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Abstract

Summary: Motivation. Predicting the native state of a protein has long been considered a gateway problem for under-
standing protein folding. Recent advances in structural modeling driven by deep learning have achieved unprecedented
success at predicting a protein’s crystal structure, but it is not clear if these models are learning the physics of how pro-
teins dynamically fold into their equilibrium structure or are just accurate knowledge-based predictors of the final state.
Results. In this work, we compare the pathways generated by state-of-the-art protein structure prediction methods
to experimental data about protein folding pathways. The methods considered were AlphaFold 2, RoseTTAFold,
trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta. We find evidence that their simulated dynamics capture
some information about the folding pathway, but their predictive ability is worse than a trivial classifier using
sequence-agnostic features like chain length. The folding trajectories produced are also uncorrelated with experi-
mental observables such as intermediate structures and the folding rate constant. These results suggest that recent
advances in structure prediction do not yet provide an enhanced understanding of protein folding.
Availability. The data underlying this article are available in GitHub at https://github.com/oxpig/structure-vs-folding/

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein folding, or how a protein attains its equilibrium 3D structure,
is considered one of the grand challenges of modern molecular biol-
ogy (Dill and MacCallum, 2012). If it were possible to accurately pre-
dict the folding pathway of a protein, it would have far-reaching
implications for basic science, further the development of novel thera-
peutics and broaden the toolset for protein design and engineering.
Some of the most prevalent aging-related pathologies, like
Alzheimer’s (Selkoe and Hardy, 2016) or Parkinson’s disease (Kalia
and Lang, 2015), originate when the delicate proteostasis machinery
fails to ensure that proteins are correctly folded. The dynamical na-
ture of the folding process also relates to other poorly understood
phenomena like allostery (Campitelli et al., 2020), fold-switching
(Porter and Looger, 2018) or intrinsic disorder (Oldfield and Dunker,
2014). Even protein expression, one of the cornerstones of modern
biotechnology, is highly dependent on folding: problems expressing
recombinant proteins across different organisms are often attributed
to changes in the folding mechanism due to different translation ma-
chinery (Mignon et al., 2018). However, despite significant work
(Dill and MacCallum, 2012; Outeiral et al., 2021) we are still unable
to accurately predict the folding pathway of a protein de novo.

Protein folding is often used as a misnomer for protein structure
prediction, which is the prediction of the native state without regard

to the pathway that the protein undergoes to attain it. The field of
structure prediction has experienced significant progress over the
past two decades, powered by the community-wide effort of the bi-
ennial CASP contest (Moult, 1996). This assessment exercise has
witnessed multiple step changes in accuracy as novel ideas have been
incorporated into the participant’s pipelines (Kryshtafovych et al.,
2014; 2019; Moult et al., 2018). Although in earlier editions
methods were inspired by the biophysical principles of folding, these
were soon superseded by more successful knowledge-based
approaches (Moult, 2005). In recent years, deep learning approaches
have dramatically improved the quality of structure prediction.
The introduction of deep learning techniques into protein structure
prediction methods raised the average free modeling GDT_TS score,
which measures structural similarity on a scale from 0 to 100,
from 52.9 in CASP12 (Moult et al., 2018), to 65.7 in CASP13
(Kryshtafovych et al., 2019). In CASP14, a deep learning model,
AlphaFold 2, achieved an average GDT_TS of 85.1 (Jumper et al.,
2021a). This method, and other similar techniques (Baek et al.,
2021), have been hailed as an acceptable solution to the protein
structure prediction problem (Jumper et al., 2021b).

These dramatic advances raise the question of whether these
methods have achieved better understanding of protein folding phys-
ics, or are just successful at leveraging statistical knowledge of crys-
tal structures into a prediction. To the best of our knowledge, the
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ability of structure predictors to model folding pathways has not
been evaluated previously. Related work has studied the search tra-
jectories of fragment replacement methods (Kandathil et al., 2016),
or attempted to introduce biological constraints into folding (de
Oliveira et al., 2018). Furthermore, recent work has shown that
some deep learning predictors can pinpoint flexible residues
(Schwarz et al., 2020) or conformational changes (Del Alamo et al.,
2021), suggesting that these methods may capture dynamic phenom-
ena reflected in the multiple sequence alignment. In this work, we
examine whether protein structure prediction methods are able to
reveal anything about a protein’s folding pathway.

