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Abstract

Organisms face tradeoffs in performing multiple tasks. Identifying the optimal phenotypes maximizing the organismal
fitness (or Pareto front) and inferring the relevant tasks allow testing phenotypic adaptations and help delineate evo-
lutionary constraints, tradeoffs, and critical fitness components, so are of broad interest. It has been proposed that Pareto
fronts can be identified from high-dimensional phenotypic data, including molecular phenotypes such as gene expression
levels, by fitting polytopes (lines, triangles, tetrahedrons, and so on), and a program named ParTI was recently introduced
for this purpose. ParTI has identified Pareto fronts and inferred phenotypes best for individual tasks (or archetypes) from
numerous data sets such as the beak morphologies of Darwin’s finches and mRNA concentrations in human tumors,
implying evolutionary optimizations of the involved traits. Nevertheless, the reliabilities of these findings are unknown.
Using real and simulated data that lack evolutionary optimization, we here report extremely high false-positive rates of
ParTI. The errors arise from phylogenetic relationships or population structures of the organisms analyzed and the
flexibility of data analysis in ParTI that is equivalent to p-hacking. Because these problems are virtually universal, our
findings cast doubt on almost all ParTI-based results and suggest that reliably identifying Pareto fronts and archetypes
from high-dimensional phenotypic data are currently generally difficult.
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Introduction
The fitness of an organism in an environment is a function of
its performances of multiple biological tasks. For example, the
fitness of a microorganism rises with its abilities to reproduce
given the resource and to acquire new resources when the
given resource is exhausted, and the relative contributions of
the two abilities to fitness are environment-dependent (Yi
and Dean 2016). However, no phenotype can be optimal
for all tasks. Fish whose eggs are larger lay fewer eggs
(Duarte and Alcaraz 1989). The showy peacock tail attracts
mates as well as predators (Darwin 1859). A speedy transla-
tional elongation ensures efficient protein synthesis but sac-
rifices the quality of the proteins synthesized (Yang, Chen,
et al. 2014). The concepts of Pareto optimality and Pareto
front, borrowed from engineering and economics, help ana-
lyze such tradeoffs. In a given environment, Pareto optimality
refers to the state under which a phenotype cannot be mod-
ified so as to improve the performance of any task without
worsening the performance of at least one other task, and the
Pareto front is the set of Pareto-optimal phenotypes (Shoval
et al. 2012) (fig. 1A).

Identifying the Pareto front and the relevant tasks from a
high-dimensional phenotypic data set of a diverse group of
organisms is of wide interest to biologists, because it helps
verify phenotypic adaptation and offer insights into

evolutionary constraints, tradeoffs, key fitness determinants,
and the range of natural habitats of the study organisms. It
has been proposed that Pareto fronts in a phenotypic space
should be polytopes (lines, triangles, tetrahedrons, and so on),
and the vertices of these polytopes are archetypes, pheno-
types with the best performances of individual tasks (Shoval
et al. 2012). This conclusion was drawn on the basis of the
following six assumptions: 1) the mapping between a pheno-
type and the performance of each task is independent of the
environment, 2) fitness is an increasing function of the per-
formance of each task, 3) for each task, there is a unique
optimal phenotype referred to as the archetype, 4) the per-
formance of a phenotype at a given task worsens as the dis-
tance of the phenotype from the archetype of the task
increases in the phenotypic space, 5) organisms have evolved
to the optimal phenotypes in their respective environments,
and 6) the environments of the organisms examined are suf-
ficiently diverse and representative of the organisms’ natural
habits.

To see why Pareto fronts are polytopes under the above
assumptions, let us consider the case where there are two
tasks with the corresponding archetypes of A and B (fig. 1B).
For a phenotype x (the pink circle in fig. 1B) that does not lie
on the line connecting A and B, we can always find a pheno-
type x’ (the blue circle in fig. 1B) on the above line that is
closer than x to both A and B. Based on the above
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assumptions, x’ performs better than x for both tasks, so
natural selection will eliminate x. If the organisms examined
are from many environments, we expect all observed pheno-
types to lie on the line connecting A and B; the exact position
of a phenotype depends on the environment where the
corresponding organism is sampled because the environment
determines the relative importance of the two tasks. This
geometric argument can be extended to cases with more
than two tasks. The phenotypes should fill a triangle in the
case of three tasks and a tetrahedron in the case of four tasks,
and so on (fig. 1C). Shoval et al. (2012) used this idea to
identify Pareto fronts and associated tasks from various phe-
notypic data sets, such as the beak morphologies of Darwin’s
finches, wing morphologies of bats, and gene expression levels
in the bacterium Escherichia coli at different growth stages.
The same group subsequently developed a computational
method named Pareto-Task Inference (ParTI) for identifying
Pareto fronts and archetypes from high-dimensional

phenotypic data (Hart et al. 2015). Briefly, ParTI first uses
principal component analysis (PCA) to reduce the dimension
of a phenotypic data set, where the number of principal
components (PCs) considered is arbitrarily chosen by the
user. ParTI then applies convex hull fitting algorithms to de-
tect a polytope from the dimension-reduced data; the poly-
tope is regarded as the Pareto front. The Pareto front is
considered statistically significant if the dimension-reduced
data fit the polytope better than at least 95% of comparable,
randomized data. Tasks are then inferred by performing a
biological feature enrichment analysis on the vertices of the
identified Pareto front.

