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Abstract
Driven by clinical needs and progress in neurotechnology, targeted interaction with neuro-

nal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic

ongoing activity in neuronal networks and their response to stimulation is unknown. None-

theless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy

and as a means to artificially inject information into neural circuits. Strategies using regular

or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the

stimulation outcome and are therefore not optimal to induce specific responses reliably.

Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions,

in particular when desired response features are network-dependent and are initially

unknown. In this proof-of-principle study, we present an experimental paradigm using rein-

forcement-learning (RL) to optimize stimulus settings autonomously and evaluate the

learned control strategy using phenomenological models. We asked how to (1) capture the

interaction of ongoing network activity, electrical stimulation and evoked responses in a

quantifiable ‘state’ to formulate a well-posed control problem, (2) find the optimal state for

stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of

generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action

potentials (responses). We show that the dynamic interplay of their magnitudes and the

probability to be intercepted by spontaneous events defines a trade-off scenario with a net-

work-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set

to find this optimum autonomously. Across networks, stimulation efficacy increased in 90%

of the sessions after learning and learned latencies strongly agreed with those predicted

from open-loop experiments. Our results show that autonomous techniques can exploit

quantitative relationships underlying activity-response interaction in biological neuronal net-

works to choose optimal actions. Simple phenomenological models can be useful to vali-

date the quality of the resulting controllers.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005054 August 10, 2016 1 / 22

a11111

OPEN ACCESS

Citation: Kumar SS, Wülfing J, Okujeni S,
Boedecker J, Riedmiller M, Egert U (2016)
Autonomous Optimization of Targeted Stimulation of
Neuronal Networks. PLoS Comput Biol 12(8):
e1005054. doi:10.1371/journal.pcbi.1005054

Editor: Saad Jbabdi, Oxford University, UNITED
KINGDOM

Received: April 15, 2016

Accepted: July 9, 2016

Published: August 10, 2016

Copyright: © 2016 Kumar et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are deposited in
the University of Freiburg institutional data repository
at https://www.freidok.uni-freiburg.de/data/11107
(DOI: 10.6094/UNIFR/11107).

Funding: This work was supported by the
Bundesministerium für Bildung und Forschung,
Germany (https://www.bmbf.de, FKZ 01GQ0830 -
Bernstein Focus Neurotechnology Freiburg-
Tübingen; UE) and by the German Research
Foundation through the Brain-Links-BrainTools
Cluster of Excellence (DFG, EXC 1086, www.dfg.de;
UE, MR). Article processing charges were funded by
the DFG and the University of Freiburg (Open Access

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005054&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.freidok.uni-freiburg.de/data/11107
http://dx.doi.org/10.6094/UNIFR/11107
https://www.bmbf.de
http://www.dfg.de


Author Summary

Electrical stimulation of the brain is increasingly used to alleviate the symptoms of a range
of neurological disorders and as a means to artificially inject information into neural cir-
cuits in neuroprosthetic applications. Machine learning has been proposed to find optimal
stimulation settings autonomously. However, this approach is impeded by the complexity
of the interaction between the stimulus and the activity of the network, which makes it dif-
ficult to test how good the result actually is. We used phenomenological models of the
interaction between stimulus and spontaneous activity in a neuronal network to design a
testable machine learning challenge and evaluate the quality of the solution found by the
algorithm. In this task, the learning algorithm had to find a solution that balances compet-
ing interdependencies of ongoing neuronal activity with opposing effects on the efficacy of
stimulation. We show that machine learning can successfully solve this task and that the
solutions found are close to the optimal settings to maximize the efficacy of stimulation.
Since the paradigm involves several typical problems found in other settings, such con-
cepts could help to formalize machine learning problems in more complex biological net-
works and to test the quality of their performance.

Introduction
Electrical stimulation of the brain is considered an effective strategy to manage the symptoms
of an increasing range of neurological disorders like essential tremor [1, 2], dystonia [3] and
Parkinson’s disease (PD) [4–7], and as a possible means to artificially inject information into
neural circuits, e.g. towards neurotechnical prostheses with sensory feedback [8]. The response
elicited, however, typically results from interaction of the stimulus with uncontrolled ongoing
neuronal activity. The changes of neuronal activity induced by the stimulus are thus not only
added to the continuing dynamics of neuronal activity but may be modulated by it. Under
these circumstances, using constant stimulation would elicit very different responses in each
trial [9, 10] and is therefore unsuitable to induce defined response features. To achieve stable
responses, or to modulate them predictably, stimulation settings would need to adapt to the
dynamics of the brain’s activity.

Without suitable models to capture the interaction between stimulus and ongoing activity
and to characterize the underlying network mode, it is not possible to adjust stimulation such
that a desired response is consistently achieved. Biologically mechanistic and analytically trac-
table models are, however, challenging to develop for a variety of reasons: Interactions may be
non-linear, and may depend on network modes, on the dynamics of individual neurons and
other factors [11–13]. Experiments in in vivomodel systems show that the measured response
of a network is strongly modulated by its state at the time of stimulation [14, 15]. Network
states are, however, problematic to define explicitly because of the non-stationary nature of
activity dynamics, uncertainty about the relevant spatial and temporal scales of influence and
partial observability of the system. They are typically identified in retrospect. To illustrate this,
consider UP and DOWN states observed in the neocortex [16–18] as network modes. The UP
(resp. DOWN) state can be quite clearly identified based on intracellular recordings of the
membrane potential and spike activity. Based on extracellular recordings of spikes alone, how-
ever, it would not be known during an inter-spike interval if the network had already transi-
tioned to the DOWN (resp. UP) state at the time of stimulation. The momentary state of the
network would be invisible, thus making it difficult to adjust stimulus settings online. Repeti-
tive stimulation may even lead to interaction between responses. Furthermore, as studies in
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vitro suggest, this influence may affect responses across several scales of organization, from
individual neurons [19] to networks [20, 21].

Despite the challenges, promising results from recent studies even with simple feedback
strategies make a compelling case for closed-loop neurostimulation devices. Experiments on a
primate model of PD indicated that even simple adaptive methods were superior to conven-
tional open-loop Deep Brain Stimulation (DBS) [22]. Furthermore, the first report of event-
driven DBS on human patients with PD [23] demonstrated an improvement in symptoms
compared to standard DBS, with a simultaneous reduction in stimulation time. Such event-
driven paradigms monitor a pre-determined indicator function in the spontaneous activity. In
the most simple version, these indicators trigger fixed stimuli [22, 23] but do not modify the
stimulus parameters as such. Where the quantitative input-output relations are known, prede-
fined controllers could be successful. Keren and Marom [21], for example, achieved stable
response probabilities with a PI controller to adjust the stimulus based on responses elicited by
previous stimuli since, under the conditions selected, the input-output dependence was nearly
linear.