We show that current protein structure prediction methods do
not produce correct folding pathways. We first demonstrate that
generated pathways have a weak link to formal folding kinetics,
achieving a modest accuracy in discerning between protein chains
that fold in a two-state or multistate mechanism. However, a simple
sequence-agnostic feature, the length of the protein chain, is a far
better predictor of folding dynamics. In the case of two-state folders,
we also find that the dynamic trajectory is inconsistent with experi-
mental folding rate constants. Finally, we demonstrate that pre-
dicted pathways produce erratic intermediates that are inconsistent
with available hydrogen–deuterium exchange (HDX) data. We ob-
serve that most of the structure prediction methods are not signifi-
cantly better than an unbiased coin and some of them are
consistently worse at reproducing experimental measurements.

2 Materials and methods

2.1 Reference data
We compiled a dataset of 170 proteins for which experimental fold-
ing kinetics data is available. To produce this dataset, we collated
entries from the Protein Folding Database (PFDB) of kinetic con-
stants (Manavalan et al., 2019) and the Start2Fold directory of
HDX experiments (Pancsa et al., 2016). We checked the annotations
contained in the PFDB and changed the classification for human ubi-
quitin (PDB: 1UBQ) from multistate to two-state, given that the
PFDB citation corresponds to a mutated species and the wild-type
protein displays two-state kinetics (Jackson, 2006). The entries in
the Start2Fold database do not include annotation for formal kinet-
ics, so we manually annotated the results by querying the literature.
The complete dataset and original publications are provided in
Supplementary Table S1. We also compiled folding rate constants
for a fraction of the proteins in this dataset that exhibit two-state
kinetics, which are reported in Supplementary Table S2.

We collected available HDX data from Start2Fold and original
papers (see Supplementary Data), to use as structural insight into
the folding pathway (Clarke and Fersht, 1996). We observed that
the residue-level annotation in the original database was sparse; we
therefore queried the original sources and reconstructed the annota-
tion as indicated in Supplementary Data. Each secondary structure
element was labeled as structured or unstructured for each of the
identified intermediates, on the basis of the experimental protection
factors of the probes (in NMR experiments) or peptides (in mass
spectrometry experiments) corresponding to a given portion of sec-
ondary structure.

Sequences and reference structures were downloaded from the
RCSB PDB (Berman et al., 2000) and trimmed according to the specifi-
cations of the entries. We used the codes referenced in the publications,
even when higher resolution structures were available in the PDB.
When using NMR structures with multiple models, the structure with
the highest score was selected. Missing regions were repaired using
MODELER (Webb and Sali, 2016) with standard parameters.

2.2 Trajectory generation
We generated protein folding trajectories using the latest versions,
as of December 2020, of Rosetta (Schaap et al., 2001), trRosetta
(Yang et al., 2020), DMPfold (Greener et al., 2019), EVcouplings
(Hopf et al., 2019), RaptorX (Källberg et al., 2012), SAINT2 (de
Oliveira et al., 2018) and the recently published RoseTTAFold
(Baek et al., 2021). We modified the source codes of the seven

programs to print the current structure after every fragment sub-
stitution (for Rosetta and SAINT2); or after every 10 gradient
updates (for trRosetta, RaptorX, DMPfold and EVfold, which
use L-BFGS or related gradient descent algorithms); or after every
refinement cycle in a SE(3)-equivariant iterative transformer (for
RoseTTAFold). Given the large amount of data produced by
Rosetta, averaging more than 200 000 snapshots per decoy, we
subsampled the trajectories produced at every 100 fragment
substitutions.

We preprocessed the sequences of our 170 test case proteins
using the default pipelines provided by each piece of software, and
used default parameters throughout. The generated trajectories for
each of the 170 annotated proteins were compressed to the binary
DCD format (Phillips et al., 2005) and analyzed using in-house
scripts. For RoseTTAFold, which produces only the atoms involved
in the peptide bond, we used PULCHRA (Rotkiewicz and Skolnick,
2008) to reconstruct the b-carbons which are used in subsequent
analysis. All information necessary to reproduce this study, includ-
ing the diff files of the original source code, is available from https://
github.com/oxpig/structure-vs-folding/.

