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Abstract

Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in the alterations of gene expression.
Current approaches to finding and quantifying the effects of perturbations on cell-level responses over time disregard the temporal
consistency of identifiable gene programs. To leverage the occurrence of these patterns for perturbation analyses, we developed
CellDrift (https://github.com/KANG-BIOINFO/CellDrift), a generalized linear model-based functional data analysis method that is
capable of identifying covarying temporal patterns of various cell types in response to perturbations. As compared to several other
approaches, CellDrift demonstrated superior performance in the identification of temporally varied perturbation patterns and the
ability to impute missing time points. We applied CellDrift to multiple longitudinal datasets, including COVID-19 disease progression
and gastrointestinal tract development, and demonstrated its ability to identify specific gene programs associated with sequential
biological processes, trajectories and outcomes.
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Introduction
Single-cell transcriptomics sequencing has revolution-
ized discoveries in complex biological systems by identi-
fying a wide variety of cell populations in high resolution
[1–3]. Researchers have applied the technology in exper-
iments with perturbation settings, such as diseases [4,
5], treatments [6, 7], genetic mutations [7, 8] and organ
differentiation [9, 10], to explore transcriptional profiles
across various biochemical states.

However, the response to perturbation can vary over
time, which is overlooked in many single-cell studies.
Nowadays, researchers are increasingly considering
the impact of time when designing experiments. For
example, the genetic effects of autism risk genes have
been studied during the development of the nervous
system using brain organoids [11, 12]. Additionally,
influenza vaccination effects have been evaluated by
monitoring immune responses over multiple follow-up
periods [13]. Moreover, the impact of infections, such
as human immunodeficiency virus (HIV), has been
studied in patients at varying stages of their illness [14,
15]. By having access to single-cell profiles over time,

researchers can accurately report perturbation effects
during treatment procedures, disease progression and
organ development.

There have been various approaches introduced to
quantify transcriptional changes in single-cell ribonu-
cleic acid (RNA)-seq (scRNA-seq) data from perturbation
experiments [16] (Table 1). Although traditional methods,
such as the Wilcoxon test or t-test, are commonly
used in single-cell differential expression analysis, they
are not sufficient to resolve batch effect and data
sparsity issues [17]. More advanced algorithms, such
as MAST [18] and muscat [19], have been developed.
However, their flexibility in measuring perturbation
effects is still limited, such as the decomposition
of common and cell-type-specific perturbed genes.
Meanwhile, machine learning approaches have been
developed for the analysis of complex perturbation
data. For example, scGen applied autoencoder models
to learn perturbation responses in a latent space and
to predict unseen scenarios [20]. Although it is powerful
in analyzing high-dimensional data, interpretability in
latent spaces remains a significant challenge. In addition,
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Table 1. Comparisons of perturbation or temporal evaluation methods in single-cell analysis

Method Algorithm Feature space Temporal
evaluation

Perturbation
evaluation

Limitation Reference

MAST GLM Genes Manual
comparison

Yes Algorithm was not designed for
temporal analysis

[18]

scGen Autoencoder Neural network
latent space

Not available Yes No implementation of the time
covariate; lack of interpretability of
the latent space features

[20]

CellBox Ordinary
differential
equation (ODE)

Protein and
phenotypes

ODE Yes Algorithm was not optimally
designed for single-cell analysis

[23]

MEFISTO Factor analysis Factors GP No Lack of understanding of
perturbation responses

[21]

CPA Autoencoder +
adversial network

Neural network
latent space

Adversarial
network

Yes Lack of interpretability in the
latent space features

[22]

CellDrift GLM Genes FDA Yes Time covariate was not
incorporated in GLM

This paper

these methods were not originally designed to measure
perturbation effects in a temporal context.

Other methods took time as a covariate in the model
[21]. For example, compositional perturbation autoen-
coder (CPA) utilized the combination of linear models and
deep-learning approaches to interpret temporal impacts,
but the interpretation of gene-level impacts is not
straightforward [22]. Furthermore, CellBox analyzes the
perturbation effects over time using ordinary differential
equations [23]. However, the performance of the method
is limited by the sparsity and stochasticity issues in
single-cell data.

