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SUMMARY
CAG repeat expansion in the HTT gene drives Huntington’s disease (HD) pathogenesis and is modulated by
DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific
nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify
a highly conserved SPYFmotif at the N terminus of FAN1 that binds toMLH1. Our data support amodel where
FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruit-
ment byMSH3, thus inhibiting the assembly of a functionalMMRcomplex that would otherwise promoteCAG
repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data high-
light a potential avenue for HD therapeutics in attenuating somatic expansion.
INTRODUCTION

Huntington’s disease (HD) is a monogenic neurodegenerative

condition arising due to inheritance of R36 CAG repeats in

exon 1 of the huntingtin (HTT) gene. Expansion of CAG repeats

occurs in selected somatic and selected meiotic tissues, but

the neurodegeneration is primarily due to loss of neurons in the

striatum and cortex (MacDonald et al., 1993; Pinto et al., 2013;

Rikitake et al., 2020; Tomé et al., 2013). Faster somatic expan-

sion rates correlate with earlier age at onset and faster disease

progression (Bates et al., 2015; Rawlins et al., 2016; Flower

et al., 2019; Swami et al., 2009; Wright et al., 2019). The

expanded CAG repeat may be pathogenic through several

mechanisms, including at the protein level through translation

into a longer, more toxic polyglutamine tract; at the RNA level

through the incomplete splicing ofHTT (Neueder et al., 2017; Sa-

thasivam et al., 2013), RAN translation, or RNA secondary struc-

ture (Bañez-Coronel et al., 2015; Schilling et al., 2016) ; and at the

DNA level through an effect on transcription and DNA repair ac-

tivity (Wright et al., 2020). Targeting repeat expansion, the most
This is an open access article und
proximal pathogenic event, represents a prime therapeutic op-

portunity in HD and potentially other trinucleotide disorders (Tab-

rizi et al., 2020). In recent years, several genome-wide associa-

tion studies (GWASs) have identified DNA repair genes as main

modifiers of HD onset and progression (GeM-HD Consortium,

2019). The strongest signal comes from genetic variation in the

DNA repair gene FAN1, a nuclease of the Fanconi anemia (FA)

pathway (MacKay et al., 2010; Smogorzewska et al., 2010),

while other prominent modifications are in MSH3, MLH1,

andPMS2, members of themismatch repair (MMR) pathway (Jir-

icny, 2006). Similarly, transcriptome-wide association studies

(TWASs) show a signature in which reducedMSH3 but increased

FAN1 expression are associated with later onset, slower pro-

gression, and CAG repeat stability (Flower et al., 2019; Goold

et al., 2019).We and others have demonstrated in cell and animal

models that deficiency of MSH3, MSH2, MLH3, PMS2, and

MLH1 or increased expression of FAN1 (Tomé et al., 2013; Pinto

et al., 2013; Miller et al., 2020) prevents somatic expansion. This

is consistent with analyses linking FAN1 loss-of-function vari-

ants, such as p.R507H (GeM-HD Consortium, 2019), with earlier
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onset. Therefore, in the context of HD, FAN1 expression has a

dose-dependent protective effect on CAG repeat expansion,

providing a credible mechanism for its defensive influence

in vivo.

Despite this, the molecular relationship between MMR and

FAN1 is not well understood. MMR relies on the MutSb hetero-

dimer (MSH3-MSH2) to recognize large loops in slipped DNA

and to recruit MutLa (MLH1-PMS2) to incise DNA through its

endonuclease activity. Thereafter, repair is conducted by a

DNA polymerase and ligase 1 (LIG1), incorporating additional

CAG repeat units. On the other hand, FAN1 is an endonuclease

and 50–30 exonuclease that excises aberrant interstrand cross-

links (ICLs) that impair transcription and ensures the recovery

of stalled replication forks (Huang and D’Andrea, 2010; Lachaud

et al., 2016; Chaudhury et al., 2014). How FAN1 protects against

CAG repeat instability remains unclear, with some data suggest-

ing FAN1’s DNA-binding capacity may be important (Kim et al.,

2020). Interestingly, FAN1 interacts directly with MLH1 (Pinto

et al., 2013; Rikitake et al., 2020; Tomé et al., 2013) but, to our

knowledge, the nature and purpose of this interaction has not

been explored in a HD context. Recent evidence in a HD mouse

model supports the protective effect of FAN1 at CAG repeats

and shows that it acts through MLH1 (Loupe et al., 2020). These

physical and genetic links prompted us to further investigate the

mechanistic significance of the FAN1-MLH1 relationship.

Using the U2OS cell line, well established in the FAN1 field

(MacKay et al., 2010; Munoz et al., 2014), we show that an evolu-

tionary conserved functional domain of FAN1 (126SPYF129) is

responsible for binding MLH1 and is important for CAG repeat

stability. Additionally, we highlight the in vivo relevance of this

interaction by demonstrating that FAN1 binds MLH1 in multiple

human and mouse HD models. The FAN1-MutL interaction pre-

vents the recruitment of MLH1 to the MutSb complex, thereby
Figure 1. The FAN1 N-terminal region (p.73-349) mediates its interacti

(A) CoIP extracts from human HD iPSCs showing FAN1 interacts with MutLa co

fraction (n = 3 biological replicates).

(B) CoIP extracts from human HD lymphoblasts confirming FAN1 interacts with M

(C) Pull-down assays using GFP-Trap beads in U2OS cells showing FAN1 interact

nuclear antigen). FAN1�/� cells act as a negative control, demonstrating specific

(D) CoIP of cortical extracts from mouse zQ175 at 6 months of age confirming FA

12 weeks of age (zQ175, n = 3 biological replicates; R6/2, n = 2 biological replic

(E) Crosslinks identified between FAN1, MLH1, and PMS2 in unstimulated HEK

unsolved (no PDB structure available). Turquoise line, interprotein; purple line, intra

Table S1.

(F) Schematic illustrating FAN1 constructs cloned into U2OS system. Locations o

UBZ, ubiquitin-binding zinc-finger domain; SAP, SAF-A/B, Acinus and PIAS dom

repair nuclease domain.

(G) Pull-down using GFP-Trap beads in U2OS cells expressing GFP-FAN1 deletio

that inactivation of UBZ or VRR_NUCdomains (C44A/C47A andD960Amutants, r

(H) CoIP extracts using aMLH1 antibody in U2OS cells showing N-terminal FAN1

(I) MMC viability curves in U2OS cells expressing FAN1 variants (mean ± SD) s

biological replicates; n = 3 technical replicates). See also Figure S1E.

(J) CAG expansion rates in U2OS cells expressing truncated FAN1 constructs, inc

D960A). Note that only FAN1D73–349 shows a higher expansion rate than cells expr

replicates, n = 3–6 technical replicates, F(5,97) = 40.8, p < 0.001 by one-way AN

significant.

(K–M) Fragment analysis traces illustrating expansion of the exogenous HTT 118

(K) with time courses plotted (L and M). Note that cells expressing FAN1D73–34

FAN11–349 (individual data points shown) and FAN1�/� cells (mean ± SD, 95% c

technical replicates).
reducing somatic expansion. We further show that FAN1’s

nuclease activity plays an active role in suppressing expansion.

Therefore, promoting the FAN1-MutL complex interaction repre-

sents an unexplored therapeutic strategy in HD and potentially

other trinucleotide disorders.

RESULTS

FAN1-MLH1 binding demonstrated in vitro and in vivo in
multiple HD models
Because of the strong genetic evidence linking FAN1 and MMR

proteins in the pathogenesis of HD, we speculated that FAN1

could directly interact with MMR factors at CAG repeats to

modulate expansion. To test the functional significance of the

FAN1-MLH1 interaction in an HD context, we first tested this hy-

pothesis in induced pluripotent stem cells (iPSCs) derived from a

juvenile HD patient originally carrying 125 CAGs. Immunoprecip-

itation (IP) using FAN1 antibodies showedMLH1 and PMS2were

present in FAN1 pull-down fractions, whereas MSH3 was ab-

sent, and conversely, FAN1 was present in MLH1 pull-down

fractions alongside PMS2 and MSH3 (Figure 1A). To confirm

this interaction in independent cell lines, we used HD lympho-

blastoid (LB) cells carryingmore typical, shorter, disease-associ-

ated repeat lengths (Figure 1B). To exclude antibody-specific

artifacts, we validated this interaction in U2OS cells expressing

GFP-FAN1 and confirmed that MLH1, PMS2, and MLH3 can

be detected in GFP-Trap pull-down fractions, whereas MSH2,

MSH3, and MSH6 were absent (Figure 1C). Finally, to demon-

strate the significance of this interaction in vivo, we showed

that FAN1 and MLH1 interact in cortical extracts of zQ175 and

R6/2 HD mice (Figure 1D).