We also considered trajectories generated by AlphaFold 2 (Jumper
et al., 2021b). Due to the architecture of the model, producing a trajec-
tory would require training a replica of the AlphaFold Structure
Module for every individual Evoformer iteration; this was done by
Jumper et al. in the original publication, although the models have not
been open-sourced. Fortunately, individual folding trajectories for each
of the 170 proteins in our dataset were kindly provided by the
DeepMind team. These trajectories were generated with the same
methods and models as in the original publication (Jumper et al.,
2021b), save for the removal of any templates (although, of course,
many of the structures were present in the training set).

2.3 Trajectory analysis
We analyzed the trajectories using the fraction of native contacts be-
tween secondary structure elements (Best et al., 2013). These ele-
ments were identified using STRIDE (Frishman and Argos, 1995) on
the crystal structure, ignoring any element shorter than four amino
acids. Distances were calculated using MDAnalysis (Gowers et al.,
2019; Michaud-Agrawal et al., 2011), and two amino acids were
defined to be in contact if their b-carbons (a-carbons in the case of
glycine) were less than 8.0 Å apart in the native structure. To ac-
count for fluctuations, we introduced a flexibility parameter n ¼ 1:2
whereby amino acids in contact in the crystal structure were still
considered to be in contact in the simulated trajectory if their dis-
tance was n times the crystal structure distance. These parameter
choices were inspired by the standard in the molecular dynamics lit-
erature (e.g. Nissley and O’Brien, 2018). To ensure that our conclu-
sions were independent of the choice of parameters, we performed a
parameter exploration on a reduced subset of the data (10 trajecto-
ries per protein)—see Supplementary Figure S1. This analysis is
inspired by theoretical frameworks suggesting that many proteins
fold by first forming secondary structure and then developing ter-
tiary contacts between them (Englander and Mayne, 2017; Kim and
Baldwin, 1982, 1990).

We computed the numerical time derivatives of the fraction of
native contacts using finite differences and smoothed them using
Friedman’s supersmoother (Friedman and Silverman, 1989) as
implemented in the R stats package (R Core Team, 2013). The max-
imum value of the derivative for a pair of secondary structure ele-
ments was identified as the time point where the two of them are
folded. We then fitted the data using a Gaussian Kernel Density
Estimation (KDE) with bandwidth determined by Scott’s rule via
SciPy (Virtanen et al., 2020). When all of the folding transitions be-
long to a single peak, the trajectory was considered to be folding in
two-states; when two or more peaks were found, the trajectory was
labeled as multistate. Given the variability of the trajectories be-
tween prediction runs, many proteins had both two-state and multi-
state trajectories; hence we defined the fraction of two-state
trajectories as the probability that a protein exhibits two-state kinet-
ics. The trajectory generation and analysis process is reported in
Figure 1.
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3 Results

3.1 Pathways from protein structure predictors are

worse than chain length at predicting formal kinetics
We first evaluated whether the predicted pathways from protein
structure prediction methods are consistent with experimental
refolding kinetics. The methods were asked to classify if a protein
chain folds through two-state kinetics or multistate kinetics; in other
words, whether the folding reaction is fully concerted or progresses
through an intermediate. The ground truth is a dataset of in vitro
refolding experiments extracted from the literature.