Generalized linear models (GLM) have been widely
used in modeling single-cell transcriptomics data,
outperforming linear regression by more accurately and
efficiently capturing non-linear relations in count data
through non-Gaussian distribution families [24]. For
example, sctransform successfully removed technical
effects by introducing cellular sequencing depth as a
covariate [25].

Functional data analysis (FDA) has been widely used
in longitudinal data analysis [26, 27]. A general form of
FDA is the analysis of multiple curves varying over time,
where each curve is a sample tracing with a series of time
points, which can be characterized as a function. Such
data are called functional data. One of the most popular
tools in FDA is functional principal component analysis
(FPCA), which identifies the dominant modes of variation
of functional data [28]. It has been widely used in disease
progression profiling and predictions. For example, FPCA
has been used in the monitoring of glucose levels in
hyperglycemic patients [29]. We utilized the flexibility of
the FDA to identify temporal perturbation patterns.

To address the aforementioned issues, we developed
CellDrift, a GLM-based FDA model, to disentangle
temporal patterns in perturbation responses in scRNA-
seq data. CellDrift first captures cell-type specific
perturbation effects by adding an interaction term
in the GLM and then utilizes predicted coefficients
to calculate contrast coefficients, which represent

perturbation effects in our study. Concatenated contrast
coefficients over time are defined as functions, and
Fuzzy C-mean clustering is used to identify temporal
patterns, which is accompanied by FPCA to find the
major components that account for the most temporal
variance. We benchmarked CellDrift with multiple func-
tional clustering methods with statistical results from
differential expression approaches, such as Wilcoxon
and t-test, and CellDrift achieved superior performance
in the identification of temporal patterns and imputation
of perturbation effects. We applied CellDrift in COVID-
19 single-cell data and a gut development atlas and
identified temporal patterns and functional principal
components associated with varying immune responses
and gut organ morphogenesis.

Methods
CellDrift takes the input of multiple scRNA-seq UMI
count matrices across diverse captures (batches, b), con-
ditions (perturbations,p) and time points (t). The main
goal of the algorithm is to disentangle the major effects of
different cell types (c) and perturbations (p). The derived
contrast coefficients associated with each gene, cell type
and condition after implementing the GLM model across
time points are used for FDA to identify the temporal
patterns of perturbation responses (Figure 1).

Perturbation coefficient model
To begin, we introduce a model and notation for a single
time point. We model the raw count of single-cell data
γng for cell n and gene g using a GLM with a negative
binomial (NB) distribution. zn and xn represent the cell
type and perturbation group of cell n, which are c and
p here:

γng | (
zn = c, xn = p

) ∼ NB
(
μngcp, φngcp

)
, (1)

where μngcp and φngcp represent the mean and inverse
dispersion of the NB distribution for cell n and gene g.
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Figure 1. Workflow of CellDrift. (A) An example of a perturbational single-cell experiment with multiple time points. (B) Real scenarios of single-cell
experiments with varying perturbation effects over time. (C) GLM with the interaction of cell-type-perturbation applied separately at each time point,
and contrast coefficients are derived as the representation of perturbation responses. The complete model can be found in the Methods. (D) Contrast
coefficients are used as input for various applications in FDA.

For example, zn and xn could be the user-defined cell type
and perturbation group for cell n, such as CD4+ T cell and
Drug A treatment.

We use a log link function (ln) for μngcp and disentangle
ηngcp with a linear model with cell-type coefficients βgc

and perturbation coefficient βgp for each gene g:

log μngcp = ηngcp, (2)

ηngcp = logsn + βg0 + βgcρnc + βgpρnp +
∑B

b=1
βgbρnb, (3)

where ρnc and ρnp indicate whether cell n belongs to
cell-type c and perturbation group p, as represented
by one-hot matrices. The intercept βg0 represents the
base expression level of gene g. In addition, we account
for the library size sn and batch effects βgb in the
model, and ρnb is the one-hot matrix for cell n and
batch b (e.g. donor, sequencing platform). B is the total
number of batch types, commonly >1 in complicated
datasets. Batch types are incorporated into the model
as fixed effects. For simplicity, we omit the b (batch)
subscript in the mean count (μngcp) and linear predictor
symbols (ηngcp).