To further dissect the interaction between FAN1 and the

MLH1-PMS2 heterodimer, we performed crosslinking IP mass
on with MLH1 and its effect on CAG stabilization activity

mponents MLH1 and PMS2. Note that MSH3 is absent from the anti-FAN1 IP

LH1 (n = 3 biological replicates).

s with MutL components, but not MutS components or PCNA (proliferating cell

ity of the pull-down (n = 4 biological replicates).

N1 interacts with MLH1. Observations were also confirmed in R6/2 HD mice at

ates).

293T cells and HD lymphoblasts. Grey parts on the proteins are structurally

protein; green line, crosslinks close to the SPYFmotif. See also Figure S1A and

f UBZ null (C44A/C47A) and nuclease null (D960A) mutations are also outlined.

ain; TPR, tetratricopeptide repeat domain; VRR_NUC, virus-type replication-

n constructs. FAN1D73–349 (highlighted in bold) did not interact with MLH1. Note

espectively) does not affect FAN1-MLH1 interaction (n = 3 biological replicates).
1–349 is sufficient to interact with MLH1 (n = 4 biological replicates).

howing lower viability when FAN1 lacks an intact nuclease domain (n = 5–8

luding mutations within key functional domains (UBZ, C44A/C47A; VRR_NUC,

essing FAN1FL but does not equate to FAN1�/� (mean ±SEM, n = 2–5 biological

OVA with false discovery rate [FDR] correction of 5%). ***p < 0.001; ns, non-

CAG repeat in U2OS cells expressing FAN1 constructs over 6 weeks in culture
9 (individual data points shown) expand at a rate between that of FAN1FL or

onfidence interval [CI] in shaded areas, n = 2–5 biological replicates, n = 3–6
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spectrometry (xIP-MS) experiments using HEK293T cells, ex-

pressing myc-tagged FAN1 and LB cells expressing endoge-

nous FAN1. As expected, we observed interactions between

FAN1 and its known FA-complex interactors, FANCD2 and

FANCI (Figure S1A; Table S1; MacKay et al., 2010; Smogorzew-

ska et al., 2010). Interestingly, analysis of the aggregated cross-

linking data from both experiments showed multiple proximity

areas between FAN1, MLH1, and PMS2, but not MLH3 (Fig-

ure 1E; Table S1). Three crosslinks were observed between

FAN1 and MLH1, two in the N-terminal part of FAN1 and one

in the TPR (tetratricopeptide repeat) domain.We found six cross-

links between FAN1 and PMS2, including four in the N-terminal

region of FAN1, one in the TPR domain, and one adjacent to

the TPR domain (Figure 1E). Intriguingly, a cluster of four cross-

links between N-terminal FAN1 (p.120-168) and both PMS2 and

MLH1 was observed. One of the FAN1 intra-protein crosslinks

(K539-S646) was in the structured region of the protein (4RID)

at a distance of 27 Å, which is consistent with the maximal dis-

tance for the crosslinker used, while all other crosslinks involve

unstructured regions with no atomic coordinates present in the

Protein Data Bank (PDB). Together, these data show that MutLa,

but not MSH3, directly interacts with FAN1 and point to specific

contact areas that could be critical for this interaction.

The FAN1 N-terminal region (p.73-349) mediates its
interaction with MLH1 and its effect on CAG
stabilization activity
To pinpoint theMLH1-binding region(s) of FAN1, we expressed a

series of GFP-tagged FAN1 deletion constructs (Figure 1F) in a

well-characterized U2OS cell model stably expressing mutant

HTT (mHTT) exon 1 (Goold et al., 2019). GFP pull-down fractions

from cell extracts expressing a FAN1 construct comprising the

first 349 residues (FAN11–349) contained levels of MLH1 similar

to those produced using full-length FAN1 (FAN1FL) (Figures 1G

and S1B). In contrast, FAN1D73–349, a deletion construct missing

most of this N-terminal region but retaining the nuclear localiza-

tion signal (NLS; p.11-25), the ubiquitin-binding zinc-finger

domain (UBZ), SAP, TPR, and nuclease domains (Zhao et al.,

2014), did not form a complex with MLH1 (Figure 1G). The inter-

action of the N terminus of FAN1 with MLH1 was confirmed by

reverse IP using MLH1 antibodies. This showed FAN1FL and

FAN11–349 bind MLH1 (Figure 1H). It is also worth noting that

PMS2 partitions with MLH1 in IP fractions derived from FAN1

knockout (FAN1�/�), FAN1FL, and FAN11–349 cells, indicating

FAN1 does not influence the MutLa complex interaction.

To exclude the possibility that deleting a large section of the

FAN1 sequence creates an inactive form of the protein that is

unable to bind MLH1 because it is misfolded or mis-localized,

we performed functional analyses. Live-cell imaging using the

FAN1 GFP tag showed exclusively nuclear localization (Fig-

ure S1C). Mitomycin C (MMC) stimulates the formation of nu-

clear FAN1 repair foci in a manner mediated by the UBZ domain

and requires FAN1 nuclease activity for ICL repair and survival

(MacKay et al., 2010; Smogorzewska et al., 2010). In MMC

cell viability assays, as expected, FAN11–349 was present exclu-

sively in the nucleus and formed DNA repair foci, though not as

efficiently as the full-length protein, as it lacks the DNA-binding

SAP domain, and it provided no protection against MMC
4 Cell Reports 36, 109649, August 31, 2021
toxicity (Figures 1I and S1C–S1E). In turn, FAN1D73–349 formed

repair foci and protected against MMC genotoxicity, indicating

that this protein was functional in ICL repair and is therefore un-

likely to be misfolded (Figures 1I and S1C–S1E). Thus, the

MLH1-binding capacity of these constructs likely reflects the

protein’s biological activity rather than mis-localization or mis-

folding. These data also suggest that the UBZ domain and

nuclease activity are not required for the FAN1-MLH1 interac-

tion. To confirm this independently, we expressed the

p.C44A/C47A and p.D960A FAN1 mutants, deficient in ubiqui-

tin-binding and nuclease activity, respectively, in U2OS cells

and assessed their MLH1-binding capacity using GFP-Trap

pull-down assays. Both constructs bound to MLH1 (Figure 1G),

and cells expressing these constructs also displayed the ex-

pected response to MMC treatment with the p.D960A, but not

the p.C44A/C47A variant showing reduced viability (Figures 1I

and S1C–S1E).

To assess the effect of the FAN1-MLH1 interaction on CAG

repeat instability, we measured CAG repeat expansion over

40 days in isogenic U2OS cells expressing each construct. Intro-

ducing the nuclease-deficient p.D960A and p.C44A/C47A UBZ

mutations into FAN1FL did not affect the stabilization of the

CAG repeat (Figure 1J). FAN11–349 was also able to stabilize

the CAG repeat, with a similar expansion rate as FAN1FL (Figures

1J, 1K, and 1L), but FAN1D73–349, the inverse construct lacking

most of the N-terminal region, did not slow CAG expansion as

effectively (Figures 1J, 1K, and 1M). Importantly, the expansion

rate in FAN1D73–349 cells was not as fast as FAN1�/� cells, sug-

gesting that a FAN1 region outside of residues 73–349 also con-

tributes to CAG repeat stabilization activity.

Taken together, these structure-function analyses show that

the FAN173–349 N-terminal region is necessary and sufficient

for interaction with MLH1 and protection against CAG expan-

sion, independent of UBZ and nuclease activity.

The FAN1 126SPYF129 domain mediates MLH1
interaction and confers CAG repeat stabilization in
conjunction with FAN1 nuclease activity
We observed that FAN11–165 and FAN11–190 constructs both

bind MLH1 robustly, but FAN11–140 showed a reduced interac-

tion (Figure 2A). Quantification of GFP-Trap pull-down fractions

suggestedMLH1 binding increased as the FAN1N-terminal con-

structs lengthen, whereas FAN11–120 and the deletion construct

FAN1D120–140 showed little or no MLH1 binding (Figures 2A–2C).