Because of a lack of quantitative models that could be used to predict the ideal stimulus set-
tings for the systems studied, the notion of optimality does not exist in these stimulation para-
digms. Further, the nature of the problem in these examples was such that it was possible to
define a singular target value a priori, i.e. to stop oscillatory activity [22] or to achieve a quanti-
tatively predefined response feature, here, a fixed probability for a response [21]. When the
quantitative value of the target response cannot be clearly defined, is intrinsically variable, or
where multiple interacting objectives have to be balanced, e.g. a cost function exists, these
approaches cannot be applied. To address such problems, we propose a reinforcement learning
(RL) based closed-loop paradigm to autonomously choose optimal control policies without the
need for a model of the system and its interaction with electrical stimulation.

The objective of this paper is to demonstrate in a proof-of-principle study how an RL based
controller may be used to autonomously adjust stimulus settings to maximize stimulus efficacy
in interaction with a generic network of neurons. The approach poses the following questions:
(1) How to represent the interaction of network activity, stimulus and response as a quantifi-
able ‘state’ so that a well posed control problem may be formulated for variable conditions
without predefining a singular target value, (2) how to find the optimal state for stimulation
autonomously, (3) how to evaluate the quality of the solution found.

To develop the concept and techniques, we employed generic neuronal networks in vitro on
substrate integrated microelectrode arrays as a model system. Previous studies offer a partial
understanding of the dynamics in such networks and of the rules governing their interaction
with electrical stimuli [20], which allowed us to test for the quality of the solutions found by an
RL-based controller.

Neuronal networks in cell culture exhibit activity characterized by intermittent network-
wide spontaneous bursts (SB), separated by periods of reduced activity. Electrical stimulation
of the network also evokes bursts of action potentials (responses). Response strengths depend
on the stimulus latency relative to the previous SB, and can be described by a saturating expo-
nential model [20]. For this system we thus posed the following optimization problem: find the
stimulus latency that would maximize the stimulation efficacy measured as the number of
spikes evoked per SB in the face of ongoing network activity. The achievable efficacy is thus not
known a priori and further properties of the network may be relevant to its value, i.e. depen-
dencies may be incompletely captured in the model. According to [20], choosing longer laten-
cies to stimulate ensure that longer responses are evoked, but are more prone to interruption
by the next SB and thereby affects stimulation efficacy adversely by losing out on opportunities
to stimulate. Choosing shorter latencies, on the other hand, ensures that stimuli are delivered
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more often without interruption by SBs, but at the cost of evoking weaker responses. To maxi-
mize stimulation efficacy in this context, we thus need to balance the trade-off between these
opposing strategies. In this study, we asked if an RL based controller can autonomously find
the ideal balance in this trade-off and identify the optimal stimulus latency.

The control problem thus formulated has several interesting features that make it pertinent
to the problem at hand. To find the optimal time, a controller would have to reconcile the
dynamic interplay of multiple biological processes, namely: a) the initiation of synchronous
SBs in the network, b) recovery of the network excitability after SB termination, and c) the
overall level of excitability of the network.

The controller has also to account for the modulation of system dynamics over a broad-
range of time-scales. Furthermore, though these networks are similar w.r.t. statistical proper-
ties, every network has distinct dynamic features and unique connectivity. The controller thus
needs to be able to operate robustly over a range of activity modes. Out of a high dimensional
spatial and temporal feature space available in the recording, a relevant low dimensional quan-
titative state feature has to be abstracted and a strategy to converge toward optimal perfor-
mance worked out. For these reasons, we argue that this toy problem captures many of the
relevant challenges faced by closed-loop paradigms in biological frameworks and by RL based
controllers in a complex adaptive environment. Finally, drawing on simple quantitative notions
from previous studies, we computed network-specific optimal stimulation latencies [20] from
open-loop data to independently validate the optimality of the learned controller. We observed
that the learned stimulation latencies and achieved stimulation efficacies correlate strongly
with the offline optimal values estimated for these networks.

Our results demonstrate the capacity of autonomous techniques to exploit underlying quan-
titative relationships in neurotechnical interaction with neuronal networks to choose optimal
actions and illustrate how phenomenological models can be used to help formulate the RL
problem and validate the performance of the resulting controllers.

Materials and Methods

Model system
The dynamics of neuronal activity in vivo is dependent on a multitude of factors including and
not limited to cross-structural influences and specific anatomy and connectivity of the region
of interest. Biological complexity in this scale makes it difficult to glean a consistent under-
standing of signal relationships between the network and an external stimulus, a crucial step in
developing feedback control techniques [24]. In order to develop our concepts and algorithms,
we used a model that while being generic and independent of specific functions and/or modali-
ties preserves the biophysical complexity of the neuronal ensemble and relevant challenges an
autonomous controller would face in a more complex context.

Neuronal networks grown on substrate integrated microelectrode arrays are a suitable
model in that they are easily accessible generic neuronal networks that can be maintained in a
controlled environment, exhibit spontaneous activity known to influence the network’s inter-
action with external stimuli, and are known to operate in distinct network modes across a
wide-range of time scales. Furthermore controlling such biological neuronal networks poses
many interesting challenges for research in RL such as potentially high dimensional state
spaces, continuous action spaces and non-stationary dynamics.

Frontal cortical tissue was dissected from newborn Wistar rats (obtained from the breeding
facilities of the University of Freiburg) after decapitation, enzymatically dissociated, and cul-
tured on polyethyleneimine (Sigma-Aldrich, St. Louis, MO)-coated microelectrode arrays
(MEAs; Multi Channel Systems, Reutlingen, Germany). The culture medium (1 ml) consisted
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of minimal essential medium supplemented with 5% heat-inactivated horse serum, 0.5 mM
L-glutamine, and 20 mM glucose (all compounds from Gibco Invitrogen, Life Technologies,
Grand Island, NY). Cultures were stored in a humidified atmosphere at 37°C and 5% CO2—

95% air. Medium was partially replaced twice per week. Neuronal density after the first day in
vitro (DIV) ranged between 1500 and 4000 neurons/mm2. The final density after 21 DIV set-
tled at 1500–2000 neurons/mm2, independent of the initial density. At the time of recording,
network size thus amounted to 5 − 6 × 105 neurons. Animal treatment was according to the
Freiburg University (Freiburg, Germany) and German guidelines on the use of animals in
research. The protocol was approved by the Regierungspräsidium Freiburg and the BioMed
Zentrum, University Clinic Freiburg (permit nos. X-12/08D and X-15/01H).

Electrophysiology
Neuronal activity was recorded inside a dry incubator with MEAs with 59 titanium nitride
(TiN) electrodes of 30 μm diameter and 500 μm pitch (rectangular 6x10 grid). One larger elec-
trode served as reference. The primary signal was amplified (gain 1100, 1–3500 Hz) and sam-
pled at 25 kHz/12 bit (MEA 1060-BC; Multi Channel Systems). Online spike detection was
done with MEABench (version 1.1.4) [25] at six to eightfold root mean square noise level for
spike threshold.