As described in Section 2, we modified the latest versions of
seven state-of-the-art protein structure prediction methods to output
their search trajectory. The first group, Rosetta and SAINT2, make
use of a Monte Carlo minimization strategy based on fragment
replacement. The second group, trRosetta, RaptorX, DMPfold and
EVfold, use a flexible model with a simplified energy function as
provided by CNS (Brünger et al., 1998) or the Rosetta energy func-
tion (Alford et al., 2017), in combination with inter-residue
restraints derived from co-evolutionary data. Of these, one model
(EVfold) uses binary contacts predicted by a Potts model (Hopf
et al., 2012), while the other three use deep learning to predict inter-
residue distances (DMPfold) and possibly inter-residue orientations
(trRosetta, RaptorX). The last method, RoseTTAFold, uses an itera-
tive SE(3)-equivariant transformer that predicts protein structures in
an end-to-end fashion without explicit minimization. These methods
were used to produce 200 folding trajectories for each of the 170
proteins in our test set; except for the fragment replacement meth-
ods, SAINT2 and Rosetta, where due to high computational cost we
generated only 10 trajectories per protein. This choice is justified,
since these methods are known to present biases in their conform-
ational search that lead to significant redundancy between
independent trajectories (Kandathil et al., 2016).

Generated pathways are influenced by the choices of the differ-
ent protein structure prediction programs. Fragment replacement
codes like SAINT2 and Rosetta start from the fully extended protein
and slowly form compact states. Others like trRosetta and RaptorX
start from a random conformation whose torsion angles have been
selected from uniform sampling from a list of common torsion
angles. RoseTTAFold initiates the trajectory in a compact structure
that has been generated by inference on the MSA (and that often
exhibits significant steric clashes). Despite the different initial states,
all codes generate trajectories exhibiting complex folding dynamics.

The pathways were analyzed using a method based on the fraction
of native contacts between secondary structure elements. In a con-
certed, two-state mechanism, we expect a sudden change where most
of the interactions between the secondary structure elements of a pro-
tein form in a single step, while in a multistate mechanisms, we expect

several sets of interactions forming at disjoint points of the trajectory.
Our analysis (see Section 2) identifies the steepest changes, and uses a
statistical criterion to determine whether they should be considered as
a single group (two-state) or multiple groups (multistate, where the
interleading peaks can be regarded as intermediates). Table 1 shows
the results of this classification.

Prediction accuracies are modest, but significant. Using a
bootstrap test (N¼100 000), we determined that all the structure
predictors are significantly superior to a random classifier
(AUROC ¼ 0:500) at the 99% level of confidence. A randomized
permutation test, however reveals that none of the predictors is sig-
nificantly better at predicting folding kinetics than a linear classifier
using only chain length. The fact that this sequence-agnostic classi-
fier is better than any of the structure predictors suggests that, while
protein structure prediction programs are capturing a non-trivial
signal about folding, this signal is very weak.

The best predictor of folding kinetics appears to be RoseTTAFold
(a deep learning model based on a transformer architecture which dir-
ectly produces a structure from a multiple sequence alignment), closely
followed by EVfold (based on energy minimization subject to evolu-
tionary constraints). EVfold could be considered the most physically
realistic method of those tested, since it does not modify the energy
function to bias it toward the predicted native state. DMPfold is similar
to EVfold, as it uses the same simulation engine (CNS), but the former
uses a different method for introducing distance restraints: in DMPfold
they are predicted with deep learning, whereas EVfold uses a Potts
model. EVfold is a better predictor of folding kinetics than DMPfold,
and also comparable to or better than RaptorX and trRosetta, which
rely on deep learning. This suggests that, with the exception of
RoseTTAFold, which belongs to a novel family of methods with phys-
ical assumptions baked into the model’s architecture, deep learning
models are performing worse.

We also tested AlphaFold 2’s ability to predict folding kinetics,
although in this case we had only one trajectory per protein. Using
the method by Jumper et al. (2021b), we achieved an unsupervised
accuracy of 0.613 and an unsupervised F1-score of 0.591 (note that
other metrics, such as supervised scores or AUROC, are redundant,
since the score is binary due to the availability of only one trajectory
per protein), which may hint at a similar performance to
RoseTTAFold. If after averaging over multiple decoys the perform-
ance metrics remained constant then this would reinforce the notion
that deep learning methods based on SE(3)-equivariance might be
capturing folding information encoded in the multiple sequence
alignment.