Therefore, MLH1 binding absolutely requires FAN1 residues

120–140, but downstream sequences could contribute to com-

plex stability. These data are consistent with on-bead crosslink-

ing experiments that showed close associations betweenMLH1-

PMS2 and the N-terminal region of FAN1 (Figure 1E).

The N-terminal region of FAN1 is largely unstructured and rela-

tively nonconserved. It does, however, contain three highly

conserved regions, the first of which consists of a SPYF motif

(p.126-129; Figure 2D) similar to the MLH1-interacting peptide

box (MIP-box) found in many of MLH1’s interaction partners

(Dherin et al., 2009; Iyer et al., 2010). Considering the similarity

to a knownMLH1-binding sequence and the data from our struc-

ture-function analysis, we explored the role of 126SPYF129 in the

FAN1-MLH1 interaction. We introduced a series of alanine



Figure 2. A conserved SPYFmotif in FAN1 is

required for MLH1 binding

(A–C) CoIP extracts using GFP-Trap beads in

U2OS cells expressing truncated FAN1 constructs

(A and B) with quantification showing progressively

longer FAN1 N-terminal fragments bind more

MLH1 (C). Note residues 120–140 are essential for

MLH1 binding (mean ± SEM, n = 4–5 biological

replicates, F(5,22) = 88.31, p < 0.001 by one-way

ANOVA with FDR correction of 5%). *p < 0.05;

***p < 0.001; ns, non-significant.

(D) Conservation analysis schematic showing

SPYF motif is heavily conserved within common

model species (residues with >80% consensus

shown in yellow).

(E) Schematic illustrating FAN1 constructs with

mutations at conserved SPYF residues that were

cloned into the U2OS system. Nuclease null mu-

tation (D960A) is also outlined. UBZ, ubiquitin-

binding zinc-finger domain; SAP, SAF-A/B, Acinus

and PIAS domain; TPR, tetratricopeptide repeat

domain; VRR_NUC, virus-type replication-repair

nuclease domain.

(F) MMC viability curves in U2OS cells expressing

FAN1 SPYF mutants (mean ± SD). Note viability is

only reduced in FAN1�/� line (n = 6–8 biological

replicates, n = 3 technical replicates) (see also

Figure S1G).

(G and H) Input and GFP-Trap pull-down fractions

from U2OS cell extracts expressing FAN1 SPYF

mutants (G) with quantification (H) showing

reduced MLH1-binding with mutation of SPYF

motif relative to FL construct. Q123A is displayed

as a control, having a mutation outside the

conserved motif (mean ± SEM, n = 5 biological

replicates; F(4,17) = 744.6, p < 0.001 by one-way

ANOVA with FDR correction of 5%). ***p < 0.001.
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substitutions into the SPYF motif using site-directed mutagen-

esis and expressed these mutants as GFP fusion proteins in

U2OS cells (Figure 2E). Importantly, cells expressing these con-

structs were protected against MMC toxicity and formed nuclear

repair foci normally, suggesting the SPYF mutations did not

affect ICL repair activity (Figures 2F, S1C, S1F, and S1G).

Instead, GFP-Trap pull-down fractions showed residues within

the SPYF motif, in particular the aromatic residues Y128 and

F129, as critical for MLH1 binding, whereas mutation of a well-

conserved residue outside this sequence (Q123) did not affect

binding (Figures 2G and 2H). These data agree closely with our

structure-function analysis and demonstrate that FAN1 interacts

with MLH1 through its conserved N-terminal SPYF motif.
C

Mutations S126A, Y128A, and F129A

within the SPYF motif reduced the stabili-

zation activity of FAN1, with substitution

of the aromatic residues exhibiting the

greatest increase in the CAG repeat

expansion rate, while Q123A had no

effect (Figure 3A). Similarly, FAN11–120

did not stabilize the CAG repeat,

while longer SPYF-motif-containing con-

structs, including FAN11–165, significantly
restrained CAG expansion (Figure 3B). Consistent with this, de-

leting residues 120–140 (FAN1D120–140) from the FAN11–349

construct reduced the stabilization activity (Figure 3B). As for

the SPYF mutants, CAG repeat stabilization activity and

MLH1-binding correlate closely, indicating they are mechanisti-

cally linked.

Mutation of the SPYF motif was associated with an increased

expansion rate relative to FAN1FL, significant because it shows

nuclease function alone does not fully stabilize the CAG repeat,

as FAN1FL and SPYF mutants have similar ICL repair activity

(Figures 2F, S1C, S1F, and S1G). Despite this, we observed

that the expansion rate in SPYF-deficient constructs was not

as fast as in FAN1�/� cells (Figure 3A). In fact, the stabilization
ell Reports 36, 109649, August 31, 2021 5



Figure 3. FAN1 SPYFmotif and nuclease ac-

tivity stabilize the HTT CAG repeat

(A) CAG expansion rates in U2OS cells expressing

FAN1 constructs with mutations at conserved

SPYF motif. Note that mutation of this domain re-

sults in hastened expansion of the HTT CAG

repeat. Q123A is displayed as a control, having a

mutation outside the conserved motif. (mean ±

SEM, n = 2–5 biological replicates, n = 3–6 tech-

nical replicates, F(5,83) = 28.64, p < 0.001 by one-

way ANOVA with FDR correction of 5%). **p <

0.01, ***p < 0.001, ns = non-significant.

(B) CAG expansion rates in U2OS cells expressing

truncated N-terminal constructs of FAN1, showing

residues 120–140 contribute significantly to HTT

CAG repeat stability. (mean ± SEM, n = 2–5 bio-

logical replicates, n = 3–6 technical replicates,

F(5,86) = 22.38, p < 0.001 by one-way ANOVA with

FDR correction of 5%). *p < 0.05, ***p < 0.001, ns =

non-significant.

(C) Input and GFP-Trap pull-down fractions

from U2OS cell extracts expressing FAN1FL and

FAN1F129A/D960A showing reduced MLH1-binding

with mutation of SPYF motif relative to FL. Note

equivalent FAN1FL and FAN1F129A/D960A expres-

sion (n = 2 biological replicates).

(D) MMC viability curves in U2OS cells expressing

FAN1F129A and FAN1F129A/D960A mutants (mean ±

SD, n = 6–7 biological replicates, n = 3 technical

replicates). Note resistance to MMC toxicity is only

maintained in the F129A line. See also Figure S1H.

(E–G) Fragment analysis traces illustrating expan-

sionof the exogenousHTT 118CAG repeat inU2OS

cells expressing FAN1F129A or FAN1F129A/D960A mu-

tants over 6 weeks in culture with time courses

plotted (F; mean± SD, 95%CI in shaded areas) and

quantified (G). Cells expressing FAN1F129A/D960A

show equivalent expansion as FAN1�/� cells (mean

± SEM, n = 2–5 biological replicates, n = 3–6 tech-

nical replicates, F(3,72) = 39.27, p < 0.001 by one-

way ANOVA with FDR correction of 5%). **p < 0.01;

***p < 0.001; ns, non-significant.
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activity of the SPYF mutants was similar to that shown by

FAN1D73–349, suggesting there is residual stabilization activity

downstream of p.349, with the most likely candidate being the

nuclease domain. To assess this, we introduced the nuclease-

deficient p.D960A mutation into a SPYF-deficient construct

(FAN1F129A). Immunoblots demonstrated that FAN1F129A/D960A

and FAN1FL were expressed at similar levels (Figure 3C),

and FAN1F129A/D960A was able to form DNA repair foci in

response to MMC, a response requiring a functional UBZ

domain (Figures S1C and S1F). However, as expected, GFP-

Trap pull-down experiments demonstrated reducedMLH1 bind-

ing, while decreased MMC viability showed deficient ICL repair

(Figures 3C, 3D, and S1H). Importantly, repeat expansion in

FAN1F129A/D960A cells was faster than the F129A single mutant

and equivalent to FAN1�/� cells (Figures 3E–3G).