In Equation (3), cell-type effect and perturbation effect
are independent covariates. In real cases, however, dif-
ferent cell types usually have distinct responses toward
the same perturbation. Thus, we add an interaction
term βgcp for the cell-type and perturbation covariates,
representing cell-type-specific perturbation effects. In

contrast, βgp represents common perturbation effects
across cell types:

ηngcp = log sn +βg0 +βgcρnc +βgpρnp +βgcpρncp +
∑B

b=1
βgbρnb,

(4)
where ρncp is a one-hot matrix of the cell type and per-
turbation group, indicating whether cell n belongs to
cell-type c and perturbation group p at the same time.
Likelihood ratio test is used to do the model selection
(Supplementary Methods, Figure S1 available online at
https://academic.oup.com/bib).

Contrast coefficients
Both main effects (βgc and βgp) and interaction coeffi-
cients (βgcp) are estimated using GLM after fitting the
single-cell data. Then, we retrieve pairwise contrast coef-
ficients �βgcp based on estimated βgp and βgcp, which are
used to quantify the difference between the perturbed
state and baseline in specific cell types (Supplemen-
tary Methods). Briefly, they represent the perturbation
effects of cell-type c in perturbation group p. Contrast
coefficients are the basic representation of perturbation
effects in this study. They are also the input data for FDA
(Figure 1).

Representation of functional data using contrast
coefficients
In the general form of FDA, each curve is a sample with
a series of time points, which is commonly referred to
as a function. In our study, in addition to cell types and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
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perturbation groups in single-cell perturbation data, we
added another dimension of complexity, time covariate t,
into our model, which is continuous and usually a sparse
covariate in single-cell experiments. Real-life examples
of time covariates include the elapsed time since disease
onset, drug treatment (pre-post) and patient age.

In CellDrift, we estimate contrast coefficients �βgcp

for genes across cell types and perturbation groups at
each time point t from the time series {1, 2, . . . , T}. Then,
for each combination of cell-type c and perturbation
group p, we get a series of �βgcp across available
time points, represented as {�βgcpt}t∈[0,1,...,T]. Each series
{�βgcpt}t∈[0,1,...,T]denotes perturbation coefficients of gene
g across time points for the selected cell type and
perturbation group, which is the representation of a
function or a sample in the following FDA framework.

Temporal pattern identification
There are two general input formats for FDA in our
context:

(i) Functional data of various genes in a fixed cell type
and perturbation group:

FG =
{
{�βg0cpt}t∈[0,1,...,T]

, {�βg1cpt}t∈[0,1,...,T]
,

{�βg2cpt}t∈[0,1,...,T]
, {�βg3cpt}t∈[0,1,...,T]

, . . .
}

.

(ii) Functional data of combinations of various cell
types and perturbations for a specific gene:

FCP =
{
{�βgc0p0t}t∈[0,1,...,T]

, {�βgc0p1t}t∈[0,1,...,T]
, . . . ,

{�βgc1p0t}t∈[0,1,...,T]
, {�βgc1p1t}t∈[0,1,...,T]

, . . .
}
,

where functional data are denoted as a set of functions.
Our goal is to identify genes (or cell type-perturbation

combinations) that show similar dynamic changes in
perturbation responses over time, which we refer to as
temporal patterns. To find such patterns, we investigated
functional clustering algorithms such as KMeans, Fuzzy
C-means and EMCluster [30, 31]. Based on the bench-
mark results, we chose the Fuzzy C-means functional
clustering algorithm to identify the temporal patterns of
perturbation effects [32] (Supplementary Methods). For
example, when clustering on FG, the resultant cluster can
be interpreted as a group of genes with a similar pattern
of perturbation response over time.

Additional algorithm, evaluation, simulation and FDA
details are provided in Supplemental Methods.