ParTI is currently the primary computational method for
identifying Pareto fronts from biological data and the only
method providing a statistical test of Pareto optimality.
Numerous Pareto fronts have been reported in the last few
years on the basis of ParTI, implying that the relevant traits in
various data sets have been evolutionarily optimized. For
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FIG. 1. The logic of Pareto front inference and its application to the transcriptomes of yeast gene deletion strains. (A) Natural selection is expected
to remove a phenotype (pink) if it is outperformed by another phenotype (blue) at every task. The remaining phenotypes (blue) display tradeoffs in
performing the tasks and form the Pareto front. (B) In a phenotypic space, phenotypes A and B are respectively optimal in performing one of the
two tasks and are referred to as archetypes. Consider a phenotype x (pink) that is off the line connecting A and B. Its projection on the line, x’ (blue),
is closer to both A and B than is x so performs better than x in both tasks (see main text). Therefore, any phenotype off the line is outcompeted by
its projection on the line. Thus, individuals adapted to their environments will form a line in the phenotypic space. (C) The Pareto front is a line
when there are two tasks, a triangle when there are three tasks, and a tetrahedron when there are four tasks. (D) The Pareto front inferred from the
transcriptomes of yeast gene deletion strains projected to the first two principal components of the phenotypic space. Each dot represents a
transcriptome. The centers of the ovals represent the inferred archetype positions, with the size of the ovals representing the 68% confidence
interval of the archetype position obtained by bootstrapping. The P value is the probability that a randomly shuffled data set fits the Pareto front
better than the observed data. (E) The Pareto front inferred from the transcriptomes of yeast gene deletions strains less fit than the wild-type. (F)
The Pareto front inferred from the transcriptomes of the technical replicates of the yeast wild-type strain.
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example, ParTI revealed that animal life-history traits exhibit a
triangular Pareto front (Szekely et al. 2015), ammonite shell
shapes show a pyramid-like Pareto front (Tendler et al. 2015),
the transcriptomes of mouse tissues show a tetrahedron-
shaped Pareto front (Hart et al. 2015), the transcriptomes
of various cancers have Pareto fronts with three, four, or
five archetypes (Hart et al. 2015; Hausser et al. 2019), and
single-cell transcriptomes exhibit Pareto fronts with three
or four archetypes (Korem et al. 2015; Adler et al. 2019).
ParTI and many of the above examples are covered exten-
sively in a new edition of a popular systems biology textbook
(Alon 2019), so the concept of Pareto optimality and the
method for identifying Pareto fronts will likely become known
to more and more researchers interested in phenotypic op-
timization and adaptation. Because of the increasing availabil-
ity of high-dimensional data of molecular phenotypes as a
result of the rapid advancement of sequencing technologies,
ParTI is considered particularly useful in the omics era
(Wagner et al. 2016; Hausser and Alon 2020).

Nevertheless, the theoretical prediction that Pareto fronts
are polytopes when a set of assumptions are satisfied does not
mean that all polytopes are Pareto fronts, because processes
other than evolutionary optimization of tradeoffs may also
produce polytopes and confound Pareto analysis (Edelaar
2013). These processes must be excluded before Pareto opti-
mality can be established. Unfortunately, despite the popu-
larity of ParTI, factors that potentially confound ParTI have
not been systematically studied. In this work, we apply ParTI
to real and simulated data of phenotypes that are not opti-
mized, but find that ParTI still detects Pareto fronts and
archetypes with a high probability. One source of such
false-positive errors is the phylogenetic relationship or popu-
lation structure among the organisms analyzed, which are
unavoidable in many data sets. An even more widespread
source of error is the flexibility of ParTI analysis, which forces
researchers to make numerous arbitrary decisions in infer-
ence. This flexibility makes the ParTI analysis prone to p-
hacking, selective reporting of statistically significant results
after trying multiple statistical procedures. Our results suggest
that Pareto fronts cannot be reliably identified from pheno-
typic data by fitting polytopes, casting doubt on the validity of
ParTI-based Pareto fronts and archetypes so far reported.

Results

ParTI Falsely Detects Pareto Fronts and Associated
Tasks from the Transcriptomes of Yeast Gene
Deletion Strains
To investigate the performance of ParTI on phenotypic data
of organisms that are not adapted to their environments, we
analyzed the transcriptomes of 1,484 yeast strains, each with a
different nonessential gene deleted (Kemmeren et al. 2014).
The gene deletion strains (and their transcriptomes) are ap-
parently suboptimal because they are the products of artificial
gene removals from a wild-type strain and would accumulate
compensatory beneficial mutations when allowed to evolve
in the lab (Szamecz et al. 2014). Furthermore, a number of
past ParTI analyses reported Pareto optimality from

transcriptomes of bacterial cells at different growth stages
as well as transcriptomes of different eukaryotic cells, tissues,
and cancers (Hart et al. 2015; Korem et al. 2015; Adler et al.
2019; Hausser et al. 2019). Hence, the transcriptomes of yeast
gene deletion strains serve as a suitable negative control for
PartTI. We preprocessed the yeast transcriptome data follow-
ing a recent ParTI study of transcriptomes performed by the
authors of ParTI (Adler et al. 2019).

Using ParTI, we found that the transcriptomes of 1,484
yeast gene deletion strains are well described by a triangle
(P¼ 0.002; fig. 1D) with apparently meaningful archetypes
(table 1 and supplementary table S1, Supplementary
Material online). For example, archetype 1 is best described
by mitochondrial functions, archetype 2 is best described by
carbohydrate metabolism, and archetype 3 is best described
by protein synthesis. We found the ParTI result to remain
largely unchanged even after the removal of gene deletion
strains that are fitter than the wild-type in the synthetic com-
plete (SC) medium, where the transcriptome data were col-
lected (fig. 1E). Finally, ParTI even identified a significant
Pareto front from the 1,484 technical replicate transcriptomes
of the same wild-type strain under the SC medium (fig. 1F).
The archetypes inferred from the wild-type technical repli-
cates (table 2 and supplementary table S2, Supplementary
Material online) are similar to those inferred from the gene
deletion strains. Furthermore, the PC coordinates of the wild-
type technical replicates are highly correlated with those of
the matched gene deletion strains in the microarray experi-
ment (the correlation for PC1 coordinates is 0.96, whereas
that for PC2 coordinates is 0.94). Therefore, the false-positive
ParTI results found from the gene deletion strains are likely
due, at least in part, to spurious signals from the microarray
experiment. Clearly, ParTI can falsely detect Pareto fronts

Table 1. Tasks Inferred from the Three Archetypes Identified by ParTI
from the Transcriptomes of the Yeast Gene Deletion Strains.