Taken together, these data show that the FAN1 SPYF motif

mediates its MLH1 interaction and that FAN1’s protective stabi-

lization of the CAG repeat involves MLH1 binding and the

nuclease domain.
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FAN1 regulates MMR activity by competing with MSH3
for MLH1 binding
Consistent with reduced MMR activity, MLH1 and MSH3

knockout abolishes repeat expansion (Figures 4A–4C) and in

the case of MLH1 increases resistance to 6-thioguanine (6TG)

(Figures 4D and S2A; Swann et al., 1996). Surprisingly, we

observed that expression of FAN1FL or FAN11–349 in an MLH1WT

background also increases 6TG resistance relative to FAN1�/�

cells, whereas expression of FAN1D73–349 or SPYF mutants

had no effect (Figures 4D and S2A–S2C). This suggested that

the SPYF motif sequesters MLH1 away from its other binding

partners, reducing MMR activity and ultimately preventing

repeat expansion. To explore this possibility, we tested the abil-

ity of MLH1 to associate with MSH3 in the presence or absence

of FAN1. This is of particular significance, given the key role of

MSH3 in somatic expansion (Figures 4B and 4C) and the similar-

ity of the FAN1 SPYF motif to the MIP-box in MSH3, which me-

diates binding to MLH1. Consistent with this, MSH3 pull-downs

showed that MLH1 levels were reduced in FAN1FL samples



Figure 4. FAN1 regulates mismatch repair

(MMR) activity through MLH1 binding

(A and B) Western blots showing MMR protein

expression in U2OS MLH1 (A) and MSH3 (B)

knockout lines (n = 3 biological replicates).

(C) CAG expansion rates in FAN1�/�, MLH1�/�,
and MSH3�/� U2OS cell lines. Note that knockout

of MSH3 or MLH1 ablates CAG repeat expansion

(mean ± SEM, n = 2–5 biological replicates, n = 3–

6 technical replicates, F(2,72) = 272.5, p < 0.001 by

one-way ANOVA with FDR correction of 5%).

***p < 0.001; ns, non-significant.

(D) 6TG viability curves in U2OS cells expressing

FAN1 constructs and MLH1, showing cells with an

intact FAN1 SPYFmotif have enhanced resistance

to 6TG, indicating reduced MMR activity.

MLH1�/� cells serve as a control (mean ±SD, n = 5

biological replicates, n = 3 technical replicates).

See also Figure S2A.

(E) CoIP of MLH1 and binding partners from

FAN1�/� and FAN1FL cells. Note FAN1 expression

reduces MSH3 levels in MLH1 IP fractions but

does not affect PMS2 (n = 4 biological replicates).

See also Figure S2F.

(F) CoIP of MLH1 and binding partners from 125

CAG HD MSNs with shRNA-mediated FAN1

knockdown. Untreated cells and an empty shRNA

vector were used as controls. Note that FAN1

knockdown increases MSH3 levels in MLH1 IP

fractions (n = 3 biological replicates). See also

Figures S2G and S2H.

(G) CoIP of myc-tagged FAN1 from HEK293T cells

expressing strep-tagged MLH1 variants and

endogenous MLH1. Note endogenous MLH1 and

strep-tagged MLH1FL bind to FAN1, whereas

MLH1E669A does not (n = 2 biological replicates).

(H) FAN1 peptide competition assay in HeLa cell

nuclear extracts showing FAN1 wild-type (wt)

60-mer peptides (15 mM) reducing MLH1-MSH3

interactions, whereas FAN1 mutant (mut.) pep-

tides do not (n = 3 biological replicates).

(I) ChIP extracts from FAN1FL and FAN1�/� U2OS

cells, immunoprecipitated with aMLH1 antibodies

and DNA amplified with primers targeting HTT

CAG repeat region. Note the decreased levels of

both long (exogenous HTT) and short (endoge-

nous HTT) amplicons in FL ChIP fractions (n = 3

biological replicates).

(J) Fragment analysis traces from U2OS FAN1�/�

extracts show the presence of the CAG repeat

from the endogenous HTT allele (20 CAG units)

and the longer exogenous repeat (118 CAG) from the exon 1 construct in both input and ChIP fractions. The lack of signal in the control IP (-Ab) shows the

specificity of the procedure (n = 3 biological replicates, n = 3 technical replicates).

(K) Quantification of DNA levels in ChIP fractions from FL and FAN1�/� U2OS cells. Primer pairs proximal to the CAG repeat (P1 and P2) and toward the 30 end of

HTT (HTT2) were used (mean ± SEM, n = 3 biological replicates, n = 3 technical replicates; P1: F(2,6) = 20.76, p = 0.002; P2: F(2,6) = 17.84, p = 0.003; HTT2:

F(2,6) = 23.56, p = 0.001 by one-way ANOVA with FDR correction of 5%). *p < 0.05; ***p < 0.001.
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relative to FAN1�/� (Figures S2D and S2E). FAN1 was not

observed in these IPs, confirming it does not interact directly

with MSH3. This suggests that FAN1 controls MMR complex as-

sembly by sequestering MLH1. In MLH1 pull-downs, FAN1,

MSH3, and PMS2 were recovered. The presence of FAN1 did

not affect PMS2 levels, suggesting it does not interfere with

MutLa complexing, but MSH3 levels were reduced in FAN1FL

relative to FAN1�/� samples (Figures 4E and S2F). Thus, FAN1
expression reduces the MLH1-MSH3 interaction. To show this

relationship exists in cells expressing endogenous proteins, we

knocked down FAN1 expression in HD iPSCs carrying 125

CAGs. Stable incorporation of small hairpin RNA (shRNA) target-

ing FAN1 reduced FAN1 protein levels by 90%–95% (Fig-

ure S2G), and medium spiny neurons (MSNs) derived from these

cells show increased CAG repeat expansion rate relative to con-

trol cells (data not shown). MLH1 IPs from MSN extracts show
Cell Reports 36, 109649, August 31, 2021 7
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FAN1 knockdown consistently increased the levels of MSH3 in

the IP fractions relative to the control cells (Figures 4F and

S2H). Thus, we conclude that like in U2OS cells, FAN1 expres-

sion reduces the MLH1-MSH3 interaction in HD MSNs.

The MLH1 MIP-box-interacting (S2) site contains several key

residues spread across the C-terminal domain. Mutation of

one of these, E669, in the human sequence has been shown to

disrupt MLH1 MIP-box interactions but leave MutL complex for-

mation unaffected (Dherin et al., 2009; Iyer et al., 2010). In the

U2OS system, myc-tagged FAN1FL binds strep-tagged MLH1

with wild-type (WT) sequence, but not the E669A mutant (Fig-

ure 4G), indicating the SPYF motif acts as a canonical MIP-

box. This supports our finding that FAN1 competes with MSH3

for the MLH1 S2 interaction site. Incubating HeLa nuclear ex-

tracts with a synthetic 60-mer FAN1 WT peptide surrounding

the SPYF motif reduced the levels of MSH3 co-immunoprecipi-

tating with MLH1 in a dose-dependent manner (Figures 4H and

S2I). Critically, peptides in which the MLH1 interaction site is

mutated did not affect the MLH1-MSH3 interaction (Figure 4H).

Taken together, our data support a model where FAN1 com-

petes with MSH3 for binding the MIP-box-interacting S2 domain

of MLH1. In human striatum and cortex, MLH1 and FAN1 are ex-

pressed at similar levels, both higher than the levels of MSH3

(Figure S3A), indicating FAN1 could be a major regulator of

MLH1-MSH3 interactions in vivo.

One consequence of this may be a reduction of MSH3-depen-

dent MLH1 recruitment to the CAG repeat. To assess this, we

performed a chromatin IP (ChIP) assay, involving anti-MLH1 IP

from FAN1�/� and FAN1FL U2OS cells. PCR across the HTT

CAG repeat identified the endogenous 20 CAG (‘‘short’’) and

exogenous 118 CAG repeat (‘‘long’’) in both samples (Figure 4I).

The presence of long and short repeat sequenceswas confirmed

by fragment analysis of the ChIP samples (Figure 4J). qRT-PCR

analysis showed there was less HTT CAG DNA in anti-MLH1

ChIP fractions from FAN1FL cells relative to FAN1�/� (Figure 4K).

This is consistent with FAN1 reducing MLH1’s interaction with

the CAG repeat.

To further explore the role of DNA repair genes implicated in

somatic instability, we analyzed FAN1�/�, FAN1FL, MLH1�/�,
and MSH3�/� U2OS cell lines for evidence of microsatellite

instability (MSI) over the course of our CAG repeat expansion

assays.