Results
CellDrift GLM improves perturbed gene detection
We first demonstrated the performance of CellDrift
using simulated datasets (Figures S2 and S3 available
online at https://academic.oup.com/bib, Supplementary
Methods). True positive rates (TPR or sensitivity) and
false discovery rates (FDR) were derived by comparing

the ground truth and estimated results (Supplementary
Methods). Compared with other commonly used differ-
ential expression methods, including t-test, Wilcoxon
test and MAST, CellDrift achieved improved sensitivity in
the diverse levels of batch effect sizes and differential
expression sizes (Figure 2A and B), which indicates a
stronger detection power for perturbed genes using
CellDrift.

We observed that CellDrift has a higher FDR in exper-
iments with small batch effects (<0.1). However, it has
a stable and controlled FDR at larger batch effect sizes
(0.4 and 0.7), where higher FDR was observed in other
methods, such as t-test and Wilcoxon (Figure 2A). Sim-
ilarly, MAST has a stable and small FDR of <0.05 across
different batch effects, showing the best performance of
controlling FDR among all methods, which may be due to
the removal of technical covariates, such as batch effects,
by the hurdle model [18]. However, its TPR is much lower
than CellDrift.

CellDrift outperformed other methods with signifi-
cantly higher TPR across various differential expression
sizes (Figure 2B). Meanwhile, we observed a high FDR
of CellDrift in experiments with small differential
expression sizes (0.05 and 0.2), indicating a relatively
inferior performance in controlling false discoveries.
MAST had similar results. We argue, however, that it
is more important to identify as many DE genes as
possible than to avoid false discoveries in datasets
with few perturbed genes (Figure 2B). FDR of CellDrift
decreased with increasing differential expression sizes
and achieved a low level (<0.15) in large DE sizes (0.5,
0.8).

Additionally, the CellDrift GLM model also achieved
good performances in single-cell pseudo-time data (Fig-
ure S4 available online at https://academic.oup.com/bib).
More details can be found in the Supplementary Note.

Fuzzy C-means clustering and CellDrift contrast
coefficients improve temporal pattern
identification and imputation performance
We simulated both linear and nonlinear time patterns
of gene perturbation effects (Figure S5 available online
at https://academic.oup.com/bib, Supplementary Meth-
ods). The temporal pattern recovery performance of
three functional clustering algorithms (KMeans, Fuzzy C-
means and FPCA-based EMCluster) [33] were examined
with CellDrift GLM contrast coefficients as the input
(Supplementary Methods). We used adjusted Rand index
(ARI) as the metric to measure the accuracy of prediction
for simulated temporal patterns (Supplementary Meth-
ods). The influence of different parameters, including the
number of time points, the ratio of missing time points
and noise levels, were evaluated (Figure 2C and D, Figure
S6 available online at https://academic.oup.com/bib).

From the performance of clustering algorithms that
used GLM-based contrast coefficients as the input, we
observed that FPCA-based EMCluster achieved higher
accuracy for a certain number of time points. However,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
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Figure 2. Performance of CellDrift in the identification of perturbed genes and temporal perturbation patterns. (A, B) Benchmark results of the GLM of
CellDrift and other commonly used differential expression approaches in the simulated data. Simulated data with multiple batch effect sizes (A) and
differential expression sizes (B) were used for benchmarking. TPR and FDR were used as metrics. The mean and SD derived from 10 replicates for each
test are shown in the figure. (C) Benchmark results of temporal pattern recovery for CellDrift strategy (GLM + Fuzzy C-mean) and other approaches.
Temporal pattern recovery was evaluated with ARI and measured across varying parameters, including numbers of time points, ratios of missing time
points and noise levels. (D) Benchmark results of imputation performance using Pearson correlations between imputed contrast coefficients from FPCA
and real simulated perturbation coefficients. The same parameters were used as (C).

