumor invasion (26). Indeed, CTCs have been

detected in 10% of CRC precancers (adenomas) and in 3% of

patients with chronic obstructive pulmonary disease (COPD),

who have an elevated risk of developing lung cancer 1–4 years

before CT screening of lung nodules (27, 28). In this contest,

tissue-specific transcriptome profiling of single CTCs might

address in verifying the location of the occult lesion, to select

the appropriate imaging or diagnostic methodology (29).

As an alternative liquid biopsy, cell-free (cf) circulating DNA

is continuously released by clonal tumor cells into the circulation

(25). Alterations in cfDNA can be identified through ultra-deep

NGS even at very low frequency (<1%), and have been used for

early detection of recurrence in several tumors (e.g. colorectal

cancer, pancreatic cancer, neuroblastoma) and, recently, also of

premalignant lung and bladder disorders (27, 30, 31). At present,

different platform technologies provide sufficient sensitivity in

circulating tumor (ct) DNA detection to identify lung tumor

patients relapsing within a year of subclonal detection, and for

precision screening in cervical premalignancy (31, 32). However,

methodologies require to be improved for detection and profiling

of ctDNA, and measurements need higher sensitivity and

specificity, by defining quantitative thresholds to avoid

overdiagnosis. A relevant biological limitation is the amount of

ctDNA recovered from early-stage cancer patients, even if less

than 0.1% of ctDNA in plasma has been detected by digital droplet

PCR or NGS methods (33). Enrichment steps have to be

performed, based on biological properties or physics.

Confounding results due to cancer-associated mutations not

restricted to tumor patients and the presence of clonal

alterations in blood cells due to aging and clonal hematopoiesis

both represent critical issues (34, 35). Genomic driver alterations

of tumors in BRAF, RAS, EGFR, HER2, FGFR3, PIK3CA, TP53,

CDKN2A, and NF1/2 genes can also be identified in non tumor

specimens. Additionally, determining the tissue of origin of the
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neoplastic lesion can be extremely challenging (27). Thus,

limitations for clinical utility of ctDNA analysis are evident.
Mitochondria dysfunction in cancer:
minimal integrity point

An altered metabolism is a distinct feature of tumorigenesis,

and the metabolic profile in tumour cells represents a crucial

step for their survival. Tumor cells depend strongly on both

enhanced glycolysis, the pentose phosphate pathway, and

glutaminolysis, as a result of dysfunctional mitochondria, to

efficiently respond to energetics requirements (36–39). Yet,

tumour cells require a minimal functional mitochondrial pool,

in order to produce sufficient amount of biosynthetic precursors

(40–42).

Mitochondria act at multiple levels and coordinate several

biological processes, with generation of reactive oxygen species

(ROS), release of oncoproteins and oncometabolites, modulation

of calcium homeostasis and autophagic processes, cell death, and

metabolism (43, 44). Mitochondria integrity is a central

checkpoint for cancer cells (36), as they actively participate in

plasticity of tumour cells and act on several mechanisms to

address environmental conditions.

Despite the mitochondrion constitutes a key actor, the

dualities of its function in tumour metastasis and therapy

resistance have only recently been depicted, with opposite

effects on both processes. Through the analysis of large-scale

data sets from The Cancer Genome Atlas (TCGA), the

underpinning genetic determinants of these changes have been

identified, which are orchestrated by oncogenes and tumor

suppressors (45). Further, tumors share a subset of metabolic

gene signatures independent of their tissue of origin, and

upregulate genes that encode for glycolysis and nucleotide

biosynthesis enzymes, with important implications for cancer

diagnosis and patient stratification (46, 47). Experimental data

suggest that mitochondrial dysfunction can reach a threshold

where it turns to opposite effects for tumour cells, and a fine

regulation of mitochondrial function is required to drive

tumorigenesis. Coherently recent evidence indicates that the

metabolic phenotype of cancer varies at different disease

stages, and contribute to tumor progression (48, 49). Thus,

stage-specific metabolic traits have been identified in prostate,

breast, renal, and lung tumors (50–53), and transcriptional

analysis of 21 tumor types collected by the TCGA confirmed

the strict association of inhibition in genes of mitochondrial

metabolism with the presence of an EMT gene signature, which

is linked to tumor initiation, invasion, and metastasis, and poor

clinical outcome (54). In accordance, complementary studies

have confirmed that mutations of enzymes from the TCA cycle,

SDH and FH, are linked to EMT and invasive phenotype in

pheochromocytoma and paraganglioma and renal cancer (55,

56). Similarly, decreased mtDNA content, which is associated
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with bioenergetics defects, linked with poor patient prognosis in

several tumours (57).

Yet, defects in mitochondrial function have been reported to

reduce tumour aggressiveness, as demonstrated in renal

oncocytoma, with an aberrant accumulation of dysfunctional

mitochondria inhibiting the autophagic machinery (58).

Consistent, inhibition of autophagy leads to mitochondrial

dysfunction and reprograms tumor fate toward benign

neoplasms (59).

The hypothesis is that the reduction in mitochondrial

function could be progressively advantageous for tumour cells

until a ‘minimal integrity point’, below which this alteration

becomes deleteriuos.

The determinants of the metabolic adaptations during

dissemination and metastasis are only partially defined. Overall,

cancer cells that detach from the primary tumor experience

oxidative stress, and thus activate mitochondrial antioxidant

networks to eventually metastasize. Coherently, in human

specimens of prostate cancer the peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC1a), which
is the master transcriptional regulator of mitochondrial oxidative

metabolism, is downmodulated (50). The role of mitochondrial

dysfunction in promoting metastasis is further confirmed by a

partial inhibition of mitochondrial respiratory chain due

to rotenone, with induction of cell migration and clonogenicity

in vitro and lung metastasis in vivo (60). Finally, mtDNA

mutations affecting complex I support breast cancer metastasis

in vivo via deregulation of NAD+/NADH and activation of

autophagy (61).

Despite these consistent lines of evidence, an increased

mitochondrial oxidative phosphorylation genes function was

detected in CTCs from orthotopically implanted breast cancer

mice, while in distant metastases expression of PGC1a was

increased, suggesting that tumor-specific reprogramming might

occur during metastasis, thus reconciling apparent discrepant

data from literature (62). Of note, differential use of pyruvate in

the mitochondria has been recently demonstrated to dictate the

site of metastasis in breast cancer (63, 64).

