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Abstract: Compared with other physiotherapy devices, epidermal electronic systems (EES) used
in medical applications such as hyperthermia have obvious advantages of conformal attachment,
lightness and high efficiency. The stretchable flexible electrode is an indispensable component. The
structurally designed flexible inorganic stretchable electrode has the advantage of stable electrical
properties under tensile deformation and has received enough attention. However, the space between
the patterned electrodes introduced to ensure the tensile properties will inevitably lead to the uneven
temperature distribution of the thermotherapy electrodes and degrade the effect of thermotherapy. It
is of great practical value to study the temperature uniformity of the stretchable patterned electrode.
In order to improve the uniformity of temperature distribution in the heat transfer system with
stretchable electrodes, a temperature distribution manipulation strategy for orthotropic substrates
is proposed in this paper. A theoretical model of the orthotropic heat transfer system based on the
horseshoe-shaped mesh electrode is established. Combined with finite element analysis, the effect of
the orthotropic substrate on the uniformity of temperature distribution in three types of heat source
heat transfer systems is studied based on this model. The influence of the thermal conductivity
ratio in different directions on the temperature distribution is studied parametrically, which will
help to guide the design and fabrication of the stretchable electrode that can produce a uniform
temperature distribution.

Keywords: orthotropic substrate; heat conduction; stretchable network heater; horseshoe lattice;
uniform temperature distribution

1. Introduction

Recent advancements in flexible and stretchable electronics technology provide a
feasible solution for bionic electronic skin [1–5] and bio-integrated electronics [6–8]. Specifi-
cally, the intrinsic rigid material is thinned and designed as a serpentine ribbon, so that
it can withstand large structural deformation with small strain, which can significantly
improve the stretchability of inorganic electronics [9,10]. Among the numerous achieve-
ments, epidermal electronic systems (EES), as a wearable device with a paradigm shift,
is a representative research direction, due to its advantages in thickness, mechanical stiff-
ness and density comparable to human epidermis [11,12]. Flexible wearable heaters, as
an important component of EES, play an irreplaceably important role in thermotherapy
medicine application [13], such as cutaneous wound healing [14,15], subcutaneous tumor
treatment [16], and drug release [17].
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The research achievements on stretchable heaters can be divided into two effective
strategies. One is to use inherently flexible materials to fabricate stretchable heaters,
such as hyper-elastic polymer filled with metal nanowire [18,19], organic conductive
polymers [20,21], graphene [22], etc. The limitation of this strategy is that the electrical
resistance of this heater will increase rapidly under stretching conditions due to the slippage
of the nano-fibers, which will lead to the degrading performance of the heater and the
mismatch between the temperature distribution and the design. Another approach is
to encapsulate the patterned periodic metal network or liquid metal micro-channel into
elastic substrates as stretchable electrodes [23–25]. The electrical resistance of this flexible
electrode will not drift obviously due to flexible deformation. The flexible electrode design
requires a certain spacing to maintain the extensibility [26,27], which will inevitably lead
to the inhomogeneous temperature distribution. However, in some application scenarios,
the uniformity of temperature distribution of hyperthermia heaters is a very important
indicator. The significance of the temperature distribution uniformity provided by the
biophysical therapy heaters in EES is that if the temperature distribution produced by the
heater is not uniform, it is difficult to choose the appropriate heating power. Local high
temperature will damage epidermal tissue, and low temperature cannot produce the effect
of heat therapy [26]. If the uniformity of temperature distribution of the hyperthermia
electrode is enhanced by reducing the electrode size, when the line width is small to a certain
extent, it will not only increase the technological difficulty of micro-nano manufacturing
but also reduce the structure robustness of the heating electrode. Referring to the thermal
management of orthotropic materials [28,29], the flexible substrate and encapsulation with
orthotropic thermal conduction can be utilized to manipulate the heat flux and reconfigure
the uneven temperature distribution generated by the stretchable heater. Vemuri et al. [28]
proposed a novel design of alternating layered distribution of two materials, which can
change the direction of heat flow. Li et al. [30,31] applied the design method of this
bi-layer alternating laid thermal metamaterial to the thermal management of flexible µ-
ILEDs (micro-scale inorganic light-emitting diodes) attached to human skin. Shi et al. [29]
proposed a stretchable composite metamaterial with a periodic layered lattice structure
whose anisotropic thermal conductivity can be regulated via external strain. The orthotropic
heat conduction substrate has low requirements for the micro-nano process and good
thermal management effect, so it is a suitable choice to enhance the temperature distribution
uniformity of a hyperthermia electrode.