MutSb deficiency results in MSI at tetra- and dinucleotide re-

peats, whereas MutSa deficiency causes MSI at mono- and

dinucleotide repeats (Carethers, 2017). Although MLH1�/� cells

did not demonstrate CAG repeat expansion (Figure 4C), there

was instability at tetranucleotide marker D20S85 (otherwise

known as EMAST, or elevated microsatellite alterations at

selected tetranucleotide repeats), indicating MMR deficiency

(Figure S3B). Similarly, MSH3�/� cells showed MSI at several

tetranucleotide (MYCL1, D9S242, D20S82, and D20S85) and

dinucleotide loci (D8S321), indicating MutSb deficiency, but

the CAG repeat remained stable (Figures 4B, 4C, and S3B).

Manipulation of FAN1 did not affect MSI in the time course of

the assay (Figure S3B). Collectively, these data suggest that

FAN1 suppresses MMR activity by sequestering MLH1 away

from MSH3, thus preventing error-prone repair and CAG repeat

expansion.
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DISCUSSION

Recent genetic studies have shown somatic expansion of the

CAG repeat is the key pathogenic process driving HD onset

and progression. In this study, we investigated the interaction

of the HD genetic modifiers FAN1 and MLH1 and their role in

repeat instability in patient-derived cells, HD mouse models,

and a U2OS cell system stably expressing mHTT exon 1. We

demonstrated that a FAN1 SPYF motif (p.126-129) mediates its

binding to MLH1 and that this interaction protects against CAG

repeat expansion. We also demonstrated the nuclease domain

of FAN1 is involved in the protective effects of FAN1.

FAN1 N-terminal deletion constructs lacking the SPYF motif

fail to stabilize the CAG repeat; FAN11–120 accelerates repeat

expansion to the same rate as FAN1�/�, whereas longer con-

structs containing the SPYF motif, including FAN11–165, slow

the expansion rate significantly. Consistent with this, deleting

residues 120–140 (FAN1D120–140) from the FAN11–349 construct

reduces stabilization activity. SPYF mutations reduce FAN1-

MLH1 binding and accelerate repeat expansion. MLH1 binding,

and CAG stabilization activity correlate closely, indicating they

are mechanistically linked (Figures 2 and 3). The homology be-

tween the FAN1 SPYF andMSH3MIP-box supports our hypoth-

esis of competition for MLH1 binding. A MIP-box is found in

several MLH1 interaction partners, including MSH3, EXO1, and

NTG2, and it has been shown to interact with the C-terminal

S2 site ofMLH1, a region comprising several conserved residues

(Dherin et al., 2009; Iyer et al., 2010). Our crosslinking results

show that interactions between the FAN1 SPYF motif and

MLH1 are clustered at the unstructured central domain of

MLH1 and include crosslinks consistent with an interaction

near the S2 site. Introducing the E669A mutation into the S2

site of MLH1 abrogates FAN1 interaction, suggesting the SPYF

motif indeed acts as a MIP-box. FAN1 binding would therefore

sterically inhibit MLH1’s interaction with MSH3 and modulate

MutSb-driven MMR activity. The close associations among

FAN1, MLH1, and PMS2 demonstrate that FAN1 interacts func-

tionally with the MutLa complex. CoIP shows MLH3 also associ-

ates with FAN1 in U2OS cell extracts, suggesting the MutLg

complex may also interact with FAN1.

Consistent with previous data from mouse models, we find

that MLH1 or MSH3 knockout prevents CAG repeat expansion

(Figures 4A–4C), showing the absolute requirement of MutSb-

driven MMR for this process (Loupe et al., 2020; Pinto et al.,

2013; Tomé et al., 2013). Our data suggest that FAN1 competes

with MSH3 for MutLa (or MutLg) binding, preventing MMR-

driven CAG expansion. The potential significance to HD is shown

by the inhibitory effect of FAN1 expression on MLH1-MSH3 in-

teractions in HD MSNs and the similar expression levels of

MLH1 and FAN1 in human cortex and striatum, meaning FAN1

could be a major regulator of MLH1-MSH3 interactions in vivo.

Cells defective in MMR are resistant to 6TG toxicity and

display MSI (Swann et al., 1996). MLH1�/� U2OS cells are resis-

tant to 6TG and show instability at an EMAST locus in the

genome (Figures 4D, S2A, and S3B), indicating they have dysre-

gulated MMR activity. Interestingly, cells overexpressing FAN1

with an active SPYF domain showed significantly increased

resistance to 6TG, as compared to FAN1�/� cells (Figures 4D
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and S2A–S2C). These cells did not show alterations at EMAST

loci, which likely reflects the partial inhibition of MMR activity

and the relatively short time course of the assay. Importantly,

FAN1 constructs lacking an active SPYF motif did not protect

against 6TG toxicity, showing that MLH1-binding likely underlies

FAN1’s regulation of MMR activity. This is interesting as it sug-

gests FAN1 may be modulating both MutSa- and MutSb-driven

MMR activity (Stojic et al., 2004). Our data show that FAN1 se-

questers MLH1 and prevents interaction with MSH3 by

competing for the MIP-box-binding S2 site (Figures 4G and

4H). The lack of MSH2 and MSH6 in anti-FAN1 IP fractions con-

firms earlier reports that these proteins do not directly interact

(MacKay et al., 2010; Smogorzewska et al., 2010) and suggests

a similar mechanism may operate to regulate MutSa-MLH1 in-

teractions. MMR interactions with the FA pathway and FAN1 it-

self have been reported previously (Peng et al., 2014; Williams

et al., 2011; Rikitake et al., 2020), but direct inhibition of MMR,

mediated by MLH1 sequestration, has not. The physiological

significance of these findings needs further inquiry, but it is

evident from experiments in mouse models that FAN1 and

MLH1 interact genetically and play a crucial role in regulating so-

matic expansion, likely bymodulatingMMR activity (Loupe et al.,

2020).

Our data also indicate that the FAN1 nuclease domain contrib-

utes to its repeat stabilization activity, in accordance with

recent data in preprint on bioRxiv (McAllister et al., 2021). The

FAN1F129A/ D960A SPYF and nuclease double mutant demon-

strated that FAN1-MLH1 binding and nuclease activity have in-

dependent, but additive, repeat-stabilizing effects. Though the

p.D960A nuclease inactivation alone did not affect repeat insta-

bility (Goold et al., 2019; Figure 1J), the overexpression of FAN1

mutants in U2OS cells likely masked the subtle contribution of

the nuclease domain by sequestering most available MLH1

and shutting down error-prone MMR. In the absence of this

dominant activity, for example following SPYF mutation, the sta-

bilization activity of the nuclease domain can be observed. In this

scenario, FAN1’s nuclease activity could operate downstream of

MSH3-mediated recruitment of MLH1, regulating the repair pro-

cess to reduce errant CAG incorporation, possibly by acting

directly on the DNA. This proposal is supported by data showing

FAN1 binds directly to CAG repeat DNA (Goold et al., 2019; Kim

et al., 2020). Our data also suggest an intact FAN1 UBZ domain

is not required to stabilize the CAG repeat. Mutations that inac-

tivate ubiquitin binding do not affect the expansion rate but pre-

vent recruitment to DNA repair foci induced by MMC treatment.

This indicates recruitment by the ID2 FA complex is not required

for stabilization.

Limitations of the study and future directions
Further studies are needed to establish the processes modu-

lating the FAN1-MLH1 interaction. For instance, our FAN1 struc-

ture-function analyses were performed using cells overexpress-

ing exogenous FAN1. It will be important to confirm these

interactions in the context of endogenous FAN1 in human cells

and by creating FAN1 mouse models. Moreover, the precise

requirement for the FAN1 nuclease activity in this model will

need to be (re)assessed in more detail. It is compelling to spec-

ulate that, as for EXO1 (Guan et al., 2021), MLH1 could directly
regulate FAN1 nuclease activity to promote DNA resection.

A greater understanding of such processes will also be critical

for the development of new therapies.
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MacKay, C., Déclais, A.C., Lundin, C., Agostinho, A., Deans, A.J., MacArtney,

T.J., Hofmann, K., Gartner, A., West, S.C., Helleday, T., et al. (2010). Identifica-

tion of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by

monoubiquitinated FANCD2. Cell 142, 65–76.

Makowski, M.M., Willems, E., Jansen, P.W., and Vermeulen, M. (2016). Cross-

linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-

associated Protein Complexes Using Single Affinity Purification.Mol. Cell. Pro-

teomics 15, 854–865.