Last, several results support a role for metabolic adaptation

specifically mediated by activated mitochondrial function as a

key determinant of therapy resistance (48). As an explicative

example, resistance to mitogen-activated protein kinase

(MAPK) inhibitors in BRafV600-driven melanoma is associated

with increased mtDNA content and oxidative phosphorylation

(65), while inhibition of BRafV600 induces an oxidative

phosphorylation switch activated by PGC1a (66, 67),

enhancing the detoxification capacities of these cell.

To date, numerous drugs have been proposed to modulate

different functions of mitochondria for tumour therapy, which

have been reviewed elsewhere (68, 69). Briefly, these strategies

aim to compensate alterations in all relevant mitochondrial

activities, i.e. bioenergetics, signaling, and biosynthetic

functions (68, 69). At present, most drugs have been tested for
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antitumour activity in clinical trials (68). Moreover, the strict

interconnection between mitochondrial metabolism and core

cellular checkpoints reveals the potential of targeting

mitochondrial activity in combination therapies (48).

However, the variety of therapeutic targets and the ability of

cells to adapt and compensate need to be considered.

Mitochondrial metabolism is heterogeneous within and

between tumors (70) , as evidenced in the diverse

responsiveness to antiangiogenic therapies (71–73), suggesting

that the efficacy of anticancer therapy may depend on the

adaptive metabolic capacity of tumour cells. Furthermore,

cancer-initiating and therapy-resistant cells present a more

oxidative metabolic program, thus the emergence of therapy-

resistant cancer clones could rely on the newly acquired

metabolic state, while this metabolic plasticity can be

therapeutically exploited through the combination of standard

and antimetabolic therapies (48).

In this article, our objective is to review the most recent

evidence in support of a role for mitochondria dysfunction in

circulating tumor cells behaviour, with the attempt to eventually

reconcile apparent discordant results, and envision their

implications for a potential utility in clinics.
Potential impact of mtDNA
mutations in CTCs

Mitochondrial DNA (mtDNA), with its mutations and

polymorphisms, has only recently acquired novel attention in

tumor research. Yet, mitochondrial genetics in cancer has been

neglected for a long time. Only recent large-scale sequencing

efforts and clinical studies have highlighted the prevalence of

mutations in mtDNA and their potential roles in tumorigenesis

(74, 75). Human mtDNA is maternally inherited, with several

mtDNA copies per mitochondrion and hundreds of

mitochondria per cell, and encodes 37 genes, which include 22

transfer RNAs, 2 ribosomal RNAs and 13 protein subunits of the

electron transport chain (ETC) complexes and ATP synthase

(mtOXPHOS proteins) (75, 76). mtDNA is highly polymorphic

due to a mutation rate an order of magnitude higher than the

nuclear genome. Further, functional variants can be beneficial or

deleterious depending on the context. A subset of mtDNA

variants have been reported to cause minimal adaptive

changes in OXPHOS, with modulation of multiple

mitochondrial functions including stress, autophagy, and

oncogenic responses to environment (77–79). Moreover,

mtDNA can also influence the inflammasome, innate

immunity, IL-1b and NFkB inflammatory pathways, and T-

cell immune surveillance (79, 80).

Several examples in literature reported that a nearly total loss

of mtDNA copy number in vitro and in vivo results in subtle or

temporally delayed effects on mitochondrial function (81).

mtDNA is subjected to the phenomenon of heteroplasmy, i.e.
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the existence of diverse subsets of mtDNAmolecules into a given

cell, due to the multi-copy nature of mtDNA. Mitochondrial

DNA heterogeneity occurs frequently and is an important

concept for the development of mitochondrial dysfunction

(82). The availability of great datasets, such as the

International Cancer Genome Consortium (ICGC) and the

TCGA, demonstrated that ~60% of all solid tumors present at

least one mtDNA mutation (83, 84). A great majority of

mutations are at high levels of heteroplasmy, with a minority

of tumours achieving near-complete mutation homoplasmy,

thus indicating that dysregulation of mitochondrial function

via mtDNA mutation is a feature of tumour. Also, in general,

oncocytic tumours with high heteroplasmy of mtDNA

mutations, and significant mitochondrial dysfunction, are

benign, non-aggressive, low proliferating lesions (85). Recent

clinical and genetic studies pointed to mtDNA mutations as

potential drivers or phenotypic modifiers of prostate and thyroid

cancers (86, 87), yet a definitive experimental evidence of

mtDNA mutations as a key driver event in tumorigenesis

is lacking.

The heteroplasmic mtDNA genotype is continuously

remodelled during successive cytokinesis, thus several

genotypes with diverse oncogenic potential are generated

among tissues within the same individual over time (77).

The effect of mtDNA haplotype in tumor predisposition and

development has only recently been confirmed, as discussed in

details in a recent review on the importance of mtDNA

alterations to drive precision prevention trials (88–91).

Inherited missense alterations, potentially extremely

deleterious, in mtDNA genes, such as ND6 (NADH

dehydrogenase subunit 6) and COI (cytochrome oxidase

subunit I), which code for subunits of OXPHOS complexes I

and IV, have been associated with risks of tumors (77, 78, 92–

95). Such alterations in mtDNA are heteroplasmic and

frequently lethal if exceeding a biochemical threshold,

depending on several criteria, among which the type of tissue

(93–96). In mitosis milder mtDNA polymorphisms can shift to

become predominantly enriched within individual cells,

potentially contributing to neoplastic transformation. The

importance of this phenomenon for cancer predisposition has

been demonstrated as the mtDNA complex I ND5 m.12425delA

frameshift mutation, inherited as a germline mutation and

transmitted at lower heteroplasmy levels (5–10% mutant),

sh i f t ed to homopla smic muta t i on exc lus i ve l y in

nasopharyngeal tumor cells and correlated with lack of the

ND6 subunit (94). Genetic or pharmacologic (metformin)

disruption of mitochondrial respiration increased autophagy

and prevented cancer development in a mouse model of Li-

Fraumeni syndrome. On the other hand, in a pilot study of Li-

Fraumeni patients, metformin decreased mitochondrial activity

while activating a cell-signaling event which is known to lead to

rhabdomyosarcoma development (97). Of great relevance for

clinical applications, nuclear DNA germline mutations influence
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mitochondrial genomic instability for cancer predisposition, as

described e.g. for the nuclear genes BRCA1, SUV3, SOD (36, 74,

88, 98). Accumulating evidence suggests that mtDNA mutations

may also contribute to cancer cell development, tissue invasion

and metastasis. Indeed mtDNA variations, such as deletions,

point mutations and copy number differences, are associated

with several cancer types (99). In breast cancer, a compromised

mitochondrial function, due to mtDNA mutations and low

mtDNA copy number, has been associated with increased

metastasis and poor prognosis (78, 100); also low mtDNA

copy number promotes metastasis by inducing EMT via

mitochondrial retrograde signaling (101). In addition, cells

with compromised mitochondrial integrity rapidly progress to

malignancy (74, 99), and clonal expansion of mutant mtDNA

species was reported in 27–80% (average 54%) of malignant

tumor samples (102).