Tasks Corrected P
Values

Archetype 1 (mitochondrial function)
Mitochondrial part 1:96310�23

Envelope and organelle envelope 1:00310�23

Mitochondrial envelope 5:57310�18

Establishment of protein localization 2:53310�10

Protein transport 2:53310�10

Archetype 2 (carbohydrate metabolism)
Gluconeogenesis 4:73310�31

Hexose biosynthetic process 4:73310�31

Monosaccharide biosynthetic process 4:73310�31

Glucose metabolic process 6:03310�29

Monosaccharide metabolic process 6:03310�29

Archetype 3 (protein synthesis)
Regulation of translational elongation 3:48310�42

Regulation of cellular protein metabolic process 1:00310�40

Regulation of protein metabolic process 1:00310�40

Regulation of translation 6:24310�38

Posttranscriptional regulation of gene expression 1:05310�36

NOTE.—Some P values are identical to each other because of the highly redundant
GO annotations of yeast genes. For each archetype, we present five GO categories
with the largest median expression differences from the random expectation. The
full table is provided in supplementary table S1, Supplementary Material online.
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from phenotypes that are not Pareto optimal. This alarming
finding prompts us to systematically study false-positive
errors of ParTI.

Phylogenetic Relationships Cause False-Positive Errors
Because phylogenetic relationships may create spurious cor-
relations among the traits of different species, it has been
suggested that ParTI results could be affected by phylogenetic
signals in the data (Edelaar 2013; Szekely et al. 2015; Tendler
et al. 2015). However, this potential problem has not been
explicitly studied, nor is the severity of the problem known.
To assess the influence of phylogenetic relationships on
PartTI’s performance, we simulated the evolution of 100 in-
dependent traits following a randomly generated phyloge-
netic tree of 100 species (see Materials and Methods). In
the simulation, the traits evolved neutrally without adapta-
tion. We then used the default setting of ParTI to infer Pareto
fronts in the simulated data. This process of data generation
(under different trees) and analysis was repeated 100 times.

To our surprise, ParTI inferred significant Pareto fronts
(P< 0.05) from 75 of the 100 simulated data sets (fig. 2A).
A typical example is shown in figure 2B. The supplementary
materials of the ParTI method paper (Hart et al. 2015) noted
that “If additional features are known about the data points,
enrichment analysis can help determine whether the triangle
is due to Pareto optimality or not. If no feature is enriched
near the calculated archetypes, one may suspect that the
Pareto approach does not apply.” To investigate whether
the feature enrichment analysis is effective in guarding against
false-positive errors in Pareto front identification, for each
significant case, we also simulated the neutral evolution of
100 independent, binary traits along the tree according to a

continuous-time Markov process (Harmon 2018) and used
these traits to perform the feature enrichment analysis. Three
to seven archetypes were inferred in the data with significant
ParTI-identified Pareto fronts (fig. 2C). Importantly, in 72 of
the 75 significant cases, there were uniquely enriched features
for every archetype, and the frequency distribution of the
minimum number of uniquely enriched features of an arche-
type across the 72 cases is shown in figure 2D. Clearly, the
feature enrichment analysis of ParTI cannot curtail mistakenly
called Pareto optimality.

As a control, we generated data sets without phylogenetic
structures using star trees, because all taxa are phylogeneti-
cally equally distant from one another in a star tree. We first
simulated the neutral evolution of 100 independent traits
following a star tree of 100 species with equal branch lengths.
We repeated this simulation 100 times, but no significant
Pareto front was discovered (fig. 2A). The same was found
when a star tree with unequal branch lengths was considered
(fig. 2A).

Population Structures Cause False-Positive Errors
A population may contain multiple subpopulations such that
mating within subpopulations is more likely than that be-
tween subpopulations. Such population structures could mis-
lead ParTI in identifying spurious Pareto fronts from
organisms of the same species. To verify this hypothesis, we
simulated the neutral evolution of the genotypes of 1,000
individuals according to a population structure
(Gutenkunst et al. 2009) resembling a simplified version of
the human population with three subpopulations (fig. 3A)
and then computed the phenotype of each individual from
its genotype using an additive model (see Materials and
Methods). The simulation was repeated 100 times.

We found that ParTI inferred significant Pareto fronts with
three archetypes more than 95% of the time despite that
neutral evolution was simulated for the traits considered
(left-most bar in fig. 3B). A typical example is shown in
figure 3C. Furthermore, when using the subpopulation label
(Africans, Europeans, and Asians) as discrete features in fea-
ture enrichment analysis, we found that in all cases, each
archetype is enriched with one of the subpopulation labels,
suggesting that the falsely identified archetypes reflect the
subpopulations.

Because recombination between genotypes from different
subpopulations reduces the population structure in the data,
we assessed the impact of the recombination rate on our
result. Interestingly, increasing the recombination rate to 10
times the human recombination rate does not substantially
alter the ParTI result (second left bar in fig. 3B). Similarly,
raising the effective recombination rate by breaking the single
chromosome considered into 23 equal-size chromosomes
does not qualitatively change the ParTI result (middle bar
in fig. 3B). These observations are likely due to the low mi-
gration rates among subpopulations used in the simulation
such that recombination primarily homogenizes genotypes
within the same subpopulation. As expected, when we in-
creased the migration rates among subpopulations by 10 fold,
none of the 100 simulated data sets was found to be

Table 2. Tasks Inferred from the Three Archetypes Identified by ParTI
from the Transcriptomes of the Yeast Wild-Type Technical
Replicates.