Here, for the previously proposed wearable network heater based on a negative Pois-
son’s ratio horseshoe lattice structure [32], we investigate the heat transfer characteristics
of its integration with an orthotropic thermal conduction substrate in order to point out its
characteristics of manipulating heat flux and homogenization of temperature distribution.
Compared to the simple configuration heat sources in previous studies, the analytical
orthotropic heat conduction model with the complex horseshoe lattice heat source is de-
veloped in this work. The thermal field of the model is calculated using Fourier cosine
transform and linear superposition of a horseshoe heat source in Section 2, which is val-
idated by finite element analysis (FEA) in Section 3. Meanwhile, the effects of different
geometric parameters of horseshoe heat source (number of sides) and ratios of thermal
conductivity in different directions of the substrate on the thermal properties are discussed.
Section 4 presents the conclusion.

2. Analytical Modeling

Figure 1a shows that the triangular lattice structure as a network heater embedded
between the substrate and encapsulation. Due to periodicity, the thermal field of a single
cell can represent that of the whole structure, as shown in Figure 1b. The network heat
source can be modeled as a line heat source when its cross-sectional dimension is much
smaller than the in-plane dimension. Therefore, the thermal field of the point heat source
in the model is shown in Figure 1c, where the temperature distribution of the heater can be
obtained by integrating the point heat source along the curve of the line heat source.
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Figure 1. (a) Schematic diagram of the network heater based on a triangular lattice structure; (b) A 
single period of the network heater; (c) Schematic diagram of a point heater model. 

The temperature increase from the ambient temperature Ta is denoted by ΔTi =Ti − Ta. 
The temperature increase in the orthotropic model satisfies the Fourier heat conduction 
equation as 

2 2 2

2 2 2 0x y zi i i
i i i

T T Tk k k
x y z
Δ Δ Δ∂ ∂ ∂

+ + =
∂ ∂ ∂

, (1)

where i = 1 denotes the encapsulation and i = 2 is for the substrate. The kx, ky and kz denote 
the thermal conductivity in the x, y and z-direction, respectively. The natural convection 
condition at the upper and lower surfaces yields 

1

1
1 0 1
z

z z

Tk h T
z

Δ Δ
=−

∂ =
∂

, (2)

2

2
2 0 2
z

z z

Tk h T
z

Δ
Δ

=

∂
− =

∂
, (3)

where h0 is the coefficient of heat convection with air. The continuity of temperature 
increase and heat flux between the substrate and the encapsulation layer can be obtained 
by 

1 20 0z z
T TΔ Δ− += =

= , (4)

01 2 , 01 2
0 0

lim , ( , )
4

0, ( , )

z z a b

PQ x y DT Tk k ab
z z x y D

Δ Δ   

   
+

− +

→

 = ∈∂ ∂ − = ∂ ∂  ∉

, (5)

where Q0 and P are the heat flux and the power of a point heat source. The rectangular 
heat source with an infinitely small side length (a, b) is equivalent to a point heat source. 
D denotes the region of the heat source. Based on the Fourier cosine transform 

0 0
( , , ) ( , , ) cos( ) cos( )d di iT z T x y z x y x yα β α βΔ Δ ∞ ∞

=   , (6)

the heat conduction equations in Equation (1) are converted to ordinary differential 
equations as  

2 2 2

2

d 0
d

x y
i i i

iz
i

T k k T
z k

α βΔ
Δ

  +
− = 
 

. (7)

Additionally, the boundary and continuity conditions in Equations (2)–(5) can be 
written as 

Figure 1. (a) Schematic diagram of the network heater based on a triangular lattice structure; (b) A
single period of the network heater; (c) Schematic diagram of a point heater model.