Despite this evidence, it has been reported that mitochondria

of tumor cells are functional and perform oxidative

phosphorylation. This concept further supports the notion of a

minimal integrity point determining the relevance of a defective

mitochondrial function on tumorigenesis. As a proof, targeted

depletion of mitochondrial DNA can reduce tumorigenic

potential in vivo (36). A recent paper demonstrated the effects

of complete mitochondrial DNA deletion on the ability of

tumors to metastasize in vivo (40). Normal cells contain both

discrete and networked mitochondria each with multiple

mtDNA copies. Melanoma and breast carcinoma cells

completely deprived of mtDNA, named r0 cells, upon

injection intravenously in syngeneic murine models, have

delayed tumor growth (40, 41). Of note, cells derived from

primary tumors originating from r0 cells, and their circulating

and metastatic counterparts, acquired a partial mitochondrial

network, and progressively recovered a full respiratory function;

this effect was associated with stepwise assembly of

mitochondrial electron transport chain complexes and

correlated with tumorigenicity (40). The acquisition of a full

mitochondrial competence is dependent from horizontal

mtDNA transfer, consistent with previous in vitro results (103,

104). A crucial step of full respiration recovery is associated with

the assembly of the respirasome and ETC complex II (CII), in

accordance with the requirement for efficient OXPHOS in

metastatic dissemination (62). Consistent with these

observations, autophagy is activated in CTCs when respiration

is partially restored, in order to eliminate dysfunctional

mitochondria. In accordance, higher levels of TFAM, a critical

factor for replication, transcription, and packaging of mtDNA

(105) and OPA1 (106) have been observed, while mitochondria-

to-nucleus retrograde signaling eventually restores both mtDNA

distribution and respiratory function (40). A minimum level of

mtDNA damage is needed to initiate intercellular transfer of

functional mitochondria. An independent confirmation has

been reported in human glioblastoma cells (107). Thus, tumor

cells deprived of mtDNA can acquire mtDNA of host origin,
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resulting in stepwise recovery of respiration from primary to

metastatic tumor cells, with the crucial role of the complete

assembly of the respirasome and CII (40).

As previously outlined, polymorphic sites are distributed

along the complete mitochondrial genome. The genetic diversity

of mtDNA in blood is strongly associated with tumor and may

serve as a diagnostic marker. The small size (16,569 bp) of

mtDNA is especially suitable for the accurate assessment of such

profiles and the association of genetic heterogeneity, rather than

specific mutations, with cancer, together with its clonal

expansion, high copy number and high mutation rate (77). In

a recent study, a significant depletion of mtDNA has been

reported for several types of tumors, such as bladder, breast,

kidney, and liver cancer (57), thus the identification of specific

mutant variants in tested blood is quite difficult. Assessment of

heterogeneity profiles of intra-host mtDNA variants from blood

has been proven to overcome the identification of specific

mutations for diagnostic detection of HCC (108). Consensus

sequences of mtDNA differ between tumor and blood from ~

58% of patients, while most tumor-specific variants (99.4%) were

present in less than 5% of HCC patient, limiting their use as

general cancer markers (108). In contrast, accurate estimation of

heterogeneity can be performed at a moderate sequencing depth,

thus providing a more reliable source of cancer-specific markers

(108). Thus, a strong genetic signal consisting in a intra-host

mtDNA profile has been documented, despite the presence of

tumor-specific mutant mtDNA species at a very low

concentration in plasma. However, at present the strict HCC

specificity of the classifier has not been confirmed (108).
Effect of dysfunctional mitochondria
in CTCs

The deregulation of cellular energetics is a hallmark of tumor

cells, with enhanced glycolysis, pentose phosphate pathway, and

glutaminolysis, as a result of altered mitochondrial function (37,

38). In order to dissect the metastasis-related deregulation of

metabolic genes in CTCs, a panel of genes have been analyzed in

prostate cancer cell lines with different metastatic capacities

(109). Eight metabolic genes were differentially expressed in

metastatic cell lines, HK2, PDP2, G6PD, PGK1, PHKA1, PYGL,

PDK1, and PKM2 (109), with a confirmed and remarkable

association between their functions and the metastatic capacity

of tumor cells (110–112). Of clinical relevance, the identified

genes were detected in the CTCs of 54 clinical samples. Of note,

two key enzymes of glycolysis and the pentose phosphate

pathway, respectively, PGK1 and G6PD, were determined as

efficacious markers for CTCs metabolic analysis (109). Further,

PGK1/G6PD-marked hypermetabolic CTCs (GM+CTCs, i.e.

DAPI+CD45−PGK1/G6PD+ cells) potentially represent a

more accurate marker than EMT-CTCs for the diagnosis of
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metastasis in prostate cancer patients (109). Indeed, increased

GM+CTCs level was associated with advanced tumor stage and

metastasis (P < 0.05), and presented higher AUCs of the ROC

curve (0.780) in the discrimination of metastatic patients than

the EMT CTCs subtypes (E-CTCs 0.729, H-CTCs 0.741, and M-

CTCs 0.648) (109).