Overall the quality of the structure prediction output does
not appear to relate to the ability of the method to classify folding
kinetics (see Supplementary Fig. S2). In the 10 decoy dataset there is
a tendency toward the methods that generate worse structure

(a)

(b)

Fig. 1. Proto col for the analysis of simulated folding pathways. (a) Trajectory generation process. Protein sequences are used to generate the necessary input features for a

modified protein structure predictor using default processing scripts. The structure prediction software outputs detailed search trajectories, that are then summarized as the

fraction of native contacts between pairs of secondary structure elements. (b) The trajectories are smoothed, and the positions of maximum change are identified via numerical

differentiation. These peaks are subsequently clustered using KDE with a Gaussian kernel, allowing us to identify main phases of folding, and establishing whether the trajec-

tory proceeds in one or more steps; and into the structural intermediates, which can be compared with HDX experiments
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predictions also being worse at predicting kinetics, but this effect
may be a product of reduced sampling. If we consider the 200 decoy
dataset the method that has the lowest structure prediction accur-
acy, EVfold, is the second best predictor of kinetics. Similarly for a
given program, the quality of the predictions is largely independent
of model quality (see Supplementary Fig. S2).

We examined one of the methods that use deep learning,
DMPfold, in more detail. DMPfold uses an iterative process
where prior predictions are used to refine the potential used in
subsequent cycles. We compared the predictive power of multiple
iterations, and observed that, while the area under the receiver-
operating curve (AUROC) increases slightly with successive itera-
tions, the overall accuracy is reduced (see Supplementary Fig. S3).
The AUROC can be interpreted as the probability that a uniform-
ly drawn two-state folder exhibits a higher proportion of two-
state folding trajectories than a uniformly drawn multistate fold-
er. This result suggests that, by iteratively refining predicted dis-
tances, the potential eliminates spurious predictions that might be
a source of intermediates, as well as improve the final structure.
However, since the accuracy is reduced, the description of the
free energy hypersurface is not improved.

Finally, we found that some programs have an intrinsic bias to-
ward predicting one or other folding mechanism. For example, for
the majority of proteins, about 90% of the 200 DMPfold decoys ex-
hibit two-state folding (hence the increase in AUROC from the 10
decoys sample to the 200 decoys sample), while RaptorX and
EVfold tend toward predicting intermediates, and trRosetta presents
a clear, but less marked bias toward two-state trajectories. These
tendencies may explain the differences between unsupervised and
supervised accuracy in Table 1.

Overall, these results suggest that protein structure prediction
programs are not learning information about the folding
mechanism.

3.2 Pathways from most protein structure predictors are

uncorrelated with the rate constants of two-state

folding
We next examined whether the protein structure prediction methods
can predict the folding rate constant of the two-state processes. Our
work follows that of Plaxco, Simons and Baker (Plaxco et al., 1998),
who demonstrated that the average contact order of the native struc-
ture is strongly correlated with the folding rate constant of two-state
proteins. Follow-up papers have suggested that other measures, such

as fractions of secondary structure (Gong et al., 2003) or even pre-
dicted contacts (Punta and Rost, 2005), show similar correlations.
We hypothesize that, if the folding pathways produced by protein
structure methods were representative of folding, they should ex-
hibit a similar relation, where the presence of the folding event in
the trajectory is highly correlated with the folding rate constant.

We tested whether we could predict the folding rate constants of
79 two-state folding proteins from the PFDB (Manavalan et al.,
2019) (see Supplementary Table S2 for the experimental ground
truth data). For each protein, we discarded all of the decoy trajecto-
ries that exhibited an intermediate and selected only two-state exam-
ples. In these trajectories, we localized the frame where the folding
event started, and correlated its relative position in the full trajectory
with the natural logarithm of the folding rate constant. As a base-
line, we also computed the correlation with the average contact
order and the chain length. We found that chain length outper-
formed average contact order at predicting the folding rate constant,
counter to previous work that stated that length was not a useful
predictor (Plaxco et al., 1998). This is potentially due to the use of
different examples and increased dataset size (our dataset is six times
the size of that in the original paper).

We found that most programs exhibit only a very weak correl-
ation between the simulated trajectories and the folding rate constant
(Fig. 2). The Spearman correlation coefficients are not significant, at
the 95% level of confidence, for trRosetta and RaptorX and
DMPfold, and while EVfold, RaptorX and Rosetta display significant
correlation, the correlation has the wrong sign: later folding events
lead to larger (faster) rate constants. In contrast, the correlation be-
tween trajectories produced by RoseTTAFold and folding kinetics, al-
though weaker in magnitude, has the correct sign. Nevertheless, all of
the methods are significantly worse than the length of the protein
chain at predicting the folding rate constant.