McAllister, B., Donaldson, J., Binda, C.S., and Powell, S. (2021). FAN1

nuclease activity affects CAG expansion and age at onset of Huntington’s dis-

ease. bioRxiv. https://doi.org/10.1101/2021.04.13.439716.

Mendes, M.L., Fischer, L., Chen, Z.A., Barbon, M., O’Reilly, F.J., Giese, S.H.,

Bohlke-Schneider, M., Belsom, A., Dau, T., Combe, C.W., et al. (2019). An in-

tegrated workflow for crosslinking mass spectrometry. Mol. Syst. Biol. 15,

e8994.

Miller, C.J., Kim, G.Y., Zhao, X., and Usdin, K. (2020). All three mammalian

MutL complexes are required for repeat expansion in a mouse cell model of

the Fragile X-related disorders. PLoS Genet. 16, e1008902.

Munoz, I.M., Szyniarowski, P., Toth, R., Rouse, J., and Lachaud, C. (2014).

Improved genome editing in human cell lines using the CRISPR method.

PLoS ONE 9, e109752.

Neueder, A., Landles, C., Ghosh, R., Howland, D., Myers, R.H., Faull, R.L.M.,

Tabrizi, S.J., and Bates, G.P. (2017). The pathogenic exon 1HTT protein is pro-

duced by incomplete splicing in Huntington’s disease patients. Sci. Rep. 7,

1307.

Peng, M., Xie, J., Ucher, A., Stavnezer, J., and Cantor, S.B. (2014). Crosstalk

between BRCA-Fanconi anemia and mismatch repair pathways prevents

MSH2-dependent aberrant DNA damage responses. EMBO J. 33, 1698–1712.

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,

Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The

http://refhub.elsevier.com/S2211-1247(21)01092-5/sref1
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref1
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref1
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref2
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref2
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref2
https://doi.org/10.1007/s11888-017-0352-y
https://doi.org/10.1007/s11888-017-0352-y
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref4
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref4
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref4
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref4
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref5
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref5
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref5
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref6
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref6
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref6
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref6
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref7
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref7
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref7
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref7
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref7
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref8
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref8
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref8
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref9
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref9
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref9
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref9
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref10
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref10
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref10
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref10
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref11
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref11
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref11
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref11
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref12
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref12
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref13
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref13
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref13
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref14
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref14
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref14
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref15
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref15
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref16
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref16
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref16
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref16
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref17
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref17
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref17
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref18
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref18
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref18
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref18
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref18
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref19
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref19
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref19
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref19
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref20
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref20
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref20
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref20
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref20
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref21
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref21
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref21
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref21
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref22
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref22
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref22
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref22
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref23
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref23
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref23
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref23
https://doi.org/10.1101/2021.04.13.439716
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref25
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref25
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref25
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref25
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref26
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref26
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref26
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref27
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref27
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref27
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref28
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref28
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref28
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref28
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref29
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref29
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref29
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref30
http://refhub.elsevier.com/S2211-1247(21)01092-5/sref30


Article
ll

OPEN ACCESS
PRIDE database and related tools and resources in 2019: improving support

for quantification data. Nucleic Acids Res. 47 (D1), D442–D450.

Pinto, R.M., Dragileva, E., Kirby, A., Lloret, A., Lopez, E., St Claire, J., Pani-

grahi, G.B., Hou, C., Holloway, K., Gillis, T., et al. (2013). Mismatch repair

genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice:

genome-wide and candidate approaches. PLoS Genet. 9, e1003930.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purifica-

tion, enrichment, pre-fractionation and storage of peptides for proteomics us-

ing StageTips. Nat. Protoc. 2, 1896–1906.

Rawlins, M.D., Wexler, N.S., Wexler, A.R., Tabrizi, S.J., Douglas, I., Evans,

S.J., and Smeeth, L. (2016). The Prevalence of Huntington’s Disease. Neuro-

epidemiology 46, 144–153.

Rikitake, M., Fujikane, R., Obayashi, Y., Oka, K., Ozaki, M., and Hidaka, M.

(2020). MLH1-mediated recruitment of FAN1 to chromatin for the induction

of apoptosis triggered by O6 -methylguanine. Genes Cells 25, 175–186.

Sathasivam, K., Neueder, A., Gipson, T.A., Landles, C., Benjamin, A.C., Bon-

dulich, M.K., Smith, D.L., Faull, R.L., Roos, R.A., Howland, D., et al. (2013).

Aberrant splicing of HTT generates the pathogenic exon 1 protein in Hunting-

ton disease. Proc. Natl. Acad. Sci. USA 110, 2366–2370.

Schilling, Judith, Griesche, Nadine, and Krauß, Sybille (2016). Mechanisms of

RNA-Induced Toxicity in Diseases Characterised by CAG Repeat Expansions.

Wiley Online Library. https://doi.org/10.1002/9780470015902.a0026464.
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Antibodies

FAN1 sheep polyclonal (human) CHDI Foundation N/A

FAN1 sheep polyclonal (mouse) MRC-PPU reagents S101D

MLH1 mouse monoclonal (human) BD Biosciences 554073: RRID:AB_395227

MSH3 mouse monoclonal BD Biosciences 611390; RRID:AB_398912

MSH2 rabbit Cell Signaling Technology 2017;RRID:AB_2235387

MSH6 mouse monoclonal BD Biosciences 610918;RRID:AB_398233

MLH1 mouse monoclonal (human/mouse) Abcam ab92312;RRID:AB_2049968

PMS2 Santa Cruz Biotechnology sc-25315; RRID:AB_628163

MLH3 Santa Cruz Biotechnology sc-25313; RRID:AB_627954

PCNA Cell Signaling Technology 13110; RRID:AB_2636979

GAPDH Santa Cruz Biotechnology sc-32233; RRID:AB_627679

GFP Santa Cruz Biotechnology sc-9996; RRID:AB_627695

Bacterial and virus strains

One Shot TOP10 E. coli ThermoFisher C4040

Chemicals, peptides, and recombinant proteins

FAN1 60-mer wild-type MLH1-interaction-defective

mutant peptides (amino acids 118-177)

GenScript N/A

Critical commercial assays

Thiazolyl Blue Tetrazolium Bromide (MTT) assay Sigma 34-000-1002

SYBR Green Master Mix ThermoFisher A25741

QuickChange XL kit Agilent 200516

QIAamp DNA Mini kit QIAGEN 51306

Deposited data

Mass spectrometry proteomics data ProteomeXchange PXD023221

Experimental models: Cell lines

U2OS FAN1�/� cells Prof Rouse University of Dundee) N/A

iPSC 125 CAG This study N/A

HEK293T ATCC N/A

Lymphoblastoid cells This study N/A

PheonixiAmpho ATCC N/A

Experimental models: Organisms/strains

zQ175 mice Charles River N/A

R6/2 mice Envigo, Netherlands N/A

Oligonucleotides

qRT-PCR primers pair 1 forward

CCGCTCAGGTTCTGCTTTTA,

Thermo N/A

pair 1 reverse GCCTTCATCAGCTTTTCCAG Thermo N/A

pair 2 forward CCAGAGCCCCATTCATTG Thermo N/A

pair 2 reverse GCCTTCATCAGCTTTTCCAG Thermo N/A

30 HTT forward TGCCTTTCGAAGTTGATGCA, Thermo N/A

30 HTT reverse TGCCACCACGAATTTCACAA). Thermo N/A

Fragment analysis Thermo N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

6-FAM-labeled forward primer:

AAGGCCTTCGAGTCCCTCAAGTCCTT .