In breast tumor patients CTC exhibited enhanced

mitochondria biogenesis and respiration, with higher

expression levels of genes associated with mitochondrial

biogenesis (PGC-1a, PGC-1b, NRF1, and ERRa) and

oxidative phosphorylation (Cox5b, Cox4i, ATPsynth, CytC)

(62). CTCs were largely quiescent and specifically upregulated

PGC-1a, and presented a more aerobic metabolism compared to

both primary and metastatic tumors (62). These effects were

proven to be mediated by PGC-1a (62). Of clinical relevance,

high PGC-1a expression was detected in over 80% of CTC from

IDC patients with lung metastases, confirming its association

with distant metastasis and poor outcome (62). Thus, some

invasive and migratory properties of tumor cells are dependent

on mitochondrial respiration and PGC-1a is a potential target

for therapeutic intervention. A dynamic shifts in the metabolic

program of tumor cells facilitates diverse steps in cancer

progression and metastasis, and mitochondrial biogenesis and

respiration induced by PGC-1a is essential for functional

motility of cancer cells and metastasis (62). The reversible shift

in patterns of metabolic gene expression is synergistically

coupled with genes frequently associated with EMT and

acquisition of enhanced migratory and invasive properties of

tumor cells (62). Several reports proved the mutual regulation of

metabolic genes by EMT and vice versa, through both in vivo

and in vitro experiments, thus synergistically promoting cancer

metastasis (113–115). Altering mitochondrial function also

determines survival and acquisition of cancer stem cell

properties, in part via retrograde mitochondria-nucleus

signaling (116). Mitochondrial activity and ROS detoxification

are critical for cancer cell viability (117), and ensure cancer cell

survival detaching from basement membrane (118). Further, E-

cadherin expression is an important determinant of metastatic

potential in metastatic lung nodules and CTCs in breast cancer

(119), consistent with the loss of its expression due to EMT

occurring frequently during tumor metastasis. E-cadherin

activation inhibits metastasis at multiple stages, including the

accumulation of CTCs from the primary tumor and the

extravasation of tumor cells from the vasculature (119).

Activating mAbs increased the frequency of apoptosis in CTCs

and tumor cells in metastatic nodules, through upmodulation of

Bax mRNA expression, and downmodulation of Bcl-xL mRNA

expression (119). Overall these data reconcile with the notion

that tumor-specific reprogramming might occur during

sequential stage in tumorigenesis and in the metastatic

cascade, as outlined previously in the manuscript (47, 48).

In a recent paper, testing the presence of CTC in peripheral

blood of patients with renal cell carcinoma (RCC) undergoing
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surgery, authors reported a difference of the mitochondrial

network between CTCs and basophils, monocytes and

neutrophils, as evaluated by mitochondria staining, was

observed (120). RCC is a highly invasive tumor, and patients

respond poorly to chemotherapy, even in combination with

immunotherapy (121, 122). Further, early detection of RCC

remains a significant challenge. Predictive markers of response

still lack in clinical practice. Testing CTCs profiles by gene

expression analysis of the targetable genes may improve RCC

therapy outcomes. Multiregional sequencing of RCC tumors and

metastatic tissues evidenced the high intra-tumoral

heterogeneity with respect to adjacent normal kidney tissue

(123). The frequent lack of epithelial antigens and

concomitant EMT in RCC tumor cells (124) often

compromise CTC capture. The size-based isolation of CTCs

by using the ISET (isolation by size of epithelial tumor cells)

filtration method in combination with mitochondria staining

allows to differentiate non-hematopoietic cells in the peripheral

blood and define CTC subgroups possibly associated with

metastatic potential, confirming that an altered mitochondrial

network is relevant in determining the metastatic phenotype of

CTCs (120). A relevant drawback in this study is the lack of data

related to differences in mitochondrial network observed

between CTCs and leukocytes, if related to mitochondrial

volume or structure, and, especially, if a correlation with

specific CTC subsets was conceivable.
ROS function in circulation-related
stresses in CTCs

Epithelial–mesenchymal transitioned CTCs enter into the

vasculature, due to loose mosaic vessels and remodelling of

extracellular matrix (ECM) (125, 126). Intravascularly, these

metastasis-initiating CTCs need to maintain survival under

anoikis, immune attack, and severe shear stress. Although the

great majority of CTCs die into the circulation (127), 0.1% of

CTCs survive as disseminated cells and eventually relapse (128).

Into the circulation tumor cells respond to mechanical forces,

and the role of the fluid microenvironment in metastasis has

been recently proven, both as interstitial flow (~ 0.1 dyn/cm2),

blood (1–30 dyn/cm2)/lymphatic circulation (~ 0.64 dyn/cm2),

and target organ-specific fluid microenvironments (129). Of

clinical relevance, the interstitial flow determines the direction

of tumor cell metastasis to specific organs (130). One of the most

crucial mechanical forces is generated by liquid flowing on the

cell surface, i.e. the laminar shear stress (LSS) (129, 131). The

laminar shear stress regulates the survival and function of

normal cells, such as endothelial cells, osteoblasts, and

circulating hematopoietic embryonic stem cells (132–135), and

also promotes metastatic potential and anoikis resistance in

breast CTCs (136, 137).
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In vivo and in vitro evidence has proven that conversion

from epithelial tumor cells into CSLCs/TICs can occur within

blood vessels, due exclusively to hydrodynamic shear stress

experienced during systemic circulation, without additional

requirement for growth factors or a hypoxic stromal niche

(138). A recent study has demonstrated that the fluid shear

stress (0.05 dyne/cm2) in the interstitium can promote cancer

motility through modulating the Yes-associated protein (YAP1)-

related ROCK-LIMK-cofilin signaling pathway (139).

Adhesion to the ECM helps to maintain normal tissue

architecture, and loss of anchorage activate a programmed cell

death termed ‘anoikis’ (140). Anoikis is due to cell detachment

from the ECM and prevents anchorage-independent tumor cell

growth. CTCs need to acquire resistance to anoikis to survive in

the circulatory system, where cells encounter the fluid shear

stress. Resistance to anoikis is a hallmark of malignant tumor

cells, and both the dynamic ECM network (141, 142) and

hypoxic conditions (143) have been proven to promote anoikis

resistance and increase survival in epithelial and carcinoma cells.

Dissecting the molecular mechanisms that protect tumor cells

from undergoing anoikis is critical, and novel strategies to target

CTCs within the circulation could reduce their metastatic

potential. Cancer cells acquire anoikis resistance via several

mechan i sms and s i gna l i n g mo l e cu l e s i n c l ud ing

phosphoinositide 3‐kinase (PI3K)– protein kinase B (Akt)

(144), Ras–extracellular signal regulated kinases (ERK) (145),

Jun‐ N‐terminal kinase (146), mitogen‐activated protein–

extracellular signal‐regulated kinase (147), and integrins (148).