Such networks of dissociated neurons in vitro exhibit spontaneous activity characterized by
intermittent network-wide synchronous bursts separated by periods of reduced activity. Inter-
burst intervals (IBI) in these networks fit an approximate lognormal distribution. Stimulating
the network also evokes bursts of action potentials (response). The length of these responses at
a chosen recording electrode can be modulated by the latency of the stimuli relative to the SB
at that channel. Their relationship was shown by [20] to fit a saturating exponential model.

Trade-off problem
The optimization problem was defined as the following: what is the optimal stimulus latency
relative to the end of the previous SB at a selected recording electrode (RE) that would maxi-
mize the number of spikes evoked at that site per SB? To illustrate the problem, consider the
following opposing strategies: A) choosing a long latency: Based on the saturating recovery
model, longer latencies would elicit to longer responses (Fig 1). However, such a strategy
would prove futile in the long run; long latencies are prone to interruptions by succeeding SBs
and opportunities to stimulate will be forfeited. This would lower the count of evoked spikes
per SB. B) choosing short latencies: this strategy would ensure that stimuli are delivered more
often, but at the cost of evoking shorter responses. Optimization involves finding the trade-off
between these opposing strategies. We asked that an RL based controller autonomously find
the optimal time for stimulation to balance this trade-off for individual biological networks
based only on the activity at the RE.

Experimental procedure
Experiments were performed on 20 networks between day in vitro (DIV) 19 and 35 (‘network’
denotes a culture at a specific point in time). Each experiment began with one hour of record-
ing spontaneous activity, from which bursts were detected offline. A statistical model of SB
occurrence was estimated by fitting a lognormal function to the IBI distribution to extract the
location and scale parameters (μ and σ respectively).

Selection of stimulation and evaluation ssites. Spontaneous data were further analyzed
to identify MEA electrodes that would serve as sites of stimulation and of evaluation of the
responses. As candidate stimulation electrodes (SE) we selected sites that were more likely to
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participate early in SBs [20]. This procedure identified the so-called “major burst leaders” [26,
27]. For open-loop stimulation, monophasic, negative voltage pulses of 400 μs width and 0.7 V
amplitude were delivered at candidate SEs at 0.1 Hz. Final SE and RE pairs were typically
selected based on peri-stimulus time histograms (PSTH) from positions with responses con-
sisting of both early (� 25 ms) and late (� 50 ms) components.

Response strength. Following the choice of SE and RE we identified the dependence of
response strengths on the periods of inactivity preceding stimuli for a given network. The num-
ber of spikes at the recording channel in a 500 ms window following a stimulus was typically
defined as the response strength (RS). This data was used to estimate the parameters A, B and λ
of the recovery model by least square fitting.

Closed-loop stimulation. Closed-loop episodic learning sessions were performed using
RE and SE positions identified as above. The controller was designed to learn in episodes that
commenced at the termination of each SB (Fig 2A and 2B). The closed-loop architecture was
realized by interfacing the data acquisition software (MEABench) with the closed-loop control
software, CLS2 (Closed-loop Simulation System, Fig 2C). Learning sessions proceeded in alter-
nating training and testing rounds. During training, the controller was free to explore the state-
action space and learn a control law using the RL algorithm described in the following section,
while during testing it always behaved optimally based on the knowledge hitherto acquired.
Subsequent to the closed-loop session, spontaneous activity was recorded for one hour to

Fig 1. Stimulating the network at an electrode evokes a burst of activity. Response strengths were dependent on the period of
inactivity preceding the stimulus. (A) Raster shows responses at one chosen recording channel in a network to 50 stimuli at the same
electrode. Stimuli were delivered periodically, and thus at random latencies relative to the previous SB. Stimulation cycled through five pre-
selected electrodes at 10 s intervals. Stimulus properties: -0.7 V, 0.4 ms, monophasic against common ground. Trials were aligned to the
time of stimulation (red line) and sorted by the count of spikes within the designated response window (see magenta overlay). A response
window of 2 s was chosen for this network. The diagram exposes the relationship of response strengths to the period of prior inactivity. The
first 200 ms post-stimulus is zoomed in panel (B). Responses typically consisted of an early (� 20 ms post-stimulus) and late (� 50 ms post-
stimulus) component. (C) The relationship between response strengths and periods of prior inactivity can be captured in a saturating
exponential model similar to the dependency of response length [20].

doi:10.1371/journal.pcbi.1005054.g001
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check for non-stationarity in the IBI distribution. The stimulus properties were as during
open-loop stimulation.

Reinforcement learning
Learning a controller for a given task with RL requires formalizing it as a Markov Decision
Process (MDP). An MDP is defined as a five-tuple (S,A, T , R, P), where S is a set of states,
A a set of actions and T a finite set of discrete time points (finite horizon). The reward func-
tion R : S �A� S ! R defines the reward an RL controller receives when it applies action
at 2 A in state st 2 S and transitions into stþ1 2 S at time t 2 T . The probabilistic transition
model P (st+1 | st, at) defines the conditional probability of transitioning from state st to state
st+1 under the action at. The goal of RL is now to find a control law (policy) p : S ! A which

maximizes the expected accumulated reward VpðsÞ ¼ EfPT
t¼0 g

tRðst; pðstÞ; stþ1Þjs0 ¼ sg
where γ is a discounting factor on future rewards. Value Iteration is commonly used to
find V if the transition model P is available. Although in this proof-of-concept study a model
is available and used to verify the solution found by the RL controller a-posteriori, for biologi-
cal systems in general we can not assume that a model is known. We therefore consider
a model-free setting and use Q-learning [28] to learn an action-value function Q(s, a)
(Q : S �A ! R) which represents the value of choosing action a in state s. The greedy policy
π can then be derived as π(s) = arg maxa Q(s, a). To apply Q-learning we first have to define
the state and action space as well as a suitable reward function.

State space definition. Our definition of S is motivated by the following considerations.
Solving the trade-off problem involves reconciling the dynamic interplay of the initiation of
synchronous SBs in the network and the recovery of network excitability after SB termination.
A simple statistical model of the initiation of synchronous SBs is a lognormal function of the
period of inactivity between SBs. The cumulative of this distribution indicates the probability
of SB initiation as a function of time after the preceding SB (Eq 4). At the same time, recovery
can equally be modeled by an exponential function of the time after the end of an SB (Eq 5).
Stimulation at a certain latency thus effectively probes the level of recovery at that time. This
latency was defined as the quantitative state variable accessible to the learned controller, pro-
viding information on the dynamics of both processes. Therefore the time after SB termination
is a simple and intuitive choice of a low dimensional state feature. We discretized this latency
in 0.5 s steps, corresponding to states 1, . . ., N. These make up the set of states S together with

Fig 2. Stimulation trials and the closed-loop architecture. (A) A trial started with the end of a spontaneous burst (SB). The trial was terminated
either by the next SB (dotted box) or a stimulation. In our paradigm, reward was defined as the number of spikes in the response. Interruptions by
SBs led to neutral rewards (punishment). (B) The time within each trial was discretized into 0.5 s steps, corresponding to states 1, . . ., N. At each
state, the controller could choose between two actions: to wait or to stimulate. A ‘stimulate’ action led to one of the terminal states Ti, with i
indicating the strength of the response. Terminal state F was reached if the trial was interrupted by ongoing activity. (C) Schematic visualization of
the closed-loop architecture.

doi:10.1371/journal.pcbi.1005054.g002
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terminal states that reflect the outcome of the stimulation Ti (i indicating the response
strength) or an “interruption” state F.

