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Background: Lethal genes have not been systematically analyzed in breast cancer
which may have significant prognostic value. The current study aims to investigate vital
genes related to cell viability by analyzing the CRISPR-cas9 screening data, which may
provide novel therapeutic target for patients.

Methods: Genes differentially expressed between tumor and normal tissue from
the Cancer Genome Atlas (TCGA) and genes related to cell viability by CRISPR-
cas9 screening from Depmap (Cancer Dependency Map) were overlapped. Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis was
conducted to identify which pathways of overlapped genes were enriched. GSE21653
set was randomized into training and internal validation dataset at a ratio of 3:1, and
external validation was performed in GSE20685 set. The least absolute shrinkage and
selection operator (LASSO) regression was used to construct a signature to predict
recurrence-free survival (RFS) of breast cancer patients. Univariate and multivariate Cox
regression were used to evaluate the prognostic value of this signature. Differentially
expressed genes (DEGs) between high-risk and low-risk patients were then analyzed to
identify the main pathways regulated by this signature. Weighted correlation network
analysis (WGCNA) was conducted to recognize modules correlated with high risk.
Enrichment analysis was then used to identify pathways regulated by genes shared
in the overlapped genes, DEGs, and WGCNA.

Results: A total of 86 oncogenes were upregulated in TCGA database and overlapped
with lethal genes in Depmap database, which were enriched in cell cycle pathway. A total
of 51 genes were included in the gene signature based on LASSO regression, and the
median risk score of 2.36 was used as cut-off to separate low-risk patients from high-
risk patients. High-risk patients showed worse RFS compared with low-risk patients
in internal training, internal validation, and external validation dataset. Time-dependent
receiver operating characteristic curves of 3 and 5 years indicated that risk score was
superior to tumor stage, age, and PAM50 in both entire and external validation datasets.
Cell cycle was the main different pathway between the high-risk and low-risk groups.
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Meanwhile, cell cycle was also the main pathway enriched in the 25 genes which were
shared among 86 genes, DEGs, and WGCNA.

Conclusion: Cell cycle pathway, identified by CRISPR-cas9 screening, was a key
pathway regulating cell viability, which has significant prognostic values and can serve
as a new target for breast cancer patient treatment.

Keywords: CRISPR-cas9 screening, breast cancer, cell cycle, signature, cell viability

INTRODUCTION

Breast cancer, with the highest incidence rate among female
cancer, is the second leading cause of cancer-related death and
poses a great threat to women’s health (Siegel et al., 2020).
It accounts for 30% of all new cases and is responsible for
15% of cancer deaths in women. Despite that the prognosis of
patients has been improving over the past few years, the complex
biological behaviors of breast cancer still hamper the progress in
clinical treatment. Thus, understanding the specific vulnerability
of breast carcinoma is of great importance.

Currently, CRISPR-cas9 screening is emerging as a powerful
tool for precise medicine (Doudna and Charpentier, 2014; Kurata
et al., 2018). Combining cas9 with pooled guide RNA libraries
facilitates screening of genes that contribute to specific biologic
phenotypes and diseases in a high-throughput way (Joung
et al., 2017). This “phenotype-to-genotype” approach includes
modifying expression of genes, selecting cells with a phenotype
of interest, and sequencing the perturbation of interest, which
allows for discovering genes related to cell viability (Schuster
et al., 2019). Meanwhile, large-scale loss-of-function screening for
cancer dependences have been performed in a variety of well-
characterized cancer cell lines to assess the effect of single-gene
knockout on cell viability (Meyers et al., 2017; Tsherniak et al.,
2017). These data were deposited in the Cancer Dependence Map
(DepMap) website.

Aberrant cell cycle is a hallmark of cancer (Hanahan and
Weinberg, 2011). The evolution of cell cycle is conservative.
Checkpoints have evolved to ensure that cell cycle progress
is under sequential activation (Kastan and Bartek, 2004;
Strzyz, 2016). Under the stimulation of mitogenic signal,
cyclin-dependent kinases (CDKs) associate with cyclins and
phosphorylate intracellular proteins that orchestrate cell cycle
progress in a well-organized way (Malumbres and Barbacid,
2009; Malumbres, 2014). In cancer cells, aberrant signals are
developed and promote the activation of CDK–cyclin complex.
Deregulation of the cell cycle engine eventually leads to
uncontrolled cell proliferation and genomic instability in cancer.
Thus, the therapeutic potential of targeting the cell cycle
has been increasingly concerned (Lim and Kaldis, 2013). In
breast cancer, the application of CDK4/6 inhibitor transformed
treatment landscape in estrogen (ER)-positive human epidermal
growth factor receptor-2 (HER2) negative breast cancer. The
improvement in prognosis indicated that targeting cell cycle is an
essential way to cancer treatment (Ingham and Schwartz, 2017;
Slamon et al., 2018; Tripathy et al., 2018).