In addition, tumor microenvironments can also contribute to

anoikis resistance in cancer cells by altering matrix rigidity,

increasing oxidative stress, and depriving cells of adequate

oxygen supply (149–151). An increased ROS level has been

reported in CTCs (118). ROS have been confirmed to be crucial

regulators of cell adhesion (8), and attachment of CTCs to the

lining of the microvasculature is a crucial step for cancer cell

extravasation and metastasis generation (152, 153). A high ROS

level is associated with enhanced invasiveness and metastasis in

hepatocellular carcinoma (HCC) (154). In pancreatic cancer and

melanoma, acquisition of anoikis resistance protects cells from

apoptosis, and promotes cell invasion and metastatic potential

through the phosphorylation of STAT3 at Tyr705 (155). Anoikis

is a highly complex multistep process, and both acquisition of

apoptosis resistance and autophagy promote epithelial cell

survival during anoikis (156).

Signaling activated by EMT‐related transcription factors

constitutively activate specific signals in metastasis, including

evasion of anoikis, with enhanced stemness and clonogenic

features of cancer cells (157). The importance of EMT in

metastasis is doubtful and recently discussed in several studies

(158–160). Even the most mesenchymal states are not

irreversibly committed (161), and a lot of studies support the

notion that the metastatic potential greatly correlates with an

intermediate EMT state (54, 125, 162–164). Yet, distinct hybrid
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phenotypes states determine the invasive, metastatic, and

differentiation characteristics of tumor cells, with implications

in tumor heterogeneity, invasion, metastasis, and resistance

to therapy. Fluid shear stress experienced in systemic

circulation can lead to specific acquisition of MSC-like

potential in breast tumor CTCs, that promotes EMT, and

acquisition of CSLCs/TIC potential (138). Such effects were

proven to be mediated by promoting conversion of

CD24middle/CD44high/CD133middle/CXCR4low/ALDH1low

primary patient epithelial tumor cells into CD24low/CD44low/

CD133high/CXCR4high/ALDH1high cancer stem-like cells

(CSLCs), with plasticity and self-renewal capacity (138). This

activation is dependent on ROS/NO generation, and suppression

of extracellular signal-related kinase (ERK)/glycogen synthase

kinase (GSK) 3b, an analogous mechanism operating in

embryonic stem cells to prevent their differentiation while

promoting self-renewal (138). Briefly, activated stress-

responsive signaling pathways induces the transition from

tumor cells to more highly invasive TIC (138).

Tumor cells detached from the ECM, upon invasion through

the basement membrane, and entering into the circulatory

system, encounter blood flow‐induced low shear stress (LSS; 2

dyn/cm2), which induces expression of Caveolin‐1 (Cav‐1), a

22‐kDa integral membrane protein. Cav‐1 has been proven to

induce breast cancer cell motility, invadopodia formation, and

metastasis via the PI3K–Akt–mechanistic target of rapamycin

signaling pathway (141). In addition, LSS protects breast tumor

cells from anoikis under anchorage‐ independent conditions via

a Cav‐1‐ dependent signaling pathway, by inhibiting Cav‐1‐

dependent extrinsic and intrinsic apoptotic crosstalk signaling

(136). Indeed, LSS‐induced dissociation of Cav‐1–Fas inhibited

the generation of the death‐inducing signaling complex, caspase‐

8 activation, with inhibition of the extrinsic apoptosis signaling

pathway (136). Likewise, LSS blocked the mitochondrial

pathway through promotion of integrin b1–focal adhesion

kinase‐mediated multicellular aggregation, suppression of

truncated BID translocation, inactivation of caspase‐8 and

mediated crosstalk between the extrinsic and intrinsic

apoptotic pathways, which in turn inactivate Bcl‐2 and Bcl‐xL,

thus preventing mitochondrial membrane permeabilization

through Bax oligomerization (136). Accordingly, depletion of

Cav‐1 restored sensitivity to anoikis. Also, upon LSS a significant

decrease in Beclin‐1 has been observed, thus autophagy might be

another regulator of LSS‐induced anoikis resistance (136). These

data underline a novel role for flow‐induced shear stress in the

regulation of anoikis in neoplastic cells, indicating that LSS‐

induced anoikis resistance is a critical mechanism that increases

tumor malignancy (136). In human lung carcinoma cells, ROS

prevent Cav‐1 ubiquitination and degeneration (149). Also, a

recent study demonstrated that Cav‐1 is involved in anoikis

resistance in human lung cancer cells through regulation of

myeloid cell leukemia 1 (Mcl‐1) by interacting with Mcl‐1 and

preventing it from degradation (165). Overall, these results may
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lead to potential therapeutic strategies targeting Cav-1 and

modulating the tumor microenvironment (136).

The effect of cyclic laminar shear stress (LSS) has been recently

studied in vitro on CTCs of colorectal tumor (CRC) (166).

Suspended tumor cells with a CK8+/CD45−/DAPI+ phenotype

actively responded to LSS by activating the expression of atonal

bHLH transcription factor 8 (ATOH8), a fluid mechanosensor,

with key roles in intravascular survival and metabolism plasticity

(166). Molecules, with the capability of sensing and translating

mechanical forces, can transform physical stimulation into

biological signals (167). As a new LSS-response molecule,

ATOH8 is induced by 10 dyn/cm2 LSS in endothelial cells, and is

also involved in angiogenesis, skeletal muscle formation, and

embryonic development (168–170). ATOH8 expression among

tumors is heterogeneous, and its role as a tumor suppressor or

tumor promoter is still controversial. ATOH8 could inhibit stem

cell features of hepatocellular carcinoma cells (171) and malignant

phenotypes of nasopharyngeal carcinoma (172), while promoting

cell proliferation and inhibiting apoptosis in CRC cells (173).

In CRC it exerts a tumor promoting effect and is associated with

hematogenous metastasis and poor prognosis in patients (166).