Reward function. In order to learn the optimal stimulus latency, the controller needs to
be appropriately rewarded/punished (Eq 1). In Fig 2B, within an episode, at each state the con-
troller could choose between two actions: to ‘wait’ or to ‘stimulate’ which make up the action
setA. An episode terminated either when a preset maximum number of states (i.e. maximal
latency) was reached, an SB occurred or when a ‘stimulate’ action was chosen. After each epi-
sode, the controller received a terminal reward proportional to the strength of the evoked
response. Alternatively, if an SB had occurred or the maximum number of cycles was reached
it received a neutral reward (punishment):

Rðst; at; stþ1Þ ¼
i; if stþ1 ¼ Ti; i 2 f1; . . . ; ng
0; otherwise:

(
ð1Þ

Q-Learning. As a learning algorithm, we used online Q-learning with a tabular represen-
tation of the Q-function. To guarantee full exploration of the state and action space the control-
ler follows a random policy πexplore during training that uniformly chooses the state of
stimulation. The Q-function is iteratively updated during training sessions as:

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ a Rðst; at; stþ1Þ þ gmax
a

Qtðstþ1; aÞ � Qtðst; atÞ
� �

;

where we set the learning rate to α = 0.5 and use no discounting (γ = 1) since we consider a
finite horizon problem. During testing sessions the controller follows a greedy policy (Eq 2)
without exploration:

pðsÞ ¼ arg max
a

Qðs; aÞ ð2Þ

Data analysis
Offline burst detection was performed for spontaneous data using the following algorithm: For
spikes recorded from each electrode: a) interspike interval (ISI) had to be� 100 ms, b) an inter-
val�200 ms was allowed at the end of a burst and defined the minimal IBI, and c) the mini-
mum number of spikes in a burst was set to three. Furthermore, at least three recording sites
had to have burst onsets within 100 ms, and only one larger onset interval�200 ms was
allowed [20].

For online burst detection at a single chosen channel, an individual ISI threshold was
defined for each network based on spontaneous activity at the channel of interest prior to the
closed-loop session. The ISI distribution of spontaneous activity was typically bimodal, with a
strong first peak corresponding to ISI within SBs and a second peak for the intervals between
bursts. The minimum between the intra- and inter-burst intervals was chosen as the threshold.
The minimum number of spikes in a burst was set to three.

Parameters extracted from the fitting procedures were used to compute t�, the open-loop
parametric estimate of the optimal latency (Eqs 3–7). To compare the predicted and realized
improvement in stimulation efficacy after learning we estimated the stimulation efficacy of a
strategy using random stimulation latencies taken from the objective function as the baseline
model. The efficacy of this strategy corresponds to the mean of the objective function of each
network.
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Results
To analyze the performance of closed-loop autonomous control systems for neurotechnical
interaction with neuronal networks we designed a reduced model system that captures several
general aspects of the problem setting. Networks of cortical neurons in culture develop robust
spontaneous activity that influence the outcome of stimulation in non-trivial ways. In addition,
this activity exhibits non-stationarities that any control system needs to cope with. We further
defined a target function whose quantity was not known to the control system a priori but
needed to be identified autonomously. State and action space were restricted to keep the
dimensionality of the paradigm low and allow quantitative validation of the optimization
problem.

Properties of spontaneous network activity and response to electrical
stimulation
Neuronal networks cultured on MEAs display spontaneous activity that consists of synchro-
nized network-wide spontaneous bursts (SB) separated by periods of inactivity. Burst-lengths
ranged between hundreds of milliseconds to few seconds. SBs were detected using an algorithm
that combined an inter-spike-interval threshold and the number of simultaneously active sites
(Fig 3A). Inter-burst-intervals (IBIs) were approximately lognormal distributed (Fig 3B). Fit-
ting algorithms yielded the location and scale parameters (μ and σ) of the corresponding log-
normal distribution. The cumulative of this distribution was used to estimate the probability of
another SB occurring given the period of inactivity that elapsed—or what we term the ‘proba-
bility of interruption’ following an SB (Fig 3B, red line).

Fig 3. Identification of network specific objective functions. (A) Networks of dissociated neurons in vitro exhibit activity characterized by
intermittent network-wide spontaneous bursts (SB) separated by periods of reduced activity (raster plot for 60 channels in a DIV 27 network). The
shading marks the limits of individual SBs as detected by the burst-detection algorithm. (B) The distribution of Inter-Burst Intervals (IBIs) is
approximately lognormal. The histogram shows the IBI distribution for the network in (A). The cumulative of this distribution (red) is predictive of the
probability of being interrupted by ongoing activity given the elapsed period of inactivity, i.e. the current state st. (C) Such a distribution was used to
weight response strengths so that each dot represents the mean response strengths that can be evoked over a set of trials, including those that did
not lead to stimulation, for a given stimulation latency. The fit predicts the objective function of the optimization problem. The example shows the
data for the network shown in Fig 1C. The curve reveals a quasiconcave dependency, a unique global maximum and an optimal latency of� 2.5 s
in this network. (D) Fits to the probability of avoiding an interruption (blue), response strengths prediction (orange), and the resulting weighted
response curve (orange, dotted) shown for another network. An optimal latency of� 1.5 s emerges in this case. (E) All predicted objective functions
for each of the 20 networks studied were quasiconcave and unique choices of optimal stimulus latencies were available. The objective functions
were normalized to peak magnitude.

doi:10.1371/journal.pcbi.1005054.g003
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Stimulating a network at a channel evoked a burst of activity at others. For our experiments,
we selected one stimulating and recording channel each. Weihberger et al. [20] showed that the
greater the duration of network inactivity, the longer the responses at a chosen site will be,
according to a saturating exponential model. In order to verify this relationship and extract the
parameters of the corresponding model, stimuli were delivered at random latencies relative to
the previous SB (open-loop stimulation). Fig 1A shows responses at the recording channel to
50 such trials in an example network. Responses typically consisted of an early (�20 ms post-
stimulus) and late (>50 ms post-stimulus) component. The early component, presumably
reflecting responses to antidromic stimulation, was characterized by temporally precise and
reliable responses while the late component, presumably reflecting responses to orthodromic,
transsynaptic activation, was both variable and unreliable (Fig 1B).

A least square fit of the response strengths to a saturating exponential model with stimulus
latency as the independent variable was carried out. The fitting function was of the form
A(1 − e−λ t) + B (in red in Fig 1C). We then weighted all response strengths with the probability
of being able to deliver a stimulus at the corresponding latencies, without being interrupted by
ongoing activity. The weighted response strength curve (objective function) thus provides an
estimate of the average number of response spikes that can be evoked for each SB (Fig 3C and
3D). A solution that maximizes this estimate is therefore the optimal solution to the proposed
trade-off problem, namely, to find the stimulus latency that maximizes the number of response
spikes per SB.