Biological process involving cell viability is complex. However,
cell vulnerability of breast cancer has not been systematically
researched. Meanwhile, pathways and the prognostic significance
of these genes have never been detailed. In the current study,
we aimed to identify genes differentially expressed in tumor
tissues and contributed to cell viability. Using these genes, a
prediction model with prognostic significance was constructed
and validated. The pathways and biological processes regulated
by these genes were also evaluated.

MATERIALS AND METHODS

Identification of Viability Vulnerable
Dependence scores of breast cancer cell lines were downloaded
from the Depmap dataset1, and this is the result from a series
of loss-of-function genomic screening in different cell lines.
Dependence score was calculated by CERES algorithm to identify
genes essential to proliferation and survival (Meyers et al., 2017).
A negative score of a gene indicates that knocking out of the
gene inhibits the survival of a cell line, whereas a positive score
indicates that knocking out of the gene promotes the survival
and proliferation. Cut-offs of 0.5 and −0.5 were to define growth-
suppressing genes and growth-promoting genes.

Read counts of breast cancer were downloaded from TCGA
datasets2. Differentially expressed genes between tumor and
normal patients were calculated based on the negative binomial
distribution using DESeq2 package. Adjusted p value <0.05 and
absolute fold change greater than 2 were used as cut-off to select
differentially expressed genes. Growth-suppressing genes from
Depmap were overlapped with downregulated genes from the
TCGA dataset, and growth-promoting genes from Depmap were
overlapped with upregulated genes from the TCGA dataset to
select genes for further analysis.

Data Processing
Raw data of GSE20685 and GSE21653 were downloaded from
the GEO database3. These two datasets were both from [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
platform. The raw data of GSE20685 and GSE21653 were
normalized by gcrma algorithm simultaneously. The probe ID
was converted into gene symbol using the annotation platform.

1https://depmap.org/portal/download/
2https://portal.gdc.cancer.gov/
3http://www.ncbi.nlm.nih.gov/geo/
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When one probe was matched to the same gene, average gene
expression of this gene was calculated.

LASSO Regression Analysis
Patients from GSE21653 set were randomized into internal
training dataset and internal validation dataset at a ratio of 3:1.
The least absolute shrinkage and selection operator (LASSO)

model was used to remove genes of high correlation and a
risk model was constructed (Tibshirani, 1997; Zhou et al.,
2019). A risk score formula was established by integrating gene
expression value weighted by their LASSO Cox coefficients. R
package “glmnet” in R 3.5.2 was used to perform LASSO analysis
(Ternès et al., 2016). Univariate and multivariate Cox regression
analysis was used to assess the prognostic value of risk score in

FIGURE 1 | Flowchart of the entire analysis.

FIGURE 2 | Identification of oncogenes from TCGA and Depmap dataset. (A) Overlapped genes between TCGA and Depmap dataset. (B) The dependence score
of 86 oncogenes in breast cancer cell lines. (C) The differential expression of the 86 genes in TCGA dataset between tumor and normal. (D) The PPI network of the
86 genes. (E) KEGG analysis of 86 genes. (F) GO analysis of 86 genes.
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entire dataset and external validation dataset. Time-dependent
receiver operating characteristic (tROC) curves were used to
compare the prediction accuracy of risk score with traditional
clinicopathological parameters. “survivalROC” package was used
to plot tROC curve and calculate Area under curve (AUC).

Differentially Expressed Genes
In dataset GSE21653, limma package was used to calculate
differentially expressed genes between high-risk group and low-
risk group patients. P value <0.05 and absolute fold change
greater than 1.5 were defined as DEGs.

Enrichment Analysis
Gene Ontology (GO) was used to annotate biological processes,
molecular functions, and cellular components of genes. Kyoto
Encyclopedia of Genes and Genomes (KEGG) was used to
annotate the gene pathways (Gene Ontology Consortium, 2015;
Kanehisa et al., 2017). GO and KEGG analysis was performed
using clusterProfiler package (Yu et al., 2012). P value <0.05 was
considered as significant pathways enriched.

PPI Network Construction and Hub Gene
Identification
STRING4 website was used to discover known and predicted
protein–protein interactions, as well as to construct a PPI

4http://string-db.org

network. The Cytoscape software was then employed to visualize
the interactive relationship of the overlapped genes.

Weighted Correlation Network Analysis
Weighted Correlation Network Analysis (WGCNA) was
performed to find modules of highly correlated genes using
WGCNA package (Langfelder and Horvath, 2008). A One-
step network construction was used to construct network
and modules were identified. Eigengenes were correlated
with external traits to identify modules that are significantly
associated with the measured clinical traits. A scatterplot of Gene
Significance (GS) versus Module Membership (MM) in different
modules was plotted to show the correlation of GS and MM.