Specifically, ATOH8 was upregulated in CTCs via activation of

VEGFR2/AKT signalling pathway mediated by LSS induced VEGF

release in vitro and in vivo (166). ATOH8 transcriptionally activated

HK2-mediated glycolysis and inhibited cell death pathway in CTCs,

thus mediating the intravascular survival of colorectal tumor cells in

the circulation, and ultimately providing a novel potential target for

the prevention and treatment of hematogenous metastasis in CRC

(166, 174) Metabolism and cell survival are inextricably linked, and

cancer cells can switch between different metabolic states to respond

to adverse conditions such as metabolic stress, anoikis, and

mechanical stress (131, 175). ATOH8 overexpression could

promote CRC CTCs migration, invasion, anoikis resistance,

facilitating CTC survival (166). HK2 is one of the key enzymes of

glycolysis, participating in the regulation of cancer cell metabolism

and death, and its overexpression is significantly positively

correlated with CRC recurrence (176). HK2 can support cell

survival via promoting glycolysis and reducing overabundant

ROS or generating HK2-VDAC complex with inhibition of

mitochondria-mediated apoptosis. As expected, in ATOH8-

overexpressing CRC cells ROS level were down-regulated while

mitochondrial HK2 was up-regulated (166). Briefly, a VEGF-

VEGFR2-AKT signal axis in CRC m-CTCs contributes to the

high expression of ATOH8 and ultimately promotes CTC

survival in the fluid microenvironment upon LSS exposure (166).
Mitochondria and drug resistance
in CTCs

CTCs may respond differently to chemotherapies compared

to primary tumor cells. CTCs isolated from advanced breast
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cancer patients are more resistant to the DNA-damaging and

pro-apoptotic effects of chemotherapy than tumor cells attached

to the ECM (177). Of note, the response of CTCs to

chemotherapy has a prognostic significance. Apoptosis in

CTCs correlates with systemic chemotherapeutic response and

disease progression upon therapy (177).

Chemotherapy activates the intrinsic pathway of apoptosis

(178, 179). The anti-apoptotic Bcl-2 proteins are expressed on the

mitochondrial membrane and prevent apoptotic cell death upon

directly binding to pro-death Bax and Bak. ROS both induce the

mitochondrial anti-apoptotic proteins via activation of the

transcription factors NF-kB, Nrf-2, and HIF-1a (180, 181), and

reduce the expression of pro-apoptotic proteins via the ERK/

MAPK and PI3K/Akt pathways (182). As a proof of evidence for

therapeutic strategies, caspase 3 activation and Bcl-xL depletion

are correlated with a decreased number of CTCs and metastasis

(119).The interactions of certain Bcl-2 proteins occur at the BH3

domains (178), and BH3 profiling measures the relative

interactions of pro- and anti-apoptotic proteins to determine

whether a tumor cell is near the threshold to activate apoptosis

through mitochondrial outer membrane permeabilization (178,

179). Coherently, BH3 profiling acts as a metabolic signature

and can predict response to chemotherapy and resistance to

targeted therapy (183, 184). For example, a tumor with high

level of functional Bcl-xL, an anti-apoptotic protein, may be

resistant to therapy and BH3 profiling should correlate with

lack of treatment efficacy (179). A recent trail, registered at

Clinicaltrials.gov. (NCT03223662) has been set with the primary

objective to determine whether a metabolomic signature or BH3

profiling of pre-neoadjuvant tumor biopsy correlates with the

outcome of pathological complete response (pCR) after

neoadjuvant chemoradiotherapy for patients with esophageal

adenocarcinoma or squamous cell carcinoma, to serve as a basis

for precision-based, personalized strategies for future treatment

(185). Mitochondrial priming is dynamic, therefore, its threshold

for apoptosis can be decreased by selecting tumor specific

therapies. Stratification of patients based on whether pCR

occurs may identify metabolomic signatures associated with

response. Furthermore, future trials will be based on altering the

mitochondrial threshold for apoptosis to increase the

susceptibility to standard therapeutics.

Progression into the cell cycle, CD40L-NF-kB–mediated

Bcl-xL upregulation, downmodulation in the expression of the

proapoptotic Bim, Bax, and Bak proteins (186) and ultimately a

decrease in mitochondrial priming and drug resistance have

been recently confirmed in Mantle cell lymphoma (MCL) by

using an ex vivo model (187). Using BH3 profiling, the central

role of microenvironment-dependent signaling has been

confirmed, with sequestration of the BH3-only activator Bim

by Bcl-xL proteins at the mitochondrial level (187). Further,

anti-CD20 antibody OBN Obinutuzumab efficiently counteract

overexpression of Bcl-xL through NF-kB inhibition and loss of

mitochondrial priming and drug sensitivity (187); consistently,
Frontiers in Oncology 08
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increased progression-free survival (PFS) in combination with

bendamustine (188). The combined use of ibrutinib, which

mediates indirect Bcl-xL down-modulation upon BTK-

dependent binding, and venetoclax may improve clinical

responses with more efficiency and less toxicity than the

current s tandard of care . At present , an ongoing

Obinutuzumab, GDC-0199 Plus Ibrutinib in Relapsed/

Refractory Mantle Cell Lymphoma Patients (OAsIs) Trial for

MCL patients (OBN, ibrutinib, and venetoclax, www.

nationalclinicaltrials.gov,#NCT02558816) has been designed to

determine in vivo efficacy through a selective approach targeting

the lymphoma niche (187).

Induction of apoptosis is a common effect of several drugs.

B-cell lymphoma 2 (Bcl2) expression is associated with

resistance to apoptosis, and might be a marker for relative

therapeutic resistance. Serial apoptosis monitoring might

provide insight into resistance to a therapeutic regime. Bcl-2

should thus represent a biomarker of biological and clinical

interest (189–191). A pilot study has been performed on

metastatic breast cancer (MBC) patients with the aim to

estimate Bcl-2 expression and apoptosis in CTCs after

initiation of a new therapy, in order to assess the therapeutic

efficacy (192). At baseline, apoptosis inversely correlated with

CTC number and modestly with Bcl-2 positive CTC. As

expected, higher CTC levels at baseline or first follow-up were

associated with worse prognosis (9) and provide novel

observations for Bcl-2 expression and apoptosis in CTCs. After

one cycle of therapy in patients with elevated CTC, higher levels

of CTC apoptosis were associated with worse prognosis, while

higher CTC-Bcl-2 levels correlated with decreased apoptosis and

superior PFS, resembling that for patients without elevated CTC

(192). Actually the cohort consisted of a relatively small number

of patients. In a recent paper, in patients with ER positive breast

cancer who received adjuvant endocrine therapy, Bcl-2 predicted

favourable outcomes, although its presence has been associated

with worse prognosis (193–195). Since some patients had

ER positive disease while others were ER negative, and some

received endocrine therapy while others received chemotherapy,

the association of CTC-Bcl-2 with outcomes may be quite

heterogeneous. In summary, the results from this pilot study

confirmed the prognostic significance of CTC at baseline and

first follow-up for patients with metastatic breast cancer (192,

196). Further studies are needed to incorporate these assays into

larger, more definitive trials as well as standard clinical practice.