We observed that a unique optimal stimulus latency exists for each of the 20 networks we
studied (Fig 3E). The optimal latency emerges as the result of interaction of processes underly-
ing ongoing and stimulus evoked activity dynamics of the network. Quantitative insights from
previous studies [20] allowed us to extract relevant parameters from recorded data. We then
constructed a simple parametric model to compute the network-specific optimal latency off-
line, before we let the RL controller explore the problem in a closed-loop.

Dependency of optimal stimulus latencies on properties of network
activity
To understand the emergence of the optimal stimulus latencies from interacting biological pro-
cesses and visualize the nature of the input–output relations and their relationship with the
underlying parameter space, we considered simplified phenomenological models of each of the
major contributing processes. Input, in the context of this problem refers to the period of inac-
tivity/latency after which a stimulus is delivered, and output—the average number of response
spikes evoked for every SB—the response feature of interest. The recovery of post-burst net-
work excitability was modeled as a saturating exponential function (Eq 3). A statistical model
of the temporal occurrence of SB events was considered (Eq 4). The corresponding model
parameters were extracted from spontaneous and evoked activity recorded from each network.
The model equations were:

RðtÞ ¼ Að1� e�l tÞ þ B; ð3Þ

IBIðtÞ ¼ 1

ts
ffiffiffiffiffiffi
2p

p e�
ðln t�mÞ2

2s2 ; ð4Þ

�IðtÞ ¼ 1� F
ln t � m

s

� �
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whereFðxÞ ¼ 1ffiffiffi
2

p
p

Z x

�1
e�

t2
2 dt;

f ðtÞ ¼ �IðtÞ � RðtÞ; ð6Þ

t� ¼ argmax
t

f ðtÞ: ð7Þ

R(t) and IBI(t) are the response strengths and the IBI respectively, modeled as a function of
the period of inactivity, t (input). �IðtÞ is the computed probability of avoiding an interruption,
given a period of inactivity, t, and f(t) the appropriately weighted response strength model—
the objective function (the input–output relationship). f(t)|t then gives the stimulus efficacy for
repeated stimulation at latency t. The optimal latency t� is the maximizer of this function.

In order to visualize the dependence of the input-output relations on the contributing
parameters, we numerically computed objective functions and the corresponding t�, while
varying one or more parameters and holding the remaining constant. Initially, A was allowed
to vary while parameters B, λ, μ, σ were held constant. Fig 4A and 4B shows the family of recov-
ery functions considered and the corresponding family of objective functions. In general, all
objective functions shared the property of being quasiconcave and permitted a unique maxi-
mum. These maxima (marked as dots) were the desired outputs and the corresponding stimu-
lus latencies t�, the desired optimal latency. The desired output– or equivalently the desired
latency– increased non-linearly with A (Fig 4B).

Within the parameter range observed for A (mean and standard deviation 15.5 ± 9.3) and B
(mean and standard deviation 4 ± 5.8) in our networks, the nature of the objective function
family was preserved; a unique optimal latency existed, and monotonically increased or
decreased non-linearly with A, depending on the value of B (Fig 4C). Fig 5A, summarizes the
dependence of t� on the A − B plane. Each color coded plane corresponds to a different value of
the time constant λ. λ was allowed to vary in the range observed experimentally (0.2� λ� 1.2).

Fig 4. Dependence of optimal latency on parameters that capture the network’s response to stimuli.Dependence of the objective
function on parameters that capture the network’s response to stimuli. In all panels the parameters λ, μ and σ were set to 6.67, 1, 0.6 and 1,
respectively. (A) Changes of response strength with the gain A of the response strength model within the range observed experimentally (5�
A� 40, B = 6.67; t: stimulus latency) (B) The optimal latencies t* (dots), i.e. the maxima of the objective function f(t) increased non-linearly with
the gain parameter A (dashed line). Color code as in panel A (B = 6.67). (C) Changes of optimal timing t* as a function of gain A and y-intercept
B within the range observed experimentally (-10� B�20). B influences the relationship of t* with A and was trivial at B = 0. Black dots and
dashed line indicate the case B = 6.67 shown in panel B. Note that A + B > 0 was imposed to ensure that the maximal responses were strictly
positive.

doi:10.1371/journal.pcbi.1005054.g004
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Next, we varied the location and scale parameters, μ and σ respectively—see Eq 4 of the IBI
distribution. The corresponding input–output relations were still quasiconcave, thus ensuring
the existence of a unique maximum. The optimal latency depended almost linearly on μ (Fig
5D). Fig 5E illustrates how the optimal latency is modulated in the A − B − μ space for λ = 1.
The scale parameter σ, however, had no significant effects on the shapes of the objective func-
tions and hence the corresponding optimal times (S1B Fig). The model thus allowed us to
predict the optimal stimulus latency based on the individual properties of spontaneous and
evoked activity of each network.

Fig 5. Dependence of the optimal latency on properties of the network’s activity dynamics. (A) Dependence of the optimal stimulus
latency t* on the A − B plane. Each plane corresponds to a different value of the time constant λ of the recovery function within the range
observed experimentally (0.2� λ� 1.2). (inset) Zoom-in to −2� B� 6.67 to reveal the monotonic rise of t* (dots and dashed line) that
corresponds to the case described in Fig 4B (λ = 1). (B) Dependence of the gain in stimulation efficacy by using t* over random stimulation
latencies on the time constant λ of the recovery function. μ, A, B, and σ were set to 0.6, 20, 6.67, and 1 respectively. (C) IBI distributions for
the range of values observed experimentally of the location parameter μ (0.6� μ� 2) for A, B, λ, σ set to 20, 6.67, 1 and 1 respectively. (D)
The family of objective functions corresponding to the IBI distributions in (C) shows the near linear relationship of the optimal latencies with
μ (dots and dashed line) (A, B, λ, σ were 20, 6.67, 1 and 1 respectively; colors as in (C)). (E) Summary of the dependence of the optimal
stimulus latency on the A–B–μ space for λ = 1. Each plane corresponds to a different value of the location parameter μ of the IBI
distribution. (inset) Zoom-in to −2� B� 6.67) to reveal the rise of t* (dots and dashed line) that corresponds to the case described in Fig
4B (λ = 1, μ = 0.6).

doi:10.1371/journal.pcbi.1005054.g005
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RL based strategy to learn optimal latencies
We then proceeded with the closed-loop learning session. The session proceeded in alternating
pairs of training and testing rounds. During training rounds, the controller was free to explore
the state-action space and update its action-value function estimates, while in a testing round,
it always chose an optimal policy based on the knowledge hitherto acquired. The time taken to
run through with the experiment varied across networks, but was typically around 3–5 hours,
typically covering 1000 SBs. This variability was due to differences in the average burst rate
between networks. The latency chosen by the algorithm during the final testing session was
considered the learned latency. To test the stability of the learned latency some of the sessions
were run with up to 3000 SB in further training and testing rounds. Fig 6 illustrates a typical
session in an example network. In this case learning proceeded in three pairs of 200 training
and 50 testing trials. Note that a trial in our paradigm refers to the period between SBs where