Tasks Corrected P
Values

Archetype 1 (mitochondrial function)
Mitochondrial part 6:59310�32

Chromatin organization 1:77310�21

Organonitrogen compound biosynthetic process 6:03310�31

Envelope and organelle envelope 3:00310�32

Mitochondrial envelope 1:60310�24

Archetype 2 (carbohydrate metabolism)
Gluconeogenesis 9:33310�31

Hexose biosynthetic process 9:33310�31

Monosaccharide biosynthetic process 9:33310�31

Carbohydrate biosynthetic process 5:61310�32

Glucose metabolic process 6:70310�27

Archetype 3 (protein synthesis)
Regulation of translational elongation 1:86310�41

Regulation of cellular protein metabolic process 9:87310�39

Regulation of protein metabolic process 9:87310�39

Regulation of biological quality 2:32310�37

Coenzyme binding 5:47310�36

NOTE.—Some P values are identical to each other because of the highly redundant
GO annotations of yeast genes. For each archetype, we present five GO categories
with the largest median expression differences from the random expectation. The
full table is provided in supplementary table S2, Supplementary Material online.
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significantly Pareto optimal (second right bar in fig. 3B).
Notwithstanding, in 39 of the 100 cases, each inferred arche-
type is significantly enriched with a different subpopulation,
suggesting that the increased migration may not fully remove
the population structure and that ParTI may still infer spu-
rious Pareto fronts if the sample size is larger. On the contrary,
when we reduced the migration rates to 10% of the original
level, Pareto optimality was found to be significant at a fre-
quency that is similar to that under the original migration
rates (right-most bar in fig. 3B). Together, these findings reveal
exceptionally frequent false-positive identifications of Pareto
fronts by ParTI in the presence of population structure re-
sembling that of humans.

The Flexibility of Data Analysis Inflates False Positives
In examining past studies that used ParTI and analyzing the
real and simulated data, we noticed another potential source
of false-positive errors—flexibility in data analysis, which pro-
vides an opportunity for p-hacking (Simmons et al. 2011). It
has been well documented that the false-positive rate is

substantially inflated when researchers are allowed to make
many liberal decisions in data analysis (Simmons et al. 2011).
The reason is simple: the probability that at least one of the
many choices makes the result significant at the significance
level of 0.05 is much higher than 0.05, the expected false-
positive rate under a fixed procedure of data analysis.

Using ParTI to infer Pareto fronts and the associated tasks
involves multiple steps, and the investigator has multiple
decisions to make at each of these steps. As shown in
figure 4A, to use ParTI, a researcher must first decide how
to preprocess the data. Next, the researcher has to decide the
number of potential archetypes by either using the default
setting of ParTI (Hart et al. 2015) or manually specifying it
(Hausser et al. 2019). In both cases, one has to first reduce the
dimension of the data to a manually set number. Then, the
researcher can choose one of five algorithms to compute
Pareto fronts (Sisal, MVSA, MVES, SDVMM, and PCHA)
(Hart et al. 2015). Among these five algorithms, Sisal,
MVSA, and PCHA are most frequently used and have been
claimed to show different advantages: Sisal is robust to
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FIG. 2. Phylogenetic relationships among study organisms cause false-positive identifications of Pareto fronts by ParTI. Simulated data with
neutrally evolving phenotypes are used. (A) Fraction of data sets with statistically significant Pareto fronts. The dotted line shows the expected
fraction in an unbiased test. (B) An example of the inferred Pareto front projected to the first two principal components of the phenotypic space.
(C) Frequency distribution of the number of inferred archetypes among data sets with significant Pareto fronts. (D) Frequency distribution of the
minimum number of uniquely enriched features per archetype in the 72 data sets with significant Pareto fronts and uniquely enriched features for
every archetype.

Phenotypic Optimization . doi:10.1093/molbev/msaa330 MBE

1657



outliers, MVSA is able to extract information from extreme
points, and PCHA is stable with low iteration numbers (Hart
et al. 2015). After the Pareto front is inferred, the researcher
can perform feature enrichment analysis to infer the involved

tasks. The features used can be any properties of the samples,
discrete or continuous (Hart et al. 2015).

Among the above steps, data preprocessing is probably the
most flexible one. Let us take gene expression data prepro-
cessing as an example. Starting from a raw data set, one may
or may not normalize the data by the total expression level
(Adler et al. 2019). Next, one can consider using log-
transformation (Hart et al. 2015; Korem et al. 2015; Hausser
et al. 2019), z-score transformation (Adler et al. 2019), or other
transformations (Korem et al. 2015) to transform the data.
Furthermore, one can filter the genes by their mean expres-
sion levels (Hart et al. 2015; Hausser et al. 2019) or the vari-
ability of gene expression levels typically measured by SD
(Hart et al. 2015; Adler et al. 2019). Finally, one can decide
to remove certain samples based on some flexible criteria. For
example, the same breast cancer transcriptome data set used
to detect Pareto fronts in cancer evolution was preprocessed
differently in two studies; the normal tissue samples were
retained in one study (Hart et al. 2015) but removed in the
other (Hausser et al. 2019). To be fair to ParTI, most of the
preprocessing techniques described above are also commonly
used in other literature, especially in exploratory transcrip-
tome analyses that are not associated with particular hypoth-
eses. ParTI, however, is associated with a strong hypothesis
that the phenotypes of the organisms examined have been
optimized. As such, the flexibility in data analysis provides a
huge space for p-hacking.