We also found that AlphaFold 2 behaves similarly to
RoseTTAFold, as found in the previous section. The Spearman cor-
relation coefficient between the relative position of the folding event
and the logarithm of the kf is –0.23, of the same order as
RoseTTAFold and with the correct sign. Although the reduced num-
ber of decoys does not allow us to claim significance, the value sug-
gests that the method is capturing some signal, and suggests that
deep learning methods based on SE(3)-equivariance might detect the
footprint that folding mechanisms have left in the multiple sequence
alignment. However, it is unlikely that AlphaFold 2 would outper-
form the length of the protein chain at predicting the folding rate
constant.

Table 1. Performance of the different protein structure prediction methods at determining folding kinetics

RoseTTAFold trRosetta RaptorX DMPfold EVfold SAINT2 Rosetta Length

10 Decoys

Unsupervised accuracy 0.614 0.614 0.560 0.565 0.552 0.554 0.552 —

Unsupervised F1-score 0.637 0.588 0.472 0.679 0.525 0.586 0.513 —

Supervised accuracy 0.607 0.576 0.551 0.588 0.568 0.538 0.527 0.656

Supervised F1-score 0.637 0.620 0.558 0.667 0.643 0.620 0.655 0.731

AUROC 0.675 0.654 0.626 0.594 0.605 0.608 0.560 0.739

200 Decoys

Unsupervised accuracy 0.623 0.546 0.576 0.556 0.608 — — —

Unsupervised F1-score 0.663 0.638 0.610 0.687 0.616 — — —

Supervised accuracy 0.612 0.573 0.563 0.581 0.610 — — 0.656

Supervised F1-score 0.649 0.640 0.565 0.667 0.645 — — 0.731

AUROC 0.669 0.631 0.602 0.622 0.658 — — 0.739

Note: Unsupervised metrics use a simple rule cðxÞ that assigns a protein the most frequent kinetics, i.e. if 50% or more of the decoys display multistate kinetics,

the protein is taken to fold in multiple steps; otherwise it is considered two-state. Supervised metrics fit a logistic regression on cðxÞ and report the average of 1000

fivefold cross-validation experiments; note that the supervised score may sometimes be worse than the unsupervised one if the model does not generalize well. The

baseline is a logistic regression that uses only the length of the protein. Accuracy reports the average recall per class, to account for the slight imbalance of the

dataset (90 two-state folders and 80 multistate folders). The F1-score is the harmonic mean of recall and precision. The area under the receiver-operating curve

(AUROC) for length is computed by projecting the values to the ½0; 1� interval. Bold indicates the top metric. We observe that chain length outperforms any of the

protein structure prediction methods at predicting folding kinetics.
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These results reinforce the conclusion that the ability of protein
structure prediction methods to model folding pathways is inferior
to trivial baselines.

3.3 Intermediates predicted by protein structure

predictors are erratic and incompatible with available

HDX data
As on occasion structure predictors do correctly identify folding kin-
etics, we next examine if in these cases, the structures predicted in
the pathway are consistent with experimental data. We hypothesize
that if the structure predictor has insight into the multistate process,
it should (i) predict structures that are congruent with experimental
measurements, and (ii) produce consistent predictions of the inter-
mediates across independent replicas for the same protein. HDX
experiments probe unfolded regions of a protein at different stages
of the folding process and allow us to identify which regions of an
intermediate are structured and which have not yet folded (see
Supplementary Data for details). We compared the predicted folding
trajectories to these data.

We use the predicted trajectories to identify which pairs of sec-
ondary structure elements are interacting closely in the intermediate.
This allows comparison between the noisy protein structure predic-
tion pathways and the low structural resolution provided by experi-
mental HDX data. For every protein and program, we consider a
binary vector whose elements correspond to pairs of secondary
structure elements that are in contact in the native structure. We
then use the same trajectory analysis as in the previous section to
identify which pairs interact in the folding intermediate (or, in the
case of fructose-biphosphate aldolase A, the first intermediate). The
metrics of these classifiers are summarized in Table 2.