Fuzzy C-means achieved a stable and better performance
than most other methods at varying numbers of time
points, with ARI reaching 0.9. Additionally, the ARI
of Fuzzy C-means exceeded 0.8 at ratios of missing
time points <0.5. ARI decreased at greater ratios of
missing time points but remained at the 0.7 level
and outperformed most other clustering algorithms,
such as FPCA-based EMCluster. Note that the ARI of
Fuzzy C-mean remained stable at high noise levels
with relatively higher accuracy than normal KMeans
and other methods (Figure 2C). Furthermore, Fuzzy C-
mean has shown an improved performance for a variety
of non-linear time patterns, pattern coefficient gaps
and sequencing depth (Figure S6A available online
at https://academic.oup.com/bib). In summary, our

findings suggest that Fuzzy C-mean has the most
stable and relatively better temporal pattern recognition
performance.

We also compared GLM-based contrast coefficients
with other statistical scores, such as scores from t-test
and Wilcoxon test, as the input for FDA (Figure 2C). The
t-test scores had an inferior performance in most param-
eter settings. The performance of Wilcoxon score at var-
ious time points is comparable with GLM-based func-
tional clustering. However, its performance in large frac-
tions of missing time points is inferior to GLM-based
clustering (Figure 2C).

Additionally, we investigated the imputation per-
formance for missing time points, which is a com-
monly seen situation in real temporal single-cell data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data


6 | Jin et al.

Incorporated in our pipeline, FPCA provides smooth-
ing and interpolation functions. We compared GLM-
based input with statistical scores from t-test and
Wilcoxon test, where we observed significant improve-
ment in the imputation performance using GLM-based
input (Figure 2D and Figure S6B available online at
https://academic.oup.com/bib).

Furthermore, we demonstrated that CellDrift can
identify temporal patterns in complex datasets with a
variety of cell types that display distinctive perturbation
responses (Figure S7 available online at https://academic.
oup.com/bib). Moreover, CellDrift achieves a reasonable
performance of temporal pattern identification in
datasets with a small number of cells or time points
(Figure S8 available online at https://academic.oup.com/
bib, Supplementary Notes).

CellDrift identified temporal patterns of
COVID-19 immune responses
We next demonstrated CellDrift by identifying the tem-
poral patterns of immune responses in a large-scale
COVID-19 PBMC single-cell dataset [1]. Samples were
derived from COVID-19 patients with different conditions
as well as from severe influenza and sepsis patients. The
six most common cell types were extracted for our anal-
ysis. Disease progression time ranged from 0 to 25 days
from disease onset (Figure 3A).

Compared with recent neural network-based autoen-
coder methods, such as scGen and CPA, we are able to
investigate the gene-level perturbation effects across the
time covariate. We first focused on the classical mono-
cytes in severe COVID-19 patients and applied CellDrift
for all genes after the feature selection (Supplementary
Table S1 available online at https://academic.oup.com/
bib). Genes with similar temporal patterns of pertur-
bation responses clustered together, indicating that
multiple gene patterns of dynamic changes were occur-
ring upon virus infection during disease progression.
The genes responding to perturbations in clusters 11,
13 and 17 showed three distinct temporal patterns,
where the contrast coefficients of clusters 11 and 17
showed a positive and negative correlation with time,
while cluster 13 showed an insensitive pattern to time
(Figure 3B). Based on gene enrichment results, cluster
11 is highly associated with catabolic and biosynthesis
processes, while cluster 17 appears to be involved
in immune responses, indicating a rapid activation
of immune response activities and a suppression of
house-keeping activities in the early disease stage
(d1∼d15), with a reduced level of such changes in
later stages (after d15). Additionally, the functional
PCA also showcased distinct patterns of perturba-
tion responses during disease progression (Figures S9–
S11 available online at https://academic.oup.com/bib,
Supplementary Notes).