To illustrate this point, we simulated random phenotypes
of 100 traits for each of 1,000 unrelated individuals and sub-
jected the data to ParTI analysis (see Materials and Methods).
Without data preprocessing, the false-positive rate of ParTI is
4% (fig. 4B). We then used various cutoffs to exclude genes
from the analysis. For example, using the mean value cutoff of
20% excludes the 80% of traits with the lowest mean trait
values, whereas using the SD cutoff of 20% excludes the 80%
of traits with the lowest trait SDs. As the number of cutoffs
explored in data preprocessing increases, the false-positive
rate rises substantially (fig. 4B). When we explored 10 different
cutoffs per data set (corresponding to 40 tests; see Materials
and Methods), significant Pareto fronts were identified in 81%
of the 100 replications (fig. 4B). Clearly, the flexibility in data
preprocessing can cause a very high false-positive rate for
ParTI. Note that the scenario considered here reflects a lower
bound of the flexibility in data analysis because we only sim-
ulated part of the variations present in published ParTI stud-
ies (e.g., the variation in the number of archetypes specified
was not simulated). With more researchers using ParTI, ad-
ditional “creative” ways of data processing are expected.

Discussion
In this work, we investigated the false-positive rate of ParTI in
testing Pareto optimality and identifying Pareto fronts. We
discovered that, even when applied to a set of neutrally evolv-
ing or random traits, ParTI detects Pareto optimality with an
extremely high probability, often reaching or exceeding 75%.
In other words, the Type-I error of the method exceeds 0.75,
whereas the expected value is 0.05 for an unbiased statistical
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test. These false-positive errors are attributable to either one
of two sources. The first source is unequal relatedness among
samples, such as the phylogenetic relationship and popula-
tion structure among the organisms examined. This is a wide-
spread problem in actual data, because it is difficult to find a
large set of species that are all phylogenetically equally related
with one another or a large group of phenotypically diverse
conspecifics randomly sampled from a panmictic population.
We did not explicitly study the influence of the pedigree
structure of the examined individuals on the performance
of ParTI, but the result is expected to be similar to those
found under phylogenetic relationship and population struc-
ture, because all such scenarios involve unequal relatedness
among samples. Even when individual cells from a multicel-
lular organism are considered, because the cells are connected

through a developmental cell lineage much like a phylogeny,
somatic mutations or epigenetic changes will likely make the
phenotypes of cells closer on the cell lineage more similar
(Yang, Ruan, et al. 2014). Likewise, transcriptomes of single
cells are often nonindependent due to spatial or temporal
autocorrelation, which might create similar artifacts such as
the horseshoe effect (Edelaar 2013; Hsu and Culhane 2020).
Although we did not simulate the evolution of optimized
traits, our results suggest that, even when the phenotypes
are Pareto optimal, the Pareto front and archetypes identified
by ParTI may be biased by the phylogenetic relationship or
population structure in the data.

The second source of false-positive errors is the intrinsic
flexibility of data preprocessing by ParTI. Because of the lack
of a standard in data preprocessing, researchers are forced to

Data-preprocessing: 
Log-transformation, z-score 

Reduce the dimensions of the 
preprocessed data manually. 

Choose the number of archetypes: 
Following the recommendation or 

manually

Choose convex hull detection 
algorithms:Sisal, MVSA, PCHA, 

SDVMM or MVES

Feature enrichment for archetypes: can use 
any features of the sample 

A
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Without p-hacking With p-hacking
(2 cutoffs)

With p-hacking
(5 cutoffs)
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(10 cutoffs)

FIG. 4. Flexibility in data analysis increases ParTI’s false-positive rate. (A) Pareto front inference involves multiple steps, each of which may be
performed in multiple ways. (B) Fraction of data sets of neutral phenotypes that are detected by ParTI to have significant Pareto fronts. The
number of ParTI analyses per raw data set equals four times the number of cutoffs considered (see Materials and Methods). The dotted line
represents the expected fraction (5%) for an unbiased test.
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explore their data in multiple ways; they may be tempted to
continue exploring until the result fits their hypothesis even
with no intention to p-hack. Note that we explored only a
small set of data preprocessing techniques in this work. In
reality, there are many more ways to preprocess data, espe-
cially for those phenotypes with no consensus methods of
preprocessing. Our survey of past applications of ParTI shows
that researchers often use additional post hoc adjustments.
For instance, in the study of the mass-longevity Pareto front
(Szekely et al. 2015), the authors “peeled” the data by remov-
ing data points on the inferred convex hull on the basis of the
variation of the inferred archetype positions, and reported the
new Pareto fronts after the peeling procedure. In another
example, the beak morphologies of multiple individuals
from each of six species of Darwin’s finches were analyzed
for Pareto optimality (Shoval et al. 2012). It was pointed out
that there are at most six independent data points here be-
cause phenotypes of the conspecifics are nonindependent; as
a result, there is no statistical power for Pareto front identi-
fication (Edelaar 2013). However, the authors of ParTI ad-
justed the test to fit this data set—instead of shuffling the
post-PCA dimension-reduced data, they shuffled the original
data (Shoval et al. 2013). They found that the dimensionality
of the randomly shuffled data is generally higher than that of
the real data, measured by the fraction of variance unex-
plained by the first two PCs. Because the Pareto front is a
low-dimensional shape in a high-dimensional space, they ar-
gued that this finding means that the Pareto front identified
from only six independent data points is significant. But, by
this standard, any biological data set with low dimensionality,
which is virtually any biological data set because of the per-
vasive nonindependence among biological traits, will show a
significant Pareto front.