Intermediate structures are predicted with very low accuracy by
all methods. A randomized permutation test shows that only one of

the predictors, EVfold, exhibits predictive power superior to the ran-
dom baseline. In contrast, RoseTTAFold is significantly worse than
the random sample. This suggests that deep learning models are not
learning the physics of folding, but rather collecting statistical infor-
mation about crystal structures.

As an additional sanity check, we considered whether the struc-
tures generated throughout the trajectories are consistent with basic
physical rules. We computed the clashscore (Davis et al., 2004) of
every snapshot in the first 10 decoys using Phenix (Adams et al.,
2010) and compared them against a threshold value of 30 clashes
per 1000 atoms, determined as the 99th percentil of PDB structures
with resolution � 2:5 Å (see Supplementary Fig. S5). We observed
that the majority of the methods produce a large number of struc-
tures with large clashes: methods based in CNS like DMPfold and
EVfold produced over 80% of unphysical structures, and even the
best methods like RaptorX and AlphaFold produced nearly 30–40%
of structures with clashing atoms. This finding suggests that the
potentials generated are not considering basic physical principles
throughout the intermediate stages of the predictive process. This
may explain the relative bad quality of intermediate predictions
with respect to predictions of formal kinetics or the folding rate
constant.

We then examined the variation between the predicted interac-
tions by computing the Jaccard similarity between the binary vector
of predicted interactions and the ground truth. This similarity is
very low, in most cases worse than random, suggesting that inde-
pendent replicas of the folding pathway by the protein structure pre-
diction methods often lead to markedly different structural
intermediates. These results once again imply that while the predic-
tors may be good at modeling the energy hypersurface around the
global minimum, they are not capturing other attractors and there-
fore produce erratic pathways.

The comparison with AlphaFold 2 suggests that the latter produ-
ces similar results. Of the nine proteins, seven are predicted with a

Fig. 2. Correlation between the folding rate constant and folding events in simulated trajectories of the seven structure prediction methods considered, the length of the protein

chain and the average contact order of the native structure. Every point represents the average over the maximum number of decoys possible (200 decoys for RoseTTAFold,

trRosetta, RaptorX, DMPfold and EVfold; and 10 decoys for SAINT2 and Rosetta)

Table 2. Performance of the structure predictors at identifying the secondary structure interactions present in an intermediate

RoseTTAFold trRosetta RaptorX DMPfold EVfold SAINT2 Rosetta Random

200 Decoys

Accuracy 0.453 0.534 0.495 0.489 0.540 — — 0.502

F1-score 0.222 0.169 0.110 0.026 0.307 — — 0.252

Jaccard 0.052 0.052 0.052 0.052 0.052 — — 0.094

AUROC 0.441 0.503 0.502 0.492 0.530 — — 0.498

Note: The ground truth corresponds to a dataset of 11 proteins whose intermediates have been characterized with HDX experiments. Accuracy reports the

average recall per class, to account for the slight imbalance of the dataset. The Jaccard score reflects the average Jaccard similarity of the predictions, expressed as

a binary string (where 1 means that the native contacts between secondary structure elements are formed in the intermediate, while 0 means they are not), with

the true answer. The random baseline corresponds to an unbiased coin predicting whether two secondary structure elements are in contact.
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Jaccard similarity of �0:1 to the ground truth (see Supplementary
Fig. S6). The two proteins that are predicted with some accuracy,
horse cytochrome C and cardiotoxin analogue III, are also the small-
est in the dataset, which once again raises a concern of reduced en-
tropic pressure. This suggests that AlphaFold 2 does not present any
advantage at predicting the folding intermediates of a protein chain.