Fig 6. A closed-loop learning session in an example network. A closed-loop learning session in an example network. The session consisted of 1000
trials (200 training (Ti, red), 50 testing (Xi, green) trials and 4 such pairs) (A) Raster diagram showing the activity at the recording channel around the time
of stimulation. Trials interrupted by ongoing activity are left empty at t > 0 s. The spikes of the interrupting SB were removed in (A) and (B) for clarity.
Successful stimuli evoked responses at t > 0 s. Blue lines mark the period of latency prior to the stimulus at t = 0 s Magenta triangles indicate stimuli
delivered in preceding trials. Within training rounds, the controller was free to explore the state space. Note that these rounds are in closed-loop mode but
with a random sequence of stimulation latencies. The strategy in this example was non-greedy. During testing rounds the hitherto best policy was chosen.
After the final round, a latency of� 1.4 s was learned. Stimulus properties were as in Fig 1. (B) Zoom-in on responses evoked throughout the session.
Interrupted trials appear as empty rows; in this example all stimuli elicited responses. (C) Stimulus efficacy estimated as the response strength per SB
(RS/SB) computed over each of the training/testing rounds. RS/SB improved considerably during testing compared to the training rounds. The fraction of
trials interrupted in each round is shown as red circles and numerically. The dashed line was added for clarity.

doi:10.1371/journal.pcbi.1005054.g006
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stimulation can potentially be delivered. Each trial is therefore initiated by ongoing activity (SB
termination) and not by stimuli. Some of the trials were interrupted by ongoing activity, result-
ing in stimulus counts less than the planned number.

To analyze the closed-loop sessions, we first looked at the model parameters of the recovery
function, A, B and λ and compared values predicted from open-loop sessions with those recov-
ered from fits to the closed-loop data. Note that in this paradigm responses are available only
at fixed latencies corresponding to the state definition (Fig 7A). The gain of the network, A,
showed a strong positive correlation to the open-loop ones (r = 0.91, p<10 -5, n = 15 networks,
Fig 7A and 7B), indicating relative stationarity of the quantitative relationship and its accessi-
bility for the controller. Parameter B, which can be interpreted as the excitability threshold for
SB termination, too showed positive correlation (r = 0.66, p = 0.003, n = 18 networks, Fig 7C),
but weaker than model parameter A, suggesting that SB termination may depend on additional
factors not captured by the model. Parameter λ showed a still weaker correlation (S1C Fig).
Across networks, closed-loop estimates of the recovery model were thus mostly consistent with
open-loop estimates.

Fig 7. Comparison of open-loop predictions with autonomously learned strategies. (A) Dependence of response strengths on pre-
stimulus inactivities in data during a closed-loop session in an example network. Each box shows the statistics of response strengths recorded
at one discrete state. The central measures are median and the edges with 25th and 75th percentiles. Whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually. The fit (red) was made to the medians. The minimal latency for burst
termination was 0.4 s in this example, which was thus the earliest state available for stimulation. (B) Across networks, closed-loop estimates of
the gain A correlated strongly with open-loop estimates (r = 0.91, p<10-5, n = 15 networks), indicating that A was mostly stable during the
experiments. (C) Similarly, closed-loop estimates of B were in agreement with open-loop ones (r = 0.66, p = 0.003, n = 18 networks), although to
a lesser degree. (D) Across networks, learned stimulus latencies show a positive correlation with predicted optimal values (r = 0.94, p<10-8,
n = 17 networks). (E) In spite of some variability in Panels B-D the magnitudes of the modeled objective functions for predicted and learned
latencies matched closely (green dots), indicating that the network/stimulator system was performing at a near optimal regime, regardless of
slight discrepancies in the latencies. Exact optima were likely unreachable owing to the coarse discretization (0.5 s) of states. Red dots denote
the corresponding magnitudes at trand for a strategy delivering stimuli at random latencies estimated as the mean of the objective function. (F)
The distribution of errors between learned and predicted latencies is centered around the predicted optimum and confined to within 2 discrete
steps from it.

doi:10.1371/journal.pcbi.1005054.g007
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We then compared the learned stimulus latencies with those predicted from open-loop ses-
sions. Overall, stimulus latencies learned by the controller showed a strong positive correlation
with the optimal latencies estimated from open-loop experiments (r = 0.94, p<10-8, n = 17 net-
works, Fig 7D). Nevertheless, in some networks learned latencies differed from predicted ones,
as visible in their distances to the diagonal in Fig 7D. Next, we compared the measure being
maximized—stimulation efficacy estimated as the response strength per SB, corresponding to
learned and estimated latencies. The network-specific model of the objective function, f(t) (Eq
6) was used to estimate the maximal stimulation efficacy f(t)|t achievable with the predicted
optimal latency vs. the one learned for a given network. Values of this measure were in strong
agreement (Fig 7E), indicating that the control goal was achieved despite errors in predicted
latencies (Fig 7D). One possible source of errors could be the discretization of the controller’s
state space into 0.5 s steps. Indeed, the error distribution showed that 74% of the networks
studied fell within ±0.5 s around the optimum (Fig 7F).

Finally, the performance of the controller was evaluated with respect to the defined goal: to
maximize stimulation efficacy measured as the total number of response spikes evoked for
every detected SB in the network. A session-by-session analysis showed that in 94.2% of the
sessions (n = 52 sessions with non-greedy training, 11 networks), the percentage of interrupted
events per session diminished post learning (Fig 8A). IBI distributions of spontaneous activity
prior and subsequent to closed-loop sessions showed small changes in only a few networks
(p<0.001 in 6/20 networks, two sample Kolmogorov-Smirnov test S4 Fig) and in these, the fre-
quency of IBIs less than 5 s could change in both directions.

While the number of spikes in a response did not significantly change across sessions (Fig
8B) the standard deviation across stimuli in a session decreased (Fig 8C) (p = 0.01, two-sample
t-test). Concurrently, in 90% of the cases (n = 52 sessions, 11 networks), the stimulus efficacy
had increased after learning, supporting the effectiveness of the learning algorithm.

The models used to estimate the objective functions were derived from fits to spontaneous
activity and noisy samples of responses in open-loop experiments. The quality of the predic-
tions thus depended on the reliability of these fits. Comparison of the optimal stimulus effica-
cies predicted from our models with the efficacies achieved during the final closed-loop testing
sessions showed that achieved efficacies were within the 99% confidence interval for the models
fitted for each network (Fig 8D). Achieved stimulus efficacies fall within the interval in 8 of 11
networks studied.