IDT N/A

Reverse primer: CGGCTGAGGCAGCAGCGGCTGT IDT N/A

Recombinant DNA

pcDNA5.1 FRT/TO GFP FAN1 MRC-PPU reagents DU19495

pcDNA5.1 FRT/TO GFP FAN1 deletion constructs and mutants This study N/A

Software and algorithms

GraphPad Prism 9 Software, Inc, USA https://www.graphpad.com/scientific-

software/prism/

GeneMapper v6. software ThermoFisher A38888

Fragment analysis Custom R script This study https://caginstability.ml

xQuest/xProphet xQuest N/A

Other

GFP-Trap beads ChromoTek gtma-10

Protein G magnetic beads (Dynabeads) Thermo-Fisher Scientific 10003D
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof Sarah

J. Tabrizi (s.tabrizi@ucl.ac.uk).

Materials availability
iPSC 125 CAG were generated from peripheral blood mononuclear cells donated by a HD patient by reprogramming at Censo in

Edinburgh, UK. iPSCs were karyotypically stable, and whole genome sequencing of blood from the same individual and iPSCs

did not identify any clinically significant variants.

Data and code availability

d Mass spectrometry proteomics data are deposited at ProteomeXchange: PXD023221 (Username: reviewer_pxd023221@e-

bi.ac.uk - Password: lSFFWYxO).

d Fragment analysis software is available at https://caginstability.ml.

d Any additional information required to reanalyze the data reported in this work is available from the Lead Contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures were performed in accordance with the Animals (Scientific Procedures) Act 1986 andwere approved by the University

College London Ethical Review Process Committee. R6/2 mice were bred by backcrossing R6/2 males to C57BL/6JOlaHsd x CBA/

CaOlaHsd F1 females (B6CBAF1/OlaHsd, Envigo, Netherlands) and zQ175 mice were bred by backcrossing males to C57BL/6J fe-

males (Charles River). Mouse husbandry, health status, genotyping and CAG repeat sizing were as previously described (Landles

et al., 2020). For IP experiments, brains were from female mice. CAG size for the zQ175 was 206 (SD ± 3) and R6/2 was 182

(SD ± 1). Mice were sacrificed by a schedule 1 procedure at 6months of age (zQ175) or 12weeks of age (R6/2), brains were dissected

rapidly, tissues were snap frozen in liquid nitrogen and stored at �80�C.

METHOD DETAILS

Cell culture and manipulation
U2OS FAN1�/� cells were generated as previously described, featuring FRT sites introduced into the genome, enabling complemen-

tation with tetracycline-inducible FAN1 variants when co-transfected with Flp recombinase. This line was kindly gifted by Prof. John

Rouse (University of Dundee, Scotland). Introducing a lentiviralHTT exon 1 construct harboring 118 CAG repeats allows examination
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of the effects of different FAN1 activities/regions on repeat stability (Goold et al., 2019). U2OS cells were maintained in DMEM with

GlutaMAX, supplemented with 10% FBS and pen-strep. ICL repair assays were performed as described previously (Goold et al.,

2019). Cells were plated at 200 cells per well in a 96 well plate. The next day MMC was added to cells at increasing concentrations

for 16 h. Cells were washed into fresh media, cultured for 7-10 days until control cells were confluent. The proportion of live cells was

then assayed. Cell survival was expressed as a percentage of control untreated cells. For quantifying GFP-FAN1 foci, cells were

imaged using a fluorescent microscope and were considered positive with R 5 foci per nucleus.

Lymphoblastoid cells derived from the TRACK-HD cohort were cultured in RPMI medium supplemented with 15% fetal bovine

serum (FBS), 100 U/ml penicillin and 100 mg/ml streptomycin.

The shRNA hairpin targeting FAN1 (target sequence: GTAAGGCTCTTTCAACGTA) was subcloned into pSUPER.retro.Puro and

transfected into Phoenix Ampho packaging cells using Lipofectamine LTX. After 16 h, 8 mL fresh media was added. Cell media con-

taining mature retrovirus was harvested 48 h post-transfection. This was filtered and frozen at �80�C or used directly.

iPSC culture and manipulation
Stem cells were maintained in Essential E8 medium (ThermoFisher) on Thermo-Nunc plasticware coated with Geltrex (GIBCO)

diluted 1:50 in DMEM/F12 without glutamine. They were passaged by manual dissociation using 0.02% EDTA (GIBCO). MSN differ-

entiation was carried out as described (32) using Activin A to direct ganglionic/striatal fate. Media containing retrovirus encoding

shRNA hairpins targeting FAN1 or empty vector was mixed one to one with normal iPSC media and supplemented with polybrene

(8 mg/ml). This media was added to iPSC at �70% confluence and the cells were incubated for 16 h. Fresh media was added to the

cells for a further 48 h prior to selection. For this, themedia was supplemented with puromycin (1 mg/ml) and the cells weremonitored

ensuring regular media changes tominimize the number of dead cells in the culture. Colonies of transduced cells were detected after

2–3 weeks. Untreated cells were cultured alongside the selected cells and used as controls in subsequent experiments.

Immunoprecipitation, ChIP, cloning, SDM and CRISPR
ChIP analysis was performedwith the EZ-Magna ChIP AChromatin Immunoprecipitation Kit according to themanufacturer’s instruc-

tions. Chromatin was fragmented by 15 cycles of 30 s sonication in a Bioruptor apparatus at 4�C. Immunoprecipitation was done

overnight at 4�C using anti-MLH1 antibodies (BD Biosciences). DNA from ChIP and input fractions was quantified by SYBR (Thermo,

#A25741) qRT-PCR using primers targeting two regions proximal to the CAG repeat (pair 1 forward CCGCTCAGGTTCTGCTTTTA,

reverse GCCTTCATCAGCTTTTCCAG; pair 2 forward CCAGAGCCCCATTCATTG, reverse GCCTTCATCAGCTTTTCCAG), and one

distal, at the 30 end of HTT (forward TGCCTTTCGAAGTTGATGCA, reverse TGCCACCACGAATTTCACAA). DNA levels were quan-

tified relative to a genomic DNA standard. Results were expressed as percentage of the DNA levels in U2OS FAN1�/�ChIP fractions.

Cell extracts were prepared for SDS-polyacrylamide gel electrophoresis (PAGE) as described previously (Goold et al., 2011). Cells

were detached by trypsinisation, washed in media and centrifuged at 300 g for 5 min. Cell pellets were resuspended in PBS, trans-

ferred to 1.5 mL eppendorfs and centrifuged at 10,000 g for 1 min. Cell pellets were resuspended in IP buffer (20 mm Tris, pH 7.4,

150 mmNaCl, 1 mm EDTA, 1% Triton X-100 supplemented with Benzonase 2 U/ml and protease inhibitors) and incubated on ice for

20 min. Protein concentrations in the lysates were determined by Bio-Rad assay. Proteins were precipitated with cold methanol and

resuspended in SDS sample buffer to 2 mg/ml. The antibodies used were a FAN1 sheep polyclonal antibody (Goold et al., 2019);

MSH3 or MLH1 monoclonal antibodies (BD Biosciences, UK); PCNA and MSH2 (Cell Signaling Technology, Danvers, MA, USA);

and PMS2, GAPDH and GFP rabbit polyclonal antibodies (Santa Cruz Biotechnology, Dallas, TX, USA). To analyze mouse cortex

samples antibodies to FAN1 (sheep polyclonal S101D, available from DundeeMRC PP) andMLH1 (Abcam) were used. Immunoblots

were quantified with the Odyssey CLx Imaging System, (Lincoln, NE, USA) using Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), p38 MAP kinase and b-actin as loading controls. For immunoprecipitation (IP) analysis, washed cells were resuspended

in IP buffer and incubated on ice for 20 min. The cell extracts were centrifuged at 10,000 g for 2 min and the supernatant fraction was

used as input. Mouse cortex was homogenized in modified RIPA buffer (50mM Tris pH 7.4, 1mM EDTA, 1% Tx100, 0.5% sodium

deoxycholate and 0.1% SDS supplemented with Benzonase 2 U/ml and protease inhibitors) and incubated on ice for 20 min. The

sample was clarified by centrifugation at 20,000 g for 10 min at 4�C. Extracts were diluted 1 to 10 with IP buffer and used as input.

GFP-Trap beads or FAN1 sheep polyclonal and MSH3 or MLH1 monoclonal antibodies and protein G magnetic beads were used to

capture protein complexes. Beads were washed 3 times in IP buffer and eluted by heating in SDS sample buffer.