The temperature increase from the ambient temperature Ta is denoted by ∆Ti =Ti −
Ta. The temperature increase in the orthotropic model satisfies the Fourier heat conduction
equation as
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where i = 1 denotes the encapsulation and i = 2 is for the substrate. The kx, ky and kz denote
the thermal conductivity in the x, y and z-direction, respectively. The natural convection
condition at the upper and lower surfaces yields
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where h0 is the coefficient of heat convection with air. The continuity of temperature increase
and heat flux between the substrate and the encapsulation layer can be obtained by
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where Q0 and P are the heat flux and the power of a point heat source. The rectangular
heat source with an infinitely small side length (a, b) is equivalent to a point heat source. D
denotes the region of the heat source. Based on the Fourier cosine transform
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∫ ∞

0
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∆Ti(x, y, z) cos(αx) cos(βy)dxdy, (6)

the heat conduction equations in Equation (1) are converted to ordinary differential
equations as

d2∆T̃i
dz2 −

(
α2kx

i + β2ky
i

kz
i

)
∆T̃i = 0. (7)

Additionally, the boundary and continuity conditions in Equations (2)–(5) can be
written as

kz
1

d∆T̃1

dz

∣∣∣∣∣
z=−z1

= h0∆T̃1, (8)

−kz
2

d∆T̃2

dz

∣∣∣∣∣
z=z2

= h0∆T̃2, (9)



Micromachines 2022, 13, 1133 4 of 12

∆T̃1

∣∣∣
z=0−

= ∆T̃2

∣∣∣
z=0+

, (10)

kz
1

d∆T̃1

dz

∣∣∣∣∣
z=0−

− kz
2

d∆T̃2

dz

∣∣∣∣∣
z=0+

= lim
a,b→0

P sin(αa) sin(βb)
4abαβ

=
P
4

, (11)

The general solution for Equation (7) with the boundary conditions and the continuity
conditions can be obtained by
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Substituting Equation (12) into Equations (8)–(11), the four coefficients A1, A2, B1 and
B2 can be solved as
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According to the inverse Fourier cosine transform, the temperature increase in the
point heat source can be calculated by

∆Ti(x, y, z) =
4

π2

∫ ∞

0

∫ ∞

0
∆T̃i(α, β, z) cos(αx) cos(βy)dαdβ. (15)

The point heat source is integrated along with the network heat source, and the
temperature increase in the unit cell is obtained by linear superposition of the surrounding
periodic heat sources, which gives

θi(x, y, z) =
∞

∑
n=1

∫
l0

∆Tn(x, y, z)dl, (16)

where l0 denotes the function of the unit cell of the network line heat source.

3. Results and Discussion

In this section, the orthotropic heat conduction model with three kinds of network
heat sources (i.e., triangular, square and honeycomb) are investigated and verified by FEA.
Take χ0 as the included angle of two adjacent edges in the stretchable heat source lattice, as
shown in Figure 2a; then, the included angles of triangle, quadrilateral and honeycomb
mesh heaters are χ0 = 60◦, χ0 = 90◦and χ0 = 120◦, respectively. The functions of different
unit cells with triangular, square and honeycomb heat sources can be written as
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Figure 2. (a) Configurations of the stretchable triangular heat source; (b) Distribution of current
density in the triangular heat source with the voltage applied at two ends; (c) Comparison of the
theoretical and FEA temperature field on the bottom surface of the unit cell based on the isotropic
and orthotropic substrate.

The stretchable network heat source is made of copper (width: 1 µm, thickness:
0.01 µm, radius: 1 mm and cross-sectional area: 1 × 10−8 mm2), which is located between
the substrate and encapsulation with the thickness of 1 mm, respectively. The triangular
network heat source is a regular hexagon with a side length of 2.31 mm, as shown in
Figure 2a. The encapsulation and substrate are selected as Ecoflex (e.g., Ecoflex00-10,
Smooth-On, Inc., Macungie, PA, USA) with a thermal conductivity of 0.16 W·m−1·K−1 [29].