CTCs have been reported as prognostic in all stages of breast

cancer. A novel strategy for the isolation and expression

profi l ing of pure popula t ions of CTCs based on

immunomagnetic capture and fluorescence-activated cell

sorting (IE/FACS) has been described (197). Unsupervised

hierarchical clustering revealed that CTC profiles clustered

with more aggressive subtypes of primary breast tumors, with

downregulated apoptosis, the relative absence of immune-
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related signals and down-modulation of ribosomes (197),

relative to peripheral blood, suggesting a relatively quiescent

state in circulation (198). As expected, CTCs from MBC had

significantly higher risk of recurrence scores than primary

tumors (197).

Recently a higher expression of Bcl2 and reduced expression

of acetyl coenzyme A carboxylase-1 (ACC1) in tumors

associated with CTC clusters (CTCcls) positivity has been

reported (199). CTCcls represent a unique subset with higher

metastatic potential and resistance to chemotherapy compared

to single CTCs (5, 200). Of clinical relevance, patients with early-

stage/locally-advanced BC have higher median CTCcl counts

compared to patients with metastatic tumor (201). Further,

CTCcls have a clinical prognostic value both at baseline and

after treatment in terms of PFS and OS in cancer patients (9, 202,

203). Of note, a CTCcl+ gene signature consisting of 54

upregulated genes has been identified, significantly associated

with poor relapse-free survival (RFS) in 360 patients with basal-

like BC advancements (199), confirming Bcl2 expression as a

poor prognostic factor in triple negative breast cancer (TNBC)

patients, especially in the absence of adjuvant therapy (204).

Also, Bcl-2 is upmodulated in CTC of xenograft models of

TNBC (199), and correlated with higher levels of adhesion

molecules including E-selectin, ICAM-1, and VCAM-1 (205).

Of clinical relevance, despite a subset of CTC consists of

circulating cancer stem cells with high tumorigenic potential

(206), CTCs are resistant to chemotherapy through mechanisms

different from those activated in CSCs (207, 208). Stress induced

in CTC, upon loss of ECM attachment, determines either

anoikis-associated apoptosis (209) or generation of elevated

levels of ROS (118, 210), with mild DNA damage and pre-

activation of DNA checkpoints (211), as recapitulated in in vitro

experiments. As a result, the DNA damage repair is efficiently

activated upon chemotherapy, while inhibiting ROS production

dramatically reduces the efficiency of post-chemotherapy DNA

damage repair. Different from CTCs, breast CSCs had lower

levels of ROS as compared with non-CSCs (212). A DNA

damage repair response in cancer cells has been confirmed to

determine tumor resistance to several DNA-damaging therapies,

including anthracyclines and platinums (213). ATM/Chk2 and

ATR/Chk1, which are two major kinase signaling pathways

involved in the canonical DNA damage response network, are

pre-activated in CTCs, and cause cell cycle arrest (177).

Activation of checkpoint kinases represents an important

mechanism limiting chemotherapeutic efficacy (213, 214).

Thus, several Chk1/Chk2 inhibitors, including XL-844,

AZD7762, and PF00477736, which potentiate the effects of

DNA-damaging therapies by abrogating DNA damage-

induced cell cycle arrest, have entered clinical trials for cancer

therapy in combination with chemotherapeutic drugs (215). In

accordance, these agents sensitize resistant CTCs to

chemotherapy in vitro, with reduction of the number of CTCs
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and inhibition of lung and liver metastasis in xenograft

models (177).

Coherently, exposure to cytotoxic/oxidative stress mediates a

switch of CTC to a less proliferative but more drug-resistant

phenotype (216). CTC in women with advanced oestrogen

receptor (ER)-positive/human epidermal growth factor receptor

2 (HER2)-negative breast cancer acquire a HER2-positive

phenotype after multiple courses of therapy (217, 218). While

primary breast cancer is highly sensitive to HER2-targeted

therapy, the clinical significance of acquired HER2 heterogeneity

in metastatic tumor has been only recently analyzed (216).

Cultured CTC isolated from women with ER+/HER2− primary

tumors, 84% of whom had acquired HER2 expression, consisted

of discrete subpopulations: a more proliferative HER2+ CTC

subset, not addicted to HER2, consistent with activation of

multiple signalling pathways, and a HER2− CTC subset,

resistant to cytotoxic chemotherapy, while sensitive to Notch

inhibition, due to activation of Notch and DNA damage

pathways (216). Treatment of HER2+ CTCs with low doses of

docetaxel or induction of oxidative stress induced rapid shifts

from HER2+ to HER2−, thus modulating the HER2+/HER2−

interconversion (216). HER2+ and HER2− CTCs interconverted

spontaneously, and had comparable tumor initiating potential

(216). Simultaneous treatment with paclitaxel and Notch

inhibitors determined suppression of tumorigenesis in

orthotopic CTC-derived tumor models (216). Together, these

results point to distinct interconverting phenotypes within CTC,

contributing to progression of breast cancer and acquisition of

drug resistance.