As a further test, we applied CellDrift to multiple
cell types in the COVID-19 dataset to investigate the
cell-type-dependent perturbation responses (Figure

S12A available online at https://academic.oup.com/bib).
Notably, distinct biological activities were highlighted
in the temporal perturbation patterns across cell types
(Figure S12B available online at https://academic.oup.
com/bib). For example, lymphocytes, including CD4+
T cells, CD8+ T cells and NK cells, showcased the up-
regulated patterns of cell cycle and division. Myeloid
cells, including classical monocytes and non-classical
monocytes, presented the up-regulation of vesicle
and membrane fusion, indicating the synthesis of
proteins against the virus infection. These activities
have been reported in the literature [34, 35]. In addi-
tion to the cell-type resolution used above, we also
applied CellDrift on CD4+ T cell subpopulations and
identified the subpopulation with the strongest temporal
perturbation responses (Figure S13 available online at
https://academic.oup.com/bib, Supplementary Notes).

After we obtained temporal patterns in severe COVID-
19 patients, we further examined whether the patterns
vary across multiple perturbation groups, such as mild
and severe COVID-19 patients. To achieve it, we applied
functional analysis in classical monocytes of multiple
disease conditions, where dynamic time warping was
used to align multiple time series into a comparable
time scale (Supplementary Methods). Next, we applied
a one-way functional analysis of variance (ANOVA)
test and calculated the ANOVA scores for each gene,
representing the consistency of perturbation responses
between disease conditions over time (Supplementary
Methods). Based on ANOVA results, a number of genes
from cluster 17 were identified as severe-prominent
genes, including S100A8, S100A9, CTSD and others
(Figure 3C). In agreement with our findings, elevated
levels of calprotectin (S100A8/S100A9) have been found
in severe COVID-19 patients with poor clinical outcomes
[35, 36]. Apart from severe-prominent genes, we also pri-
oritized mild-prominent genes and condition-irrelevant
genes, representing distinct gene programs of temporal
perturbation responses across disease conditions (Figure
S14 available online at https://academic.oup.com/bib).

To validate our discoveries, we also applied CellDrift to
the data from another large-scale COVID-19 single-cell
experiment [1]. We observed similar temporal patterns
between the mild and severe COVID-19 patients as
shown in Figure 3D, which shows the reproducibil-
ity of CellDrift approach. Moreover, we retrieved the
control and critical COVID-19 gene modules from
the literature as the external knowledge [37] and
evaluated their associations with CellDrift-derived
temporal patterns. Notably, temporally up-regulated
patterns are strongly associated with critical gene
modules, while temporally down-regulated patterns are
strongly related to control modules (Figure S15 available
online at https://academic.oup.com/bib, Supplementary
Methods).

Similarly, CellDrift also identified temporal immune
response patterns in an HIV post-infection study (Figure
S16 available online at https://academic.oup.com/bib)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
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Figure 3. Temporal perturbation effects in COVID-19 atlas. (A) Overview of the number of cells in each cell group of the dataset, which contains multiple
disease conditions, cell types and time points from days 1 to 25 since the disease onset. The size of dots represents the number of cells. HCW_MILD:
healthcare workers with mild COVID-19; MILD, SEV, CRIT: mild, severe and critical COVID-19; CD4, CD8: CD4 T cell, CD8 T cell; cMono, ncMono: classical
and non-classical monocyte. (B) Three distinct temporal patterns of contrast coefficients from classical monocytes of severe COVID-19 patients. The
top row shows curves of genes with similar contrast coefficients in each cluster over time, and the bottom row shows the gene set enrichment analysis
of genes in each temporal cluster. The black line represents the average time curve for all genes, which is the same across three plots. Gene enrichment
scores are defined as −log10FDR-adjusted P-values of enrichment significance. (C) Five genes from cluster 17 were prioritized by the functional ANOVA
test, which have significantly higher temporal curves in severe conditions than mild symptoms. Contrast coefficients for classical monocytes across
disease conditions are shown on smoothed curves computed by FPCA, and time curves were aligned using dynamic time warping. (D) Validation of
genes from (C) with another large-scale COVID-19 PBMC data [1]. FPCA smoothed curves for genes in three replicates of mild and severe patients are
shown, which display similar temporal patterns as (C).

[14]. More information can be accessed in the Supple-
mentary Notes.