We then investigated if these results extend from the proteins
with HDX annotations, to the entire dataset of proteins we simu-
lated. We computed the binary vectors for all pathways of multistate
proteins exhibiting an intermediate, and computed the average
Jaccard similarity for every protein (Fig. 3). The average pairwise
Jaccard similarity is 0.1, and in most cases there are only a handful
of proteins with an average over 0.5. The yeast cell-cycle control
protein p13suc1 (PDB: 1PUC) is one of this handful; it presents only
four native interactions, suggesting that this is again due to reduced
entropic pressure. Overall, the pathways produced by protein struc-
ture prediction methods are erratic and generally inconsistent, sug-
gesting that any ability to correctly predict multistate behavior does
not arise from an understanding of the intermediates in the folding
pathway.

4 Discussion

In this manuscript, we have investigated whether state-of-the-art
protein structure prediction methods can provide any insight into
protein folding pathways. We generated tens of thousands of folding
trajectories with seven protein structure prediction programs
(RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2
and Rosetta) and obtained a set of AlphaFold 2 trajectories, and
used them to determine major features of folding using a simple set
of statistical rules. We found that protein structure prediction meth-
ods can in some cases distinguish the folding kinetics (two-state ver-
sus multistate) of a chain better than a random baseline, but not
significantly better, and often significantly worse, than a simple,
sequence-agnostic linear classifier using only the number of amino
acids in the chain.

Using a similar approach, we examined the relationship between
simulated trajectories and other experimental observables: the fold-
ing rate constant of two-state folders, and the structure of intermedi-
ates in multistate trajectories. The simulated trajectories were in
most cases not better than random at predicting the contacts formed
in an intermediate, and in the case of predicting folding rate con-
stants, none of the methods was superior to a linear classifier using
the length of the protein chain.

Our results demonstrate that state-of-the-art protein structure
prediction methods do not provide an enhanced understanding of
the principles underpinning folding. Simulated trajectories from pro-
tein structure prediction methods are inconsistent with all available
experimental data, in terms of folding mechanism, kinetics or struc-
tural data. In the general context of computational protein biophys-
ics, our results suggests that current protein structure prediction
programs, while now very successful at their primary role, are not
an appropriate tool to investigate folding.

There are some limitations to our study. First of all, the concepts
of folding intermediate and folding formal kinetics are imprecise.

For example, many proteins have a tendency to form compact, mol-
ten globule structures, that may then fold cooperatively in a process
that is referred to as ‘two-state’ (e.g. Di Paolo et al., 2010). The fold-
ing mechanisms of multiple proteins have been widely discussed in
the literature with conflicting results [e.g. for ubiquitin (Jackson,
2006) or T4 lysozyme (Kato et al., 2007; Llinás et al., 1999; Lu and
Dahlquist, 1992)]. Folding is itself highly sensitive to an array of ex-
perimental conditions that includes temperature, pH and concentra-
tion of denaturant, and it may be difficult to discern when the
methods are not correctly modeling the physics or simply portraying
the wrong conditions.

While our results have shown the lack of consistency between
the folding trajectories generated by protein structure prediction
methods and experimental data, we have also seen that most struc-
ture predictors are better than random suggesting that a weak signal
exists. The next stage will be to investigate how to extract the lim-
ited amount of folding information that is encoded in current pro-
tein structure prediction programs.

Acknowledgements

The authors thank the AlphaFold 2 team at DeepMind for providing folding

trajectories for analysis. C.O. thanks Dr. Oliver Crook for advice on the stat-

istical analysis of significance.

Funding

C.O. thanks F. Hoffmann-La Roche, UCB and the UK’s Engineering and

Physical Sciences Research Council [EP/M013243/1] for financial support.

Conflict of Interest: none declared.

References

Adams,P.D. et al. (2010) Phenix: a comprehensive python-based system for

macromolecular structure solution. Acta Crystallogr. Sect. D Biol.

Crystallogr., 66, 213–221.

Alford,R.F. et al. (2017) The Rosetta all-atom energy function for macromol-

ecular modeling and design. J. Chem. Theory Comput., 13, 3031–3048.

Baek,M. et al. (2021) Accurate prediction of protein structures and interac-

tions using a three-track network. Science, 373, 6557, 871–876.

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28,

235–242.

Best,R.B. et al. (2013) Native contacts determine protein folding mechanisms

in atomistic simulations. Proc. Natl. Acad. Sci. USA, 110, 17874–17879.
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