Peptide competition assay
Custom-designed FAN1 60-mer wild-type and MLH1-interaction-defective mutant peptides (amino acids 118-177) were purchased

from GenScript (A.P., unpublished data). 1 mg of HeLa nuclear extracts were incubated with or without peptides in 0.5 mL NP40

buffer for 2 h at 4�C with rotation. 1 mg of anti-MLH1 rabbit monoclonal antibody (D38G9, Cell Signaling) was added to the samples

and incubated overnight at 4�C with rotation. Protein A-Sepharose beads (CL4B Sigma) were equilibrated in NP40 buffer and 25 ml

bead slurry were then added to each sample and incubated for 2 h at 4�Cwith rotation. The beads were then washed three times with

NP40 buffer and once with 1xTEN100 buffer, boiled in SDS sample buffer and analyzed by western blotting using anti-MSH3 (H300,

sc-11441, Santa Cruz), anti-PMS2 (B3, sc-25315, Santa Cruz) and anti-MLH1 (ab92312, Abcam) antibodies.

FAN1 point mutations were generated by site-directedmutagenesis using theQuickChange XL kit according to themanufacturer’s

instructions (Agilent, CA, USA). The presence of the DNA base changes was confirmed by sequencing of the genomic DNA isolated
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from reconstituted cells. Deletion constructs were synthesized by GeneArt (Thermo Fisher) and subcloned into pcDNA5.1 FRT/TO

GFP FAN1 using BamH1, EcoRV and Not1 restriction sites. A biscistronic vector encoding myc-tagged FAN1 downstream of a strep

tagged MLH1 and separated by a P2A sequence was generated. The E669A substitution was generated by SDM. CRISPR guide

sequences encoded in pX458 vector were used to inactivate the MSH3 and MLH1 genes in U2OS cells. Knockout was confirmed

by western blot, sequencing and functional assays.

Somatic instability assay
DNA was extracted from samples by the QIAamp DNA Mini kit (QIAGEN, #51306) and the HTT locus amplified by PCR (6-FAM-

labeled F. primer: AAGGCCTTCGAGTCCCTCAAGTCCTT; R. primer: CGGCTGAGGCAGCAGCGGCTGT). The PCRproduct was de-

natured and analyzed by capillary electrophoresis, on an Applied Bioscience 3730XL DNA Analyzer (Thermo). Chromatographs were

aligned in GeneMapper v6. software (Thermo). To calculate modal CAG repeat length and instability index, GeneMapper data was

exported and analyzed with a custom R script, available at https://caginstability.ml with an inclusion threshold of 20% of modal peak

height and manually confirmed.

Microsatellite instability (MSI) analysis
DNA from ChIP samples was amplified in parallel by fluorescently labeled PCR at unstable tetranucleotide (D8S321, D20S82,

D9S242, MYCL1, D20S85), dinucleotide (D2S123, D5S346, D17S250, D18S64, D18S69), mononucleotide (NR-21, NR-24, BAT-

25, BAT-26, MONO-27, NR-27) and stable control pentanucleotide (Penta C and Penta D) loci. Fluorescently labeled fragments

were separated by capillary electrophoresis and the repeat length of each allele determined with a custom R script, as above.

Transcriptome analysis
Transcriptome analysis was performed according to Sjöstedt et al. (2020). Transcriptome datasets were downloaded from The

Human Protein Atlas database (https://www.proteinatlas.org/; accessed June, 2021). Data for FAN1, MLH1 and MSH3 was parsed

for the cortex and striatum brain regions and graphs were generated using GraphPad Prism (v.9).

Mass-spectrometry
Lymphoblastoid cells, expressing endogenous levels of FAN1, and HEK293T cells transiently overexpressing myc-FAN1, were lysed

10min on ice using PBS, 1%NP-40, Benzonase and protease inhibitors and centrifuged 5min at 20,000 g to remove cell debris. Anti-

c-myc magnetic beads were incubated 2 h with HEK cell lysates. A sheep FAN1 antibody (Goold et al., 2019) was incubated for 1 h

with LB cell lysate and protein Gmagnetic beads were then added to the mix and incubated for an additional 1 h. Four washing steps

were performed using lysis buffer. Crosslinking was done using 1mMBS3 d0/d12 for 30min at 37�C. The reaction was quenched for

20 min at 37�C using ammonium bicarbonate at a final concentration of 100 mM. Prior to digestion, beads were resuspended in a

buffer containing 2MUrea, 100mM ammonium bicarbonate, 10mMDTT and denatured for 20min at room temperature under agita-

tion (1000 rpms) (Makowski et al., 2016). Samples were then alkylated, at room temperature and in the dark, using a final concen-

tration of 50 mM iodoacetamide for 20 min, and diluted with 50 mM ammonium bicarbonate solution to obtain a final concentration

of urea below 1 M. Digestion was performed using sequencing grade trypsin overnight at 37�C. Samples were fractionated in 3 frac-

tions using C18-SCX StageTips prepared in-house as previously described (Rappsilber et al., 2007) with the following concentrations

of ammonium acetate: 200 mM, 1 M and 1.5 M. Prior to mass spectrometry analysis, samples were further processed using C18

StageTips.

Crosslinked peptide mixtures were resuspended in 3% acetonitrile, 0.1% formic acid and were analyzed by nano-LC-MS/MS us-

ing an Acquity M-Class system coupled to a Synapt G2Si mass spectrometer (Waters Corporation). Samples were loaded on the

system and desalted by a reversed-phase Symmetry C18 trap column (180 mm internal diameter, 20 mm length, 5 mm particle

size, Waters Corporation) at a flow rate of 8 mL/min for 3min in 99% solvent A (Solvent A: MS-grade water, 0.1% formic acid – solvent

B: Acetonitrile, 0.1% formic acid). Peptides were then separated using a linear gradient (0.3 mL/min, 35�C; 3%–60% solvent B over

90 min) using a BEH130 C18 nanocolumn (75 mm internal diameter, 400 mm length, 1.7 mm particle size, Waters Corporation). The

mass spectrometer was operated in data-dependent acquisition mode using a mass range of 50-2000 Th for both MS and MS/MS

scans and scan times of 0.2 s and 0.3 s respectively. The tenmost intense precursor ions with a charge state between 3+ and 6+were

selected for fragmentation using the ‘mid’ collision energy ramp as described in James et al. (2019). Dynamic exclusion was used

with a 30 s window to prevent repeated selection of peptides.

Raw mass spectrometry files were converted to MGF (Mascot Generic Format) using PLGS (v3.0.2) using slow deisotoping algo-

rithm and automatic denoising for bothMSandMS/MSdata.MGF fileswere further converted tomzXMLwithMSConvert (Chambers

et al., 2012) using 32-bit binary encryption.

Crosslinking identification was performed using xQuest/xProphet (Leitner et al., 2014). Searches were performed using a database

containing the sequences of FAN1,MLH1, PMS2, FANCD2 and FANC1 using a search tolerance of 20 ppm. The amino acids involved

in crosslinking reactions parameter was set to K, S, T, Y and N-terminal amino acid. Up to three missed cleavages were allowed,

carbamidomethylation of cysteine was set as a fixed modification and oxidation of methionine was set as a variable modification.

Results were validated using xProphet with a 5% FDR.
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Further validation of the crosslinks was performed by extracting the highest-ranking identification from the xProphet xml output,

using a modified version of Validate XL (James et al., 2019), and only considering crosslinks scoring higher than 20. For these cross-

links, the presence of light and heavy crosslinked doublets in the RAWMS files was confirmed. Automated generation of tables and

MGF files was done using an in-house Python script to allow crosslinking map representation using xiVIEW (Mendes et al., 2019).

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

et al., 2019) partner repository with the dataset identifier PXD023221 (Username: reviewer_pxd023221@ebi.ac.uk - Password:

lSFFWYxO). Code used for data processing is available at https://github.com/tmenneteau/xq-processing.

QUANTIFICATION AND STATISTICAL ANALYSIS

CAG expansion time courses were analyzed by linear regression in GraphPad Prism (v9) and slopes statistically compared by one-

way ANOVA. Multiple comparisons were corrected for with a False Discovery Rate (FDR) of 5%. Area under curve (AUC) data were

compared by a one-way ANOVA with an FDR correction of 5%. Significance was defined using FDR-corrected p values. Data be-

tween two groupswere analyzed by independent-samples t tests. *p < 0.05, ** p < 0.01, ***p < 0.001, ns = non-significant. The Brown-

Forsythe test was routinely used to check for homogeneity of variance. All statistical information can be found within figure legends.

For conservation analysis, the human FAN1 sequence was aligned in HomoloGene (NCBI) with common model species and visu-

alized with SnapGene software.
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