CellDrift discovered differential temporal gene
patterns during fetal gut development
We further applied CellDrift to a single-cell fetal gut
cell atlas to identify differential gene programs during
organ development [38]. Researchers examined gut
development in three compartments, including duo-
jejunum, ileum and colon, at nine time points during
development from the embryonic stage (week 6) to
the fetal stage (week 11) (Figure 4A). We selected
the epithelial and mesenchymal cells from all three

compartments and used duo-jejunum as a reference
compartment in the GLM model. Differential gene
programs during development between the colon (or
ileum) and duo-jejunum were identified by the GLM
across time points (Supplementary Table S2 available
online at https://academic.oup.com/bib).

The top two eigenfunctions from the subsequent FPCA
step explain >99% of the temporal variance of mesenchy-
mal cells between the colon and duo-jejunum, where the
first eigenfunction (φ1) shows reverse temporal patterns
during the development (Figure 4B, Figure S17 avail-
able online at https://academic.oup.com/bib). CellDrift
identified 20 temporal clusters (Figure S18 available

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
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Figure 4. Differential temporal trajectories of gut development. (A) Overview of fetal gut cell atlas. The study contains single-cell sequencing data for
three compartments in gut development, including duo-jejunum, ileum and colon, whose transcriptomics profiles were retrieved from weeks 6 to 11.
(B) The top 2 FPCA eigenfunctions and their scores over time for functional data of comparisons of colon and duo-jejunum in mesenchymal cells. First
eigenfunction φ1 presents a strong temporal pattern as is highlighted. (C) Functional principal component 1 (FPC1) scores were computed for genes
in each cluster, displayed in decreasing order. High positive scores indicate genes in the cluster may have similar temporal patterns as φ1, while large
negative scores indicate opposite temporal patterns as φ1. Clusters 11 and 16 are highlighted for the following analysis. (D, E) FPCA smoothed curves
for genes in cluster 11 (D) and 16 (E) and their gene enrichment results. (F) The top three FPCA eigenfunctions and their scores over time for functional
data of comparisons of colon and duo-jejunum in epithelium cells. The second eigenfunction φ2 presents a strong temporal pattern as is highlighted.
(G) Functional principal component 2 (FPC2) scores were computed for genes in each cluster, which was ranked in a decreasing order. Clusters 4 and 9
are highlighted for the following analysis. (H, I) FPCA smoothed curves for genes in clusters 9 (H) and 4 (I) and their gene enrichment results.
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Figure 5. Computational performance of CellDrift. (A, B) Total amount of running time (A) and memory usage (B) of the CellDrift application in single-cell
datasets with various numbers of cells and genes. The mean and standard error values were calculated for three runs in each condition.

online at https://academic.oup.com/bib) and ranked
them by FPC1 scores, in which clusters 11 and 16 had
high positive and negative correlations with FPC1 scores
(Figure 4C). Follow-up gene enrichment analyses indicate
that extracellular matrix organization genes are more
active in early stages (weeks 7–8) in the duo-jejunum and
then in later stages (weeks 9–10) in the colon, whereas
morphogenesis genes are more prominent in the distal
tissues (colon) at the beginning and proximal (duo-
jejunum) later on.

Similarly, such time-dependent differentiation gene
programs were also identified in the epithelium cells
by comparing the colon and duo-jejunum (Figure 4F–I,
Figures S17 and S18 available online at https://academic.
oup.com/bib), revealing temporal patterns that appear
like waves from the proximal to distal compartments
throughout the gut development.

Additionally, we investigated genetic effects on the
neuron development trajectory using the pseudo-
time as the time covariate of CellDrift. We identi-
fied temporal patterns that indicated the immaturity
of projection neurons caused by the mutation of
an autism-risk gene (Figures S19 available online at
https://academic.oup.com/bib, Supplementary Notes).

Computational performance of CellDrift
We evaluated the speed and memory usage of CellDrift
in single-cell datasets with different sizes (Figure 5).
Tests were conducted on the 8 GB MacBook Pro (2.3 GHz
Intel Core i5) using eight cores of CPU. The running
time and memory usage were positively correlated with
the number of cells and genes. With datasets of 50000
cells and 3000 features, CellDrift completed the task
within 15 minutes (Figure 5A). The memory usage of
CellDrift depends on the number of cells and features.
For large-scale datasets, it took <3 GB of memory
(Figure 5B).