Learning clearly improved performance in each network (p<0.001, two-sample Kolmogo-
rov-Smirnov test). The amount of improvement, however, varied across networks (Fig 8E). To
compare performance across networks, we captured each network on a normalized response-
per-stimulus vs. interruption probability plane (Fig 8F). Each network is shown before and
after learning. Only the last pairs of sessions were used for this plot (n = 11 networks). The dis-
tribution shows a clear separation of the mixed-mode performance before and after learning,
indicating the improvement of stimulation efficacy. The improvement was almost exclusively
due to a reduction in interruption probability (S2 and S3 Figs). This, however, also says that
the controller learns to avoid losing in response magnitude by not further reducing the inter-
ruption probability, i.e. it balances the trade-off.

Discussion
Closed-loop stimulation has been proposed as a promising strategy to intervene in the dynam-
ics of pathological networks while adapting to ongoing activity. The selection of signal features
to close such a loop and strategies to identify optimal stimulus settings given a desired network
response, remain open problems. We propose methods of reinforcement learning to
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autonomously choose optimal control policies given a pre-defined goal. In this study, we pres-
ent proof of principle of such a controller interacting in a goal directed manner with generic
neuronal networks in vitro, boundary conditions for such interactions and an analysis of the
optimality of the learned controller.

Our results demonstrate the capacity of RL based techniques to autonomously exploit quan-
titative relationships underlying a complex network of neurons to find optimal actions. Draw-
ing on previous studies, we identified a simple verifiable trade-off scenario in which the
dynamics of spontaneous activity in these networks interact with external electrical stimuli
[20]. The temporal relationship of SB events in these networks may be approximated by a log-
normal function. Moreover, response strengths to electrical stimuli have been shown to quanti-
tatively fit a saturating exponential model, dependent on the stimulus latency subsequent to an
SB event. Interaction of these underlying processes gives rise to an abstract objective function
predicting a network specific and unique stimulus latency relative to a SB that maximizes the
number of response spikes evoked per SB across repeated stimulation. The goal set for the RL
controller was to autonomously identify this optimal stimulus latency.

Fig 8. Performance evaluation of the controller. (A) The percentage of interrupted trials during training (x-axis) and testing (y-axis) sessions
(n = 52 pairs across 11 networks). This percentage decreased sharply after learning in 94.2% of the recorded sessions. (B) The mean RS evoked
per stimulus was, however, preserved in both sessions. (C) The variability in RS per stimulus decreased significantly (p = 0.01, two-sample t-test).
(D) Comparison of the optimal stimulus efficacies predicted from our models with the efficacies achieved during the final closed-loop testing
sessions. Vertical bars represent 99% confidence intervals corresponding to the models fitted for each network. Achieved values fall within the
interval in 8/11 networks studied. (E) Mean rewards were calculated over trials in the final training and testing rounds to compare the controller’s
performance. After learning, mean rewards increased in each network, which is indicative of the improvement in stimulation efficacy. The rewards
across the sequence of trials in each round were drawn from distinct distributions in every network (p<0.002, two-sample Kolmogorov-Smirnov
test). The individual distributions are shown in S2 and S3 Figs. (F) Summary of learning across networks on a normalized RS/stimulus vs.
interruption probability plane (11 networks). Only final training and testing rounds were considered. Normalization for interruptions was performed
relative to the model-based estimate of interruption probabilities, corresponding to stimulation at random latencies for each network. The RS/
stimulus measure was similarly normalized to the model-based estimates of the efficacy assuming a random stimulation strategy. The
improvement in performance clearly separates the data points in the plane. Of the two modalities that contribute to stimulus efficacy, the
improvement was dominated by reduction of interruption probabilities.

doi:10.1371/journal.pcbi.1005054.g008
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Response strength was defined as the number of spikes detected in a predefined temporal
window (typically 500 ms) from stimulus onset. Note that while [20] define response lengths as
the time to the last spike of the detected response, our data showed that the spike counts in a
temporal window post stimulus is proportional to the response lengths measured in time and
hence can be used as an alternative variable.

This toy problem for the model system captures some of the major challenges that closed-
loop paradigms would face in a biomedical application, i.e. in a very complex, adaptive envi-
ronment. Balancing the trade-off of response magnitude and interruptions involves finding the
dependence of response magnitudes on stimulus latencies and adjusting at the same time to
the distribution of ongoing activity. With every network being distinct in the properties of its
spontaneous dynamics and response to stimuli, the paradigm was tested for robust operation
over a range of parameters. Furthermore, the ongoing activity is highly variable and subject to
unpredictable modulation at a wide range of time scales. Plasticity of synaptic coupling could
lead to further challenges. Prior studies on such networks enable us to model this interplay
using parametric models under the assumption of system stationarity. This provided us with
the convenient situation where an open-loop prediction of the network-specific optimal stimu-
lus latency could be calculated to evaluate the quality of the controller’s learned strategy. Fur-
thermore, both main processes involved could be modeled as a function of only the latency
following an SB event, which thus became an informative and quantifiable low-dimensional
state feature for the RL controller. Other contributing factors could have been the recent his-
tory of spontaneous activity. Offline analyses, however, did not show an influence of this on
the quality of the response properties.

We used numerical models of the system to identify the interactions of variations in the
model parameters. The numerical approach revealed the multi-modal nature of the control
problem—in that two separate measurable modalities are simultaneously involved– the expo-
nential recovery function and the statistical model of ongoing event occurrence. Combining
them enabled us to visualize the non-linear quasi convex input–output dependence f(t). The
desired metric f(t�), was unique, distinct for each network and necessarily attainable, because
the corresponding t� always belonged to the domain of interest (0–10 s) throughout the span
of parameter values observed experimentally. Each network, being a static parameter combina-
tion, would therefore map to a single non-linear input–output curve that belonged to the set of
objective functions described earlier. In other words, an optimal solution was possible for all
parameter sets within the observed range. Open-loop estimates of the saturating exponential
model parameters A and B correlated positively with fits to data from closed-loop sessions.
This indicates that the quantitative relationship is stable and accessible to the controller during
the learning phase. Note that the temporal stability of the model is a precondition to the con-
troller being able to converge to the same optimal stimulus latencies as the open-loop estimates.
Indeed we observed across networks, that the learned optimal stimulus latencies agreed with
those predicted from open-loop studies. The controller apparently robustly and autonomously
exploited the underlying stimulus-response relationships in the network by interacting with it
and adapting appropriately to ongoing activity dynamics.

In this study, stationarity of system dynamics was a necessary assumption in order to be
able to compare optimal stimulus latencies predicted from open-loop data at one point in time,
to those learned later in closed-loop sessions. However, this might not necessarily be the case.
Neuronal networks in vitro are known to undergo activity dependent plastic changes [29]. The
model parameters of the exponential recovery function are likely time dependent as well. Dif-
ferences in the magnitudes of correlations between parameters A (strongly correlated), B (less
positively correlated) and λ(no correlation) in open vs. closed-loop data fits are possible indica-
tors that some parameters are perhaps more strongly modulated over time than others. For

Autonomous Optimization of Targeted Stimulation of Neuronal Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005054 August 10, 2016 17 / 22



slow fluctuations, the RL paradigm could easily be modified to update the controller, provided
the temporal resolution of the state-space is high enough to sample the impact of fluctuations
and that the update intervals are adjusted accordingly. It would, however, not be possible to
monitor these modulations of network properties during testing in the current paradigm. We
would therefore not be able to validate the optimality of resulting controller.