Micromachines 2022, 13, 1133 6 of 12

The natural air convection coefficient is set as h = 15 W·m−2·K−1. Based on the ratio of
current density shown in Figure 2b, the powers of the line heat sources in the horizontal
and oblique paths are set as 1.96 × 10−3 W and 0.49 × 10−3 W, respectively, and the
corresponding heat flux densities are 0.3125 W/m and 0.0781 W/m, respectively. The
reason is that for the network heat source with the voltage applied at the left and right ends,
the ratio of current density in the horizontal and oblique path is 2:1 from the equivalent
circuit approach combined with the periodic conditions (see Figure S1, for details). The
heat flux density ratio in the horizontal and oblique path should be 4:1 according to Joule’s
law. A 3D thermal model is established in ABAQUS. The heater is modeled as a surface
heat source. The DC3D20 element is used to discretize the geometry. The element size
ranges from 0.01 to 0.05 mm with a total number of over 200,000. The fine mesh is adopted
for the region near the heat source and the coarse mesh for that far from the heat source.
The convergence of FEA has been verified by the tiny change of less than 0.1% via the
comparison with that using a much smaller element size of 0.005 mm (see Figure S3,
for details).

As biophysical therapy heaters in EES, the temperature distribution at the substrate/
skin interface (i.e., the bottom surface of the substrate) is most noteworthy of the EES
heat transfer system, because the temperature and uniformity here play a key role in
the effect of physiotherapy. So, we focus on the temperature on the bottom surface of
the substrate. Figure 2c shows the comparison between analytical and FEA results of
temperature distribution at the bottom of the isotropic and orthotropic substrate with a
triangular network heater (χ0 = 60◦), respectively. For the isotropic substrate, the thermal
conductivity in three directions is ks

x = ks
y = ks

z = 0.16 W·m−1·K−1. It can be seen that the
temperature distribution of the substrate is not uniform, and the temperature difference
in the y-direction in a lattice reaches around 5 ◦C. Because of the voltage applied to the
two ends in the x-direction of the network heater (Figure 2b), different current densities in
the x-direction and y-direction cause different heat flux densities, resulting in the uneven
temperature distribution. In order to improve the uniformity of temperature distribution
at the bottom of the substrate, the orthotropic substrate is utilized to ameliorate the heat
transfer system; that is, by increasing the thermal conductivity in the y-direction (ks

y in
Equation (1)) to 1.6 W·m−1·K−1, other parameters remain unchanged. Figure 2c shows that
this orthotropic substrate strategy can significantly improve the uniformity of temperature
distribution, and the maximum temperature difference of temperature distribution does
not appear to be higher than 2 ◦C, which is verified by FEA.

In order to quantitatively analyze the temperature distribution uniformity of the
isotropic substrate and the orthotropic substrate strategy effect on the uniformity optimiza-
tion of temperature distribution, the temperature distribution along two paths of x = 0
and y = 0 of two different substrates (the origin is at the geometric center of the network
heater lattice) is drawn in Figure 3. It can be observed that along the y-direction (x = 0)
of an isotropic substrate, the temperature rises from 6.3 ◦C at the lattice edge to 9.6 ◦C at
the center point, and the temperature difference is 3.3 ◦C, which is calculated in Figure 3a.
For the orthotropic substrate, the temperature difference in the y-direction (x = 0) is only
1.2 ◦C compared with the isotropic substrate, and the temperature evolves from 7.0 to
8.2 ◦C along the path. This is because the increase in thermal conductivity ks

y helps to
obtain a more uniform temperature distribution along the y-direction. Figure 3b shows
the temperature distribution of the isotropic substrate and orthotropic substrate in the
x-direction (y = 0). It shows that the temperature of the isotropic substrate is about 0.2
to 2 ◦C higher than that of the orthotropic substrate along the calculated path, and the
corresponding temperature differences are both in a relatively small scale, 2.6 ◦C and 1.3 ◦C
respectively, which reveals that the increase in the y-direction can manipulate the heat flux
along the y-direction to reduce the maximum temperature, but it will slightly increase the
uniformly of the temperature distribution along the x-direction. The above results are given
by the theoretical analysis and FEA of mutual verification.