It is important to stress that, in our study, we separately
examined the impacts of the above two sources of error. In
practice, the two sources are likely to be simultaneously pre-
sent in a data set and its analysis. Hence, the actual false-
positive rate is expected to be even higher than reported here.
Our results thus raise substantial doubt about previous
PartTI-based claims of Pareto optimality in biological data
and the applicability of the idea of identifying Pareto fronts
by fitting polytopes.

Are there other potential causes for ParTI’s false-positive
errors in general? Biological data often have complex, non-
random structures due to reasons unrelated to adaptation,
such as the nonbiological clustering of the transcriptomes of
single cells due to batch effects in performing the experiments
(Hicks et al. 2018). Due to the difficulty in simulating data
with these structures, we are unable to explore their impacts
on ParTI. Nevertheless, because phylogenetic relationships
and population structures simply mean a variation in pheno-
typic correlation among organisms, which could have many
causes other than the evolutionary history (e.g., the batch
effect or autocorrelation), ParTI is expected to be impacted
by many factors unexplored here.

Although the causes of ParTI’s false-positive errors are clear
for the simulated phenotypic data, what factors are respon-
sible for ParTI’s error in analyzing the transcriptomes of yeast

gene deletion strains? Because the gene deletion strains were
all constructed from the same wild-type, the data have no
phylogenetic relationship or population structure. Given that
the technical replicate transcriptomes of the yeast wild-type
strain also showed a significant Parent front and archetypes
highly similar to those of the transcriptomes of gene deletion
strains, the batch effect in performing the microarray experi-
ments is likely to be at least one of the culprits. Additionally,
we suspect that the flexibility in data preprocessing played a
role, because the result became significant after we tried a
couple of different preprocessing methods. Specifically, unlike
typical microarray gene expression analysis, we did not use
log-transformed expression levels in our analysis.
Notwithstanding, we note that this way of analysis is accept-
able (Gupta et al. 2006; Nguyen and Disteche 2006) and has
even been used by the authors of ParTI (Adler et al. 2019)
against their own advice in the ParTI manual of using log-
transformed expressions (Hart et al. 2015). Our analysis of the
transcriptome data from the yeast gene deletion strains illus-
trates the exact dilemma faced by researchers analyzing real
data, because the dual functions of ParTI in data exploration
and Pareto optimality testing make it difficult to decide how
much data exploration is appropriate and when a significant
test result is trustable.

Can the problems of ParTI discovered here be circum-
vented? We believe that it is possible to minimize the p-
hacking problem by establishing a plan for data preprocessing
before the analysis of the data (e.g., preregistration) and stick-
ing to the plan in the analysis (Gonzales and Cunningham
2015; Nosek et al. 2018), although it may be difficult to de-
termine a universal plan for all data sets given the huge het-
erogeneity of the type of data. The p-hacking problem is not
unique to ParTI and solutions developed in other fields to this
problem (Simmons et al. 2011) can be borrowed.

The problem caused by phylogenetic relationship or pop-
ulation structure in the data is more difficult to solve. This
problem is almost unique to biology and permeates a large
fraction of data sets that have been analyzed using ParTI
(Shoval et al. 2012; Hart et al. 2015; Szekely et al. 2015;
Tendler et al. 2015; Trink et al. 2018; Cona et al. 2019;
Forkosh et al. 2019; Hausser et al. 2019). To the credit of
the inventors of ParTI, two ad hoc solutions have been pro-
posed to address the phylogenetic relationship problem. The
first proposed solution is to show that trait distributions of
species separated by a mass extinction fill the same polytope,
under the premise that the species before and after a mass
extinction would have different phylogenies so should not
create the same polytope by phylogenetic relationships. This
appears to be a valid argument, but it has very limited use,
because phenotypic data of species separated by mass extinc-
tions are rare. In fact, only one ParTI study could use and has
used this approach (Tendler et al. 2015). The second pro-
posed solution is to show that the phylogenetic relationship
does not fully explain the polytope inferred. For example, in
one study (Szekely et al. 2015), the authors explicitly noted
that the phylogeny affects the inferred polytope. They then
showed that 1) the correlation between phylogenetic dis-
tance and morphological distance is not perfect and 2) the
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positions of the species in the polytope are not fully concor-
dant with those in the phylogeny. A similar argument was
made in another ParTI study (Karin and Alon 2019). This type
of argument for the validity of the identified Pareto fronts
does not hold, because genetic drift or even measurement
error could render the correlation/concordance imperfect. In
other words, the observation that the correlation/concor-
dance is imperfect does not rule out the influence of phylo-
genetic relationships nor establish optimization. Instead, the
correct way to validate the identified Pareto fronts, which has
never been done, is to demonstrate statistically that the
remaining phenotypic variation after the control of phylo-
genic relationships is explained by Pareto optimality. In com-
parative biology and quantitative genetics, methods such as
independent contrast (Felsenstein 1985) and variance com-
ponent models (Kang et al. 2010) are available to deal with
phylogenetic and population nonindependence, but it is not
immediately clear how such methods can be applied to
Pareto front identification in the context of fitting polytopes.
One way to address this problem is to remove samples with
phylogenetic or population structures from ParTI analysis.
This would of course greatly diminish the utility of ParTI,
because many fitness-related traits, such as body mass and
life-history traits, are known to have strong phylogenetic sig-
nals (Kamilar and Cooper 2013). One can also remove traits
that have strong phylogenetic signals based on some statistics
such as Bloomberg’s K or Pagel’s k (Münkemüller et al. 2012).
Another solution might be a requirement that any claim of
Pareto optimality must also be based on significant evidence
for phenotypic selection, because phenotypes cannot be op-
timized without selection. However, this requirement does
not alter the influence of phylogenetic and population struc-
tures on ParTI’s performance so does not remove the root of
the problem. Furthermore, testing phenotypic selection itself
is not a simple task. Finally, ParTI studies often use feature
enrichment to guard against false positives, sometimes com-
bined with computational or experimental validation of the
enrichment. Similar to the process of interpreting Gene
Ontology (GO) term enrichment (Brenner 2002), it is difficult
to interpret enrichment results without ambiguity or circular
reasoning. Furthermore, the validation confirms the enrich-
ment, not Pareto optimality. Because our results showed that
feature enrichment does not guard against false positives, the
value of verifying feature enrichment for demonstrating
Pareto optimality is minimal.