Discussion
In this study, we presented a framework to identify the
temporal patterns of perturbation responses. As far as
we know, CellDrift is the first method to use FDA in the
evaluation of longitudinal perturbation effects in single-
cell data, with the advantages of investigating gene-
level temporal perturbation effects. Using GLMs, we mod-
eled perturbational single-cell data and introduced the
new concept of cell type-perturbation interaction, which
improves the sensitivity of detecting both common and
cell-type-specific perturbation effects in real-life single-
cell experiments. As a result of allowing for batch covari-
ates, we address a significant barrier to finding real
perturbed genes. Unlike currently available single-cell
methods, which either focus on temporal analysis or
perturbation investigation, we utilized the flexibility of
GLM and FDA to combine these two areas together and
gained insights into complicated longitudinal perturba-
tion responses.

In our study, we successfully improved TPR in mul-
tiple settings of batch effects and perturbation effect
size compared with the popular methods in differen-
tial expression analysis, enabling the capture of more
perturbed features. The FDR is insensitive to varying
batch sizes, indicating the successful repression of batch
effects by CellDrift. Notably, although the performance
of a GLM with the Fuzzy C-mean was not uniformly
superior in identifying temporal patterns, it was the most
stable approach and performed well in the majority of
benchmark experiments. Gaussian process (GP) has been
found to be effective in inferring temporal patterns from
single-cell data [21]. FDA was selected over the option
of GPs in this study because of its flexibility and ver-
satile functions, including smoothing curves, FPCA, one-
way ANOVA tests and newly implemented deep learn-
ing methods [39, 40]. Nevertheless, we are interested
in exploring the application of GP in the analysis of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac324#supplementary-data
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temporal perturbational data in the future. Compared
with the autoencoder network approach in CPA, CellDrift
is able to investigate the gene-level perturbation effects
across the temporal covariate. Despite the dramatically
reduced dimensions in the latent space of autoencoder
models, it can be difficult or impossible to understand
the shift in the latent space in perturbation settings.
Instead, we utilized the power of FPCA to reduce the com-
plexity of temporal patterns of perturbation responses
and to interpret the contribution of genes in the reduced
dimensions.

The cost of sample collection and single-cell sequenc-
ing technology is still one of the major obstacles to
collecting more longitudinal single-cell data. Yet, we are
beginning to see more large-scale longitudinal single-cell
experiments due to the popularity of single-cell sequenc-
ing technology and the progress of organoid research
[11]. We have demonstrated the effective performance
of CellDrift in the identification of temporal patterns
of gene perturbation effects. These temporal changes
could be used in conjunction with the clinical events
of patients and to facilitate the application of machine
learning methods, such as k-nearest neighbors, to predict
the possibility of certain clinical events of patients before
they happen. Notably, other applications of FDA, such as
extrapolation and kernel regression, can greatly enhance
our ability to evaluate temporal perturbation effects.

There are several important areas that CellDrift and
this evaluation do not address. First, we did not establish
the effectiveness of CellDrift in studies with complicated
temporal patterns. More sophisticated longitudinal data
should be incorporated from real-life experiments and
simulations in the future. Additionally, we did not include
time as a covariate in the GLM. Instead, the contrast
coefficient information was combined from GLM runs
of separate time points, which might result in lower
statistical power or in increased probability of a type 1
error as well as making the CellDrift procedure cum-
bersome. This may be an area for future improvement.
Additionally, we did not introduce covariance between
genes, which would reduce the power of detecting gene
correlations of perturbation effects.
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Key Points

• GLM with the interaction term enabled the investigation
of cell-type-specific perturbation effects.

• FDA vastly enhanced the flexibility of temporal analysis
of perturbation effects.

• GLM-based Fuzzy C-means clustering in CellDrift outper-
forms other methods in temporal pattern identification
of perturbation effects.

• Predicted temporal patterns of immune cell responses
toward COVID-19 represented time-dependent gene pro-
grams.
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