Micromachines 2022, 13, 1133 7 of 12

Micromachines 2022, 13, x 7 of 13 
 

 

optimization of temperature distribution, the temperature distribution along two paths of 
x = 0 and y = 0 of two different substrates (the origin is at the geometric center of the 
network heater lattice) is drawn in Figure 3. It can be observed that along the y-direction 
(x = 0) of an isotropic substrate, the temperature rises from 6.3 °C at the lattice edge to 9.6 
°C at the center point, and the temperature difference is 3.3 °C, which is calculated in 
Figure 3a. For the orthotropic substrate, the temperature difference in the y-direction (x = 
0) is only 1.2 °C compared with the isotropic substrate, and the temperature evolves from 
7.0 to 8.2 °C along the path. This is because the increase in thermal conductivity ksy helps 
to obtain a more uniform temperature distribution along the y-direction. Figure 3b shows 
the temperature distribution of the isotropic substrate and orthotropic substrate in the x-
direction (y = 0). It shows that the temperature of the isotropic substrate is about 0.2 to 2 
°C higher than that of the orthotropic substrate along the calculated path, and the 
corresponding temperature differences are both in a relatively small scale, 2.6 °C and 1.3 
°C respectively, which reveals that the increase in the y-direction can manipulate the heat 
flux along the y-direction to reduce the maximum temperature, but it will slightly increase 
the uniformly of the temperature distribution along the x-direction. The above results are 
given by the theoretical analysis and FEA of mutual verification. 

 
Figure 3. The comparisons of temperature increase along (a) x = 0 and (b) y = 0 on the bottom surface 
of the unit triangular heat source cell between the analytical results and FEA. 

The quadrilateral network heater lattice (χ0 = 90°) is a square with a side length of 4 
mm, as shown in Figure 4a. The theoretical temperature increase model for square 
topology is similar to the process above. Under the voltage applied at the left and right 
ends, the current density in the oblique path is 0 along the y-direction because of the 
vertical relationship between the two sides, as shown in Figure 4b. Therefore, only the line 
heat sources in the horizontal path along the x-direction have a power of 3.14 × 10−3 W, 
and the corresponding heat flux density is 0.5 W/m. Figure 4c shows the comparison 
between analytical and FEA results (see Figure S4, for details) of temperature distribution 
at the bottom of the isotropic and orthotropic substrate with a square network heater, 
respectively. For the isotropic substrate with ksx = ksy = ksz = 0.16 W·m−1·K−1, it can be seen 
that the temperature distribution of the substrate is not uniform, accompanying a 
temperature difference of around 5 °C. In order to improve the temperature distribution, 
we increase the thermal conductivity ksy to 1.6 W·m−1·K−1 with other parameters fixed. The 
temperature difference of the obtained orthotropic substrate is significantly reduced, 
which is no more than 2 °C as reflected from the temperature distribution contour map. 

Figure 5 shows the temperature distributions along two paths of x = 0 and y = 0 of two 
different substrates (the origin is at the geometric center of the network heater lattice) to 
quantitatively evaluate the temperature homogenization effect of the orthotropic strategy 
on the square network heater heat transfer system. The temperature difference along the y-

Figure 3. The comparisons of temperature increase along (a) x = 0 and (b) y = 0 on the bottom surface
of the unit triangular heat source cell between the analytical results and FEA.

The quadrilateral network heater lattice (χ0 = 90◦) is a square with a side length
of 4 mm, as shown in Figure 4a. The theoretical temperature increase model for square
topology is similar to the process above. Under the voltage applied at the left and right
ends, the current density in the oblique path is 0 along the y-direction because of the vertical
relationship between the two sides, as shown in Figure 4b. Therefore, only the line heat
sources in the horizontal path along the x-direction have a power of 3.14 × 10−3 W, and
the corresponding heat flux density is 0.5 W/m. Figure 4c shows the comparison between
analytical and FEA results (see Figure S4, for details) of temperature distribution at the
bottom of the isotropic and orthotropic substrate with a square network heater, respectively.
For the isotropic substrate with ks

x = ks
y = ks

z = 0.16 W·m−1·K−1, it can be seen that the
temperature distribution of the substrate is not uniform, accompanying a temperature
difference of around 5 ◦C. In order to improve the temperature distribution, we increase the
thermal conductivity ks