In summary, our results suggest that Pareto fronts cannot
be reliably identified by fitting polytopes and that almost all
ParTI-based Pareto fronts reported so far should be consid-
ered false until future validation by reliable methods.
Notwithstanding, the difficulty in reliably identifying Pareto
fronts from biological data does not imply that the concept of
Pareto optimality or Pareto front is useless in biology. We
believe that Pareto optimality is a valuable idea and hypoth-
eses about Pareto optimality are worth testing. Very recently,
Mikami and Iwasaki (2021) devised the flipping t-ratio test
and showed that it can substantially reduce the false-positive
rate of ParTI caused by phylogenetic structures in the data.
When they applied this test to previously analyzed data

where Pareto fronts were identified, including the beak mor-
phologies of Darwin’s finches (Shoval et al. 2012), mammalian
life-history traits (Szekely et al. 2015), and ammonite shell
morphologies (Tendler et al. 2015), no significant Pareto
fronts were found. As mentioned, the Pareto front inferred
from the ammonite shell morphologies had been verified
using a mass extinction, suggesting that even seemingly con-
vincing verifications of ParTI results may not be immune to
error. The flipping t-ratio test requires the knowledge of the
phylogenetic tree of the organisms in the data and infers
ancestral trait values at interior nodes of the tree. Although
the development of this method is a large step forward to-
ward reducing ParTI’s false-positive rate, the method is sub-
ject to the two common problems faced by comparative
methods so is not errorproof. First, the true phylogenetic
tree may not be known. Second, inferring ancestral states
requires knowing the model of trait evolution, which is al-
most always unknown so has to be assumed. After all, if we
knew the model, we would not need to use ParTI to test
phenotypic optimization. Currently, it is unclear whether the
flipping t-ratio test is sensitive to tree or model misspecifica-
tion (Mikami and Iwasaki 2021). We thus call for further in-
vestigation of the flipping t-ratio test and further
development of reliable methods in this area.

Materials and Methods

Preprocessing of the Transcriptomes of Yeast Gene
Deletion Strains
From the website http://deleteome.holstegelab.nl/ (last
accessed December 24, 2020) (Kemmeren et al. 2014), we
downloaded the two-channel microarray gene expression
data of 1,484 yeast gene deletion strains grown in the SC
medium. Let mi be the expression level of gene i in a gene
deletion strain, and wi be the expression level of the same
gene in the wild-type. The data from each gene deletion strain
contained the information of Mi and Ai for gene i defined
below:

Mi ¼ log2

mi

wi

� �
: (1)

Ai ¼
1

2
ðlog2mi þ log2wiÞ: (2)

Therefore, mi ¼ 2AiþMi=2 and wi ¼ 2Ai�Mi=2, which pro-
vided the expression level estimates of gene i in the deletion
strain as well as the wild-type. Because the expression levels
measured here are meaningful only in a relative sense, we
normalized the expression level of each gene in each strain
by the sum of the expression levels of all genes in that strain.
We retained the genes whose mean normalized expression
levels are higher than 7.72� 10�4, to strike a balance between
the precision in the measurement of gene expression level
and the number of genes that can be analyzed. Finally, we
transformed the data into z-scores for each gene.

Some yeast gene deletion strains are fitter than the wild-
type in the SC medium where the transcriptome data were
collected, probably because of antagonistic fitness effects of
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genes across environments (Qian et al. 2012). To ensure that
the transcriptomes used are nonoptimized, we also analyzed
a subset of strains by excluding those gene deletion strains
that are fitter than the wild-type in the SC medium, on the
basis of published fitness of the gene deletion strains relative
to the wild-type measured by barcode sequencing in SC
(Qian et al. 2012).

To investigate whether Pareto fronts may be erroneously
inferred from batch effects in quantifying the transcriptomes,
we obtained the gene expression levels in all wild-type tech-
nical replicates by a similar procedure.

ParTI Analysis of the Transcriptomes of Yeast Gene
Deletion Strains
Before analyzing the transcriptome data from the yeast gene
deletion strains, we replicated several published results from
ParTI analysis as well as examples in the ParTI package to
ensure that we used ParTI as intended by its developers.
Following the ParTI manual, we used the default “Sisal” algo-
rithm to detect Pareto fronts from the preprocessed gene
expression levels of the yeast gene deletion strains. The
user-defined “dim” option, which specifies the number of
PCs to retain in ParTI analysis, was set to 5 because the man-
ual recommends it to be set between 5 and 10 (Hart et al.
2015). Similarly, the “binSize” option was set to 0.05 according
to the manual (Hart et al. 2015). ParTI suggested three arche-
types in the data, so the number of archetypes was set to 3.
To perform the task inference, we used GO data from the
GO2MSIG database (Powell 2014) (http://www.bioinformat-
ics.org/go2msig/; last accessed December 24, 2020). We used
all GO annotations, including IEA (GO terms inferred from
electronic annotation). The genes were identified by the
National Center for Biotechnology Information gene IDs.
We similarly analyzed the gene deletion strains less fit than
the wild-type and the wild-type replicates, respectively. We
fixed the number of archetypes to 3 when analyzing these
two data sets.