In spite of such sources of variability, the correlation of the learned latencies of the control-
ler with the preceding, temporally distant, open-loop predictions is strong. One reason for this
could be the resolution of the controller—the state-space discretization chosen for the control-
ler was relatively coarse at 0.5 s. From our parametric model of the trade-off situation (Figs 4
and 5), it can be seen that the impact of parameter fluctuations on optimal latencies would be
small relative to this resolution of the state-space. The actual optimum, thus, could fall in the
neighborhood of the learned latencies. Such a tendency is indeed visible in the error between
the learned and optimal times (Fig 7F), which are centered around the optimum. Therefore, by
coarse graining the state-space discretization we compensate to some degree for non-stationa-
rities in the system. An additional factor contributing to the strong correlation could be rapid
parameter fluctuations, which could average out within the duration of the experiment.

In all networks the achieved stimulation efficacy increased after learning, but individually
could be below or above the predicted levels Fig 8D. This was probably due to the quality of fits
of the recovery function and to non-stationarities in network activity that built up between the
time of the original estimate of the objective function and the training/testing sessions eventu-
ally available for evaluation. Further contributions to variability could come from the choice of
the range of latencies available to the controller for exploration. Longer latencies would lead to
increasing probabilities for interruptions during training, biasing the relative success of the
learned controller. In this study we set maximal latencies to 10 s, which ensured that recovery
would saturate in most networks. Moreover, as Figs 5B and S1A illustrate, the time-constants
of these functions also influence the achieved gain in stimulus efficacies.

Although our control goal was drawn on previous studies on the model system, this insight
was not implemented into the controller and was used only to validate its performance. How-
ever, it must be conceded that our understanding of the underlying relationship did inform the
definition of the low-dimensional state-space for the controller, i.e. that the delay of the stimu-
lus to the preceding burst is relevant for the magnitude of the response. This on the one hand
was essential to validate the controller’s quality but also reduced the number of trials needed
for the controller to converge. In turn, our model cannot capture processes depending on the
serial structure of the stimulation sequence, e.g. the rate of stimulation, activity dependent plas-
ticity or even damage to neurons.

Our choice of Q-learning with a tabular representation of the Q-function was motivated as
follows. For one, Q-learning allows us to learn a Q-function without having a model of the sys-
tem dynamics, which in general is not available when dealing with biological systems. Secondly,
since the state space for the control task at hand could be defined as a single discrete variable, a
tabular representation of the Q-function was applicable, which guarantees convergence [28]
(we note that convergence can also be achieved in some cases where the Q-function is approxi-
mated, see e.g. Szepesvári [30] for an overview). A tabular representation of the Q-function is a
suitable choice as long as the biological system can be described by low-dimensional discretized
states. If a different control problem or biological system demands a moderately finer discreti-
zation of the state space, tabular Q-learning could still be applied. However, if the control
problem requires a state-action space that is high-dimensional or continuous, a tabular repre-
sentation of the Q-function is not advisable due to the so called curse of dimensionality (expo-
nentially growing memory demand). For our long-term goal of general control of neuronal
networks using RL controllers this would clearly be the case.
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To this end, future work should further investigate the possibility of feature based approxi-
mate RL using e.g. artificial neural networks (ANNs) [31, 32] or Random Forests [33, 34]. As
features, such approaches could utilize statistics summarizing network activity in terms of pre-
vious burst and response characteristics, adapt features learned from offline data sets from
multiple networks [34], or use a machine learning approach to automatically find descriptive
features.

In this proof-of-principle study, we show that an RL based autonomous strategy can find
optimal stimulation settings in the context of a dynamic neuronal system. Extending on special
applications, in which the aim of stimulation is to abolish some type of event, such as epileptic
events or oscillations in Parkinson’s Disease, the system studied here represents a more general
situation in that the optimal response is initially numerically undefined, i.e. it can take different
values depending on the properties of a network that are unknown to the experimenter. It also
extends beyond the response clamp paradigm [21] in that it takes into account not only the
probability to induce a response but both its magnitude and the probability of being inter-
rupted by spontaneous activity. Our paradigm is thus related to the idea of inducing desired
network activity, e.g. towards sensory feedback by stimulation from neuroprosthetic devices, or
adjusting the activity dynamics of a network to a desired working mode. In the context of our
study, we focused on this specific multi-modal trade-off problem to maximize a derived feature
of the response (response strength per SB event). We could show that a unique optimal strategy
exists for each network and thus verify that the controller autonomously found the optimum of
the objective function given the limitations of our data. Where RL paradigms are applied to
more general situations, phenomenological models of their interaction with biological neuronal
networks could nonetheless help to estimate the quality of the controllers when full mechanis-
tic descriptions of the system are not available.

Supporting Information
S1 Fig. Dependence of the optimal stimulation latency on the slope of the recovery function
and the location and scale parameters of the IBI distributions. (A) t� depends on the shape
of the recovery function. t� shifts to later times with increasing recovery slope (λ increases)
when average inter-burst intervals μ are short, i.e. spontaneous activity is high and the proba-
bility for interruption is high. In low activity regimes, however, the probability of interruption
is low, hence t� is late and increasing the slope will lead to a decrease of the stimulus efficacy
with increasing latencies since increasing interruption probability then outweighs the gain in
spikes/stimulus. Because of the saturation of recovery changes in the probability for interrup-
tions have a dominating influence on t�. (inset) t� shifts to later latencies with increasing μ for a
given λ (boxed). A, B and σ were set to 20, 6.67, 1 respectively. (B) Scale parameter, σ of the IBI
distribution had little impact on the optimal stimulation latency. A, B and λ and μ were set to
20, 6.67, 1 and 0.6 respectively. (C) Across networks, values of λ recovered from fits to closed-
loop data were uncorrelated with open-loop estimates.
(TIF)

S2 Fig. Reward probability distributions for all networks. In each training trial the controller
received a reward according to the number of spikes elicited by the stimulus. In trials inter-
rupted by SBs this resulted in neutral reward (−10−3), pooled with trials eliciting 0 spikes in the
histograms. After learning, the probability for very high rewards was reduced but this was out-
weighed by the lower frequency of 0 and neutral rewards.
(TIF)
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S3 Fig. Empirical cumulative distribution of rewards for all networks. The Empirical cumu-
lative distribution function (ECDF) of the rewards clearly shows that the improvements by
learning were dominated by reduced probabilities to receive 0 or neutral rewards.
(TIF)

S4 Fig. Distributions of IBIs before and after closed-loop sessions. Distributions of IBIs in
spontaneous activity recorded before (blue) and after (yellow) closed-loop sessions. A two-
sample Kolmogorov-Smirnov test showed that the IBIs were drawn from distinct distributions
in 6/20 networks (p<0.001, bold axes).
(TIF)
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