y to 1.6 W·m−1·K−1 with other parameters fixed. The temperature
difference of the obtained orthotropic substrate is significantly reduced, which is no more
than 2 ◦C as reflected from the temperature distribution contour map.
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Figure 5 shows the temperature distributions along two paths of x = 0 and y = 0
of two different substrates (the origin is at the geometric center of the network heater
lattice) to quantitatively evaluate the temperature homogenization effect of the orthotropic
strategy on the square network heater heat transfer system. The temperature difference
along the y-direction (x = 0) of the isotropic substrate is 5 ◦C, which is calculated from
the lattice edge temperature of 4.7 ◦C and the center point temperature of 9.7 ◦C. Under
the same conditions, the temperature difference of orthotropic is only 1.9 ◦C and the
temperature distribution ranges from 6.2 to 8.1 ◦C along the path, as shown in Figure 5a.
As discussed in the triangular heater topology, the increase in thermal conductivity ks

y

helps to obtain a more uniform temperature distribution along the y-direction. Figure 5b
demonstrates the temperature of the isotropic substrate is 0.5 to 2 ◦C higher than that of
the orthotropic substrate along the paths in the x-direction (y = 0). The corresponding
temperature differences are 3.0 ◦C for the isotropic substrate and 1.9 ◦C for the orthotropic
substrate, respectively. Consistent with the conclusion of triangular heater topology, the
increase in the y-direction can manipulate the heat flux along the y-direction to reduce the
maximum temperature. However, the difference is that it has little effect on the temperature
uniformity along the x-direction.
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The honeycomb network heater lattice (χ0 = 120◦) is diamond shaped with a side
length of 6.93 mm and two adjacent angles of 60◦ and 120◦, as shown in Figure 6a. The
theoretical temperature increase model for honeycomb topology is similar to the process
above; only the linear superposition integral path needs to be changed to the function of the
honeycomb lattice. Under the voltage applied at the left and right ends, the ratio of current
density in the yellow, blue and gray path is 2:1:1 from the equivalent circuit approach
combined with the periodic conditions (see Supplementary Information S1 for details), as
shown in Figure 6b. The powers of line heat sources in red, blue and gray paths are set as
3.14 × 10−3 W, 7.85 × 10−34 W and 7.85 × 10−4 W, respectively, and the corresponding
heat flux densities are 0.5 W/m, 0.125 W/m and 0.125 W/m, respectively. Figure 6c
shows the bottom temperature distribution comparison of the isotropic and orthotropic
substrate with honeycomb network heater, which was calculated from both analytical
and FEA (see Figure S5, for details). For an isotropic substrate with uniform thermal
conductivity of 0.16 W·m−1·K−1, the temperature difference of the substrate bottom surface
can reach around 7.6 ◦C. After increasing the thermal conductivity ks

y to 1.6 W·m−1·K−1,
the temperature difference drops to about 3 ◦C.

Figure 7 shows the temperature distributions along with x = 0 and y = 0 of two
different substrates (the origin is at the geometric center of the network heater lattice) on
the honeycomb network heater heat transfer system. The temperature difference along the
y-direction (x = 0) of the isotropic substrate is 7.6 ◦C, which is calculated from the lattice
edge temperature of 1.3 ◦C and the center point temperature of 8.9 ◦C. Under the same
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conditions, the temperature difference of orthotropic is 3.1 ◦C and temperature distribution
ranges from 3.0 to 6.1 ◦C along the path, as shown in Figure 7a. As discussed in the
triangular and square heater topology, the increase in thermal conductivity ks

y helps obtain
a more uniform temperature distribution along the y-direction. Figure 7b demonstrates
the temperature distribution of isotropic and orthotropic substrates along the path in the x-
direction (y = 0). The temperature difference along the x-direction of the isotropic substrate
is 7.6 ◦C, which is calculated from the lattice edge temperature of 1.3 ◦C and the center point
temperature of 8.9 ◦C. The temperature difference of orthotropic is 3.1 ◦C, and temperature
distribution ranges from 3.0 to 6.1 ◦C along the path. Due to the high thermal conductivity
in the y-direction, these regions (y coordinate within−3.5 to−1.5 and 1.5 to 3.5 in Figure 7a,
x coordinate within −6 to −3 and 3 to 6 in Figure 7b) with low temperature are heated for
a more uniform temperature distribution. Therefore, increasing the thermal conductivity in
the y-direction can significantly achieve the ideal homogenization effect in both directions.
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In order to systematically investigate the influence of the orthotropic substrate thermal
conductivity on the temperature distribution uniformity of stretchable heat sources with
different lattice configurations, the parametric calculation is carried out for the effects of
the thermal conductivity ratios (ks