Last, a number of studies have highlighted the role of tumor

microenvironment in promoting tumor metastasis (219). In

addition to circulating tumor cells, increased levels of viable

circulating endothelial cells (CEC) are also released from

primary tumors in patients with progressive disease (220). In

head and neck cancer patients tumor-associated CEC express

significantly higher level of Bcl-2, that is directly correlated with

metastatic status, since they co-migrated with tumor cells to lung

(221). CECs expressing Bcl-2 in the patient blood samples might

be originating from tumor microvasculature and their binding to

tumor cells induces a marked increase in Src and FAK activation

in tumor cells, with anchorage independent survival (222),

inhibition of both apoptosis, through regulating Bim, and

anoikis, through regulating BAD (223, 224). Endothelial cells

overexpressing Bcl-2 (EC-Bcl-2) expressed significantly higher

levels of E-selectin and exhibited enhanced tumor cell binding

(205). In addition, tumor cells bound to EC-Bcl-2 showed

significantly higher anoikis resistance that was mediated by the

Src-FAK signaling pathway (205). Furthermore, SCID mice

coinjected with tumor cells and EC-Bcl-2 showed significantly

higher lung metastasis (205). These results demonstrated a novel

role for tumor-associated endothelial cells in protecting tumor

cells from anoikis and chaperoning the tumor cells to distal sites.
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Discussion

In the present review, we discussed the most recent

research describing mitochondria alterations in the context

of CTCs and their main effects on tumorigenesis and

metastasis, and on CTCs behaviour, as summarised in

Figure 1 and Table 1. In literature there are relatively few

data on this argument, with some main limitations related

predominantly to the low detection rate and difficulties in

isolation of viable CTCs from circulation.

Thus, most reports relate to a selection of tumor types,

lacking a comprehensive overview of the significance of

mitochondria dysfunctions in CTC and their role in mediating

tumor metastasis. Despite this shortcut, a wealth of information

still demonstrates a role for mitochondria in neoplastic

transformation, and suggests a potential clinical use, for both

diagnostic and therapeutic purposes.

A novel concept, outlined in the present manuscript, and

supported by the most recent advancement on mitochondria

dysfunction in tumor, is related with the high plasticity of
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these organelles. Altogether, the heteroplasmy of mtDNA, the

identification of a minimal integrity point for mitochondria

functionality, and, finally, the mitochondria priming in

apoptosis and drug response influence the adaptive

capability of these organelles to the requirement of cancer

cells over time. Indeed, many apparently controversial

reports from literature can be eventually reconciled,

allowing for diverse tissues of origin and the different stages

of cells throughout tumorigenesis and metastasis. Such

adaptive responses of mitochondria render apparently

difficult to depict a mode of intervention for their effective

drug modulation.

Nevertheless, the interest in dissecting the mechanisms

through which mitochondria might part ic ipate in

determining CTC responses to microenvironment and

dictating their metastatic potential, is obvious, both to the

research community and clinicians. In consideration of the

current evolution rate in CTCs isolation and profiling in a

growing panel of tumors (e.g. mesenchymal versus epithelial

tumors), we are expecting relevant advancement on this
frontiersin.or
FIGURE 1

Schematic representation of the most relevant alterations reported in mitochondria, and their implications in CTC phenotype. The genetic and
metabolic plasticity of tumour cells and the identification of a minimal integrity point threshold in mitochondria permit greater oncogenic/
metastatic potential in CTCs. The effects of such adaptations in CTCs are depicted.
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argument in the coming years. The possibility of detecting and

more extensively characterizing mitochondria alterations in

CTCs will allow to obtain more robust and direct proofs of the

still incomplete data presented in this review.
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TABLE 1 Most relevant data on the implications of mitochondria alterations identified in CTC, as discussed in the review.

Brief description of results Preclinical models Clinical
samples

Reference Year

Role of E-cadherin in accumulation, extravasation and lung metastasis generation of breast
tumor cellsby inhibiting apoptosis

Mouse models of
mammary cancer

(119) 2020

Ability to differentiate CTCs and leukocytes, and define CTC subgroups possibly associated with
metastatic potential

Renal cell
carcinoma
(n = 186)

(120) 2020

Activation of ATOH8 expression in CTCs exposed to LSS, with induction of CTCs migration,
invasion, anoikis resistance, survival; association of ATOH8 expression in CTCs with metastasis
and poor prognosis in patients

Mouse models of colorectal
cancer

Colorectal cancer
(n=156)

(166) 2020

Acquisition of EMT properties and CSLCs/TIC-like potential in breast tumor CTCs upon fluid
shear stress exposure

Cells from tumor tissues of
patients with breast cancer

(138) 2019

Induction of Cav‐1 expression upon LSS, preventing anoikis through inhibition of apoptosis
Decrease in Beclin‐1 upon LSS, with regulation of anoikis resistance through autophagy

Human breast carcinoma
cells

(136) 2019

Identification of a CTCs gene signature associated with poor RFS in patients with basal-like BC
advancements, confirming Bcl2 expression as a poor prognostic factor in TNBC

Triple-negative BC patient-
derived
xenograft transplantable
models

(199) 2019

Detection of PGK1/G6PD+CTCs in 64.8% of prostate cancer patients, and association with
advanced tumor stage and metastasis

Metastatic prostate cancer
cell lines

Prostate tumor
(n=54)

(109) 2018

HER2+ and HER2− CTCs interconverting subsets, with comparable tumor initiating potential,
contributing to progression of breast cancer and acquisition of drug resistance

Orthotopic CTC-derived
tumor models

ER+/HER2−
breast cancer
(n=19)

(216) 2016

Clustering of profiles of CTCs with more aggressive subtypes of primary breast tumors
Higher risk of recurrence scores of CTCs from metastatic breast tumors than primary tumors

Metastatic breast
cancer (n=5)

(197) 2015

Activation of autophagy, TFAM and OPA1, mitochondria-to-nucleus retrograde signaling in r0
CTCs with partially restored respiration

Mice model of metastatic
melanoma and breast
tumor r0 cells

(40) 2015

Higher resistance to chemotherapy in CTCs due to potentiated DNA repair, inhibition of
checkpoint kinases Chk1 and Chk2 in CTCs to reduce cancer metastasis

Tumor xenografts Metastatic breast
cancer (n=60)

(177) 2015

Enhanced PGC-1a, mitochondria biogenesis and oxidative phosphorylation in CTCs from IDC
patients with confirmed lung metastases and poor outcome

Orthotopically implanted
breast cancer mice

Breast invasive
ductal carcinoma
(n=30)

(62) 2014

Association of higher CTC levels at baseline or first follow-up with worse prognosis
Positive association of higher levels of CTC apoptosis with worse prognosis after therapy, and of
higher levels of Bcl-2 positive CTC with decreased apoptosis and superior PFS

Metastatic breast
cancer (n=83)

(192) 2013
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