Simulation of Neutral Trait Evolution along
Phylogenies and the Subsequent ParTI Analysis
We first generated phylogenetic trees with 100 tips using a
birth–death process with the birth rate being 1 per unit time
and the death rate being a uniform random variable sampled
between 0 and 1 per unit time. We then simulated the neutral
evolution of 100 independent traits according to the standard
Brownian motion model (Harmon 2018). The rate of the
Brownian motion was set at 1 per unit time for every trait,
meaning that, starting from a mean trait value of l, the mean
trait value after t units of time of evolution is a normal ran-
dom value with the mean equal to l and variance equal to t.
The simulation of trait evolution was performed using the
“sim.traits” function in the “phylocurve” package (Goolsby
2015). For comparison, we simulated the neutral evolution
of traits without phylogenetic relations (i.e., along a star phy-
logeny with equal branch lengths) (Harmon 2018). To achieve
this goal, we used Pagel’s k transformation, which stretches
external branches of a tree relative to the internal branches,
and set k at 0. We also simulated neutral evolution along a

star phylogeny with unequal branch lengths by randomly
sampling the 100 branch lengths from a uniform distribution
between 0 and 1 unit time and simulating trait evolution
along these branches.

To simulate the evolution of 100 independent binary traits,
we used the “sim.char” function in the “phylocurve” package.
For each trait, the rate parameters were specified by the
following Q matrix of the Markov process:

Q ¼
�0:05 0:05

0:05 �0:05

" #
.

We repeated the above process 100 times to generate 100
trees (the death rate varies among trees), each associated with
a data set of 100 species, each having 100 continuous traits
and, when the identified Pareto front is statistically significant,
100 additional binary traits.

We followed the ParTI manual to infer Pareto fronts and
the associated tasks from the simulated data sets. The algo-
rithm used was “Sisal.” The “dim” option was set to 8, which is
in the middle of the manual-recommended range of [5, 10];
use of other dim values did not qualitatively alter the result.
The “binSize” option was set to 0.2. We let ParTI automatically
determine the number of archetypes in each data set.

Simulation of Neutral Trait Evolution According to a
Human Demographic Model and the Subsequent
ParTI Analysis
We used “msprime” (Kelleher et al. 2016) to generate the
neutrally evolved genotypes of 100 diploid individuals.
Limited by the amount of computational time required, we
simulated only one of the 23 human chromosomes. The basic
parameters were set according to a published population
structure model describing the out-of-Africa origin of human
populations with three main subpopulations—Africans,
Europeans, and Asians—subject to intersubpopulation gene
flow (Gutenkunst et al. 2009). We sampled 33 Africans (by
randomly pairing 66 haplotypes sampled from the African
subpopulation), 33 Europeans, and 34 Asians. We set the
chromosome size to 108 bases, roughly the size of an average
human chromosome. The mutation rate was set to 10�8 per
base per generation, and the recombination rate was set to
10�8 per base per generation, corresponding to the known
parameters for humans (Milo et al. 2010). The above process
was repeated 100 times to generate 100 independent data
sets.

To assess the impact of recombination rate on our result,
we generated 100 additional data sets with a recombination
rate of 10�7 per base per generation. In addition, we gener-
ated 100 data sets by breaking the single chromosome into 23
chromosomes of 108/23 bases to add random assortment. To
assess the impact of the migration rate on our result, we
generated 100 data sets with 10 times the original migration
rates and another 100 data sets with 10% of the original
migration rates.

After simulating the genotype of each individual, we gen-
erated the trait values for 100 traits from the genotype. In the
simulation, every locus has two alleles in the population,
specified by 0 and 1, respectively. The effect of allele 0 on
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any trait is 0, and the effect of allele 1 on a trait is a standard
normal random variable. The trait value will be the sum of
effects from all loci on the trait. This simulation is consistent
with the universal pleiotropy model in which every locus
affects every trait (Wagner and Zhang 2011). The simulated
phenotypes were then analyzed by ParTI with default settings
to detect three archetypes. The population labels of the out-
put samples were supplied as features to perform the feature
enrichment analysis.

Simulation of p-Hacking
To illustrate the point that flexibility in data analysis can lead
to p-hacking, we simulated the phenotypes of 100 traits for
1,000 individuals. In each individual, the trait values were
sampled from a multivariate normal distribution specified
by a 100-dimension vector, whose entries are uniform ran-
dom variables between 1 and 10 representing the mean phe-
notypic values of the 100 traits, and a 100� 100 variance–
covariance matrix. The variance–covariance matrix was based
on a random trait–trait correlation matrix generated by the
program “genPositiveDefMat” from the package
“clusterGeneration” with default setting (Joe 2006), coupled
with the variance of each trait generated by a random draw
from the uniform distribution between 1 and 10. From this
raw random phenotypic data set, we generated 40 data sets
by commonly used preprocessing techniques. That is, we
retained traits among the highest 10%, 20%, . . ., and 100%
of traits in terms of the mean trait value or in terms of the SD,
resulting in 20 data sets. From each of these 20 data sets, we
converted the trait values to z-scores across individuals, gen-
erating 20 additional data sets. We then mimicked three dif-
ferent levels of p-hacking by considering two (50% and 100%),
five (20%, 40%, 60%, 80%, and 100%), and all 10 cutoffs in
terms of the mean trait value or SD, corresponding to 8, 20,
and 40 ParTI analyses per raw data set, respectively. The al-
gorithm used in the ParTI analysis was “PCHA,” another al-
gorithm that was widely used in past ParTI studies. Because
the raw phenotypic data are completely random, all Pareto
fronts identified are false positives. To restrict the flexibility of
ParTI in Pareto front inference, we fixed the number of arche-
types to 3 by setting the variable “ForceNArchetypes” in ParTI
to 3. The above data generation, preprocessing, and ParTI
analysis were repeated 100 times.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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