y/ks
x, ks

z/ks
x and ks

x/ks
z) on the temperature difference at

the substrate bottom surface, as shown in Figure 8. The temperature difference of all these
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three types of network heaters decreases with the increase in ks
y/ks

x, and the temperature
difference of the honeycomb configuration heater is less than that of the other two heaters,
as shown in Figure 8a. This indicates that the effect of the orthotropic strategy to improve
the thermal conductivity of the substrate in one direction on the homogenization of the
temperature distribution of the honeycomb heat source is the weakest among the three
heaters, which is consistent with the conclusion in Figure 7b. With the increase in ks

z/ks
x,

the temperature difference of these three heaters increases slightly. When the ratio is large
enough, i.e., the off-plane thermal conductivity is large enough, then the temperature
distribution at the substrate bottom surface is almost the same as that of the network
heaters. The temperature difference of the quadrilateral heat source is the largest, followed
by the honeycomb, and the temperature difference of the triangle is the smallest, which is
determined by the density distribution of heaters caused by different heater configurations,
as shown in Figure 8b. The heat flux density of the quadrilateral heater is only distributed
in the x-direction, and the spacing between heater network lines is large, so the temperature
distribution difference is the largest. The heat flux distribution of the honeycomb heater
is about twice the difference in the two directions, considering the large spacing between
the heat source network lines, so the temperature distribution difference is in the middle.
The distance between the heat flux distribution of the triangular heat source and the heater
network lines are both the smallest of these three heaters, so the difference in temperature
distribution is the smallest. Figure 8c demonstrates the effect of decreasing the thermal
conductivity in the off-plane direction (i.e., the z-direction) on reducing the temperature
distribution difference and enhancing the uniformity of temperature distribution. With the
increase in ks

x/ks
z, the temperature difference at the bottom surface decreases, which means

that the temperature distribution uniformity is enhanced. This indicates that decreasing the
thermal conductivity in the z-direction is an alternative and effective strategy to enhance
the uniformity of temperature distribution.
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4. Conclusions

In summary, this paper presents an analytical orthotropic heat conduction model with
three horseshoe lattice structures—triangular, square and honeycomb, which is verified
by FEA. In order to improve the uniformity of the substrate temperature distribution,
the orthotropic substrate is utilized to ameliorate the heat transfer system by increasing
the thermal conductivity in one direction, while other parameters remain fixed. The
temperature distribution at the substrate/skin interface is the most noteworthy of the EES
heat transfer system, so we focus on the temperature on the substrate’s bottom surface. The
results show that increasing the substrate thermal conductivity in the direction of heat flux
spacing can effectively reduce the temperature difference of the substrate in this direction
and increase the uniformity of temperature distribution. However, it has no obvious effect
on the temperature uniformity in the other direction except for the honeycomb heater. In
addition, increasing the thermal conductivity in the off-plane direction of the substrate will
aggravate the heterogeneity of the substrate’s bottom surface temperature distribution. On
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the contrary, decreasing the thermal conductivity in the z-direction can significantly enhance
the temperature uniformity of the substrate’s bottom surface. This study can be used to
design the orthotropic substrate of stretchable hyperthermia electrodes, and it provides a
theoretical basis for the mechanism and effect of temperature distribution regulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13071133/s1, Figure S1: Configurations of the stretchable
triangular heat source and the equivalent circuit; Figure S2: Configurations of the stretchable honey-
comb heat source and the equivalent circuit; Figure S3: Meshing of 3D models and 3D simulation
results for triangular heat source; Figure S4: Meshing of 3D models and 3D simulation results for
square heat source; Figure S5: Meshing of 3D models and 3D simulation results for honeycomb
heat source.
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