Statistical Analysis
Survival analysis was evaluated using Kaplan–Meier analysis
with the log-rank test. P value <0.05 was defined as statistically
significant. The time-dependent AUC value was calculated by the
survivalROC package.

RESULTS

Identification of Functional Genomic
Genes in Breast Cancer
The flowchart of analysis is shown in Figure 1. A total of
28 cell lines of breast cancer have dependence scores on the

FIGURE 3 | Kaplan–Meier plot and AUC curve of discovery and validation cohort based on gene signature. (A) Kaplan–Meier plot of the internal train cohort.
(B) Kaplan–Meier plot of the internal validation cohort. (C) AUC area of tROC curve of 3-year survival. (D) Kaplan–Meier plot of the entire cohort. (E) Kaplan–Meier
plot of the external validation cohort. (F) AUC area of tROC curve of 5-year survival.
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Depmap website. Genes with dependence score less than −0.5
in all breast cancer cell lines were overlapped with upregulated
genes in TCGA and 86 genes were discovered. Meanwhile, genes
with dependence score greater than 0.5 in all breast cancer
cell lines were overlapped with downregulated genes in TCGA
and none of the genes were overlapped (Figure 2A). These 86
genes were defined as oncogenes. The dependence scores of
oncogenes are shown in Figure 2B and expression of these genes
in TCGA are shown in Figure 2C. PPI network revealed there
contains 1117 interactions among these proteins (Figure 2D).
Overall, the mutation rate of these genes was low, and
INTS7 had the highest mutation rate of 0.8% (Supplementary
Figure 1). KEGG analysis demonstrated that these oncogenes
were enriched in pathways including cell cycle, DNA replication,
oocyte meiosis, and nucleotide excision repair gene (Figure 2E).
In GO analysis, the top three pathways enriched were ATP
binding, adenyl ribonucleotide binding, and adenyl nucleotide
binding (Figure 2F).

Gene Signature Construction and
Validation
A total of 51 genes were screened out by Lasso regression
model, and a risk formula was constructed. The coefficients
are listed in Supplementary Table 1. The median risk score

2.36 was used as cut-off value to divide patients into high-
risk and low-risk group in internal training dataset and the
same cut-off was also used in validation dataset. Patients from
the high-risk group had significantly shorter median RFS of
5.52 years compared with patients from the low-risk group
in internal training dataset (Figure 3A, p < 0.001, HR: 2.88,
95% CI: 1.72–4.82). This was validated in internal and external
validation dataset. As expected, patients with high risk had
poorer RFS compared with patients in low-risk group in internal
validation dataset (Figure 3B, p< 0.001, HR: 10.54, 95% CI:1.38–
80.79), entire train dataset (Figure 3D, p < 0.001, HR: 3.28,
95% CI: 2.00–5.36), and external validation dataset (Figure 3E,
p < 0.001, HR: 8.39, 95% CI: 2.65–26.48). Cut-off calculated by
ROC curve was used and 2.68 was used as a cut-off to separate
patients into different risks. Similarly, both in the entire dataset
and validation dataset, there was statistical significance between
high-risk and low-risk groups (Supplementary Figure 2). For
3-year tROC curves, AUC area was 0.682, 0.812, 0.702, and
0.756 for internal train, internal validation, entire train, and
external validation dataset (Figure 3C). For 5-year tROC curves,
AUC area was 0.767, 0.761,0.764, and 0.733 for internal train,
internal validation, entire train, and external validation dataset,
respectively (Figure 3F). The distribution of risk scores of
different risk groups are shown in risk plots (Supplementary
Figure 3). After adjustment of clinicopathological variables, Cox

FIGURE 4 | Univariate and multivariate Cox regression analyses of the entire train and validation cohort. (A) Univariate Cox regression analysis in the entire cohort.
(B) Parameters significant in univariate Cox regression were included in multivariate Cox regression analysis in the entire cohort. (C) Univariate Cox regression
analysis in the external validation cohort. (D) Parameters significant in univariate Cox regression were included in multivariate Cox regression analysis in external
validation cohort.
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regression demonstrated that the risk score was an independent
prognostic signature in the entire train set (Figures 4A,B,
p < 0.001, HR: 3.24, 95% CI: 2.22–4.74) and external validation
set (Figures 4C,D, p < 0.001, HR: 3.18, 95% CI: 2.18–4.66).
Stratified analysis suggested that the signature was clinically
significant in stage I + II, stage III + IV cases (Figures 5A–
D). In both luminal and HER2 amplification groups, RFS of the
high-risk group was also worse than that of the low-risk group
in validation dataset (Supplementary Figure 4, luminal group:
p < 0.0002, HER2 amplification group: p = 0.02). A total of 45
patients were included in the basal group and only one patient
was included in the low-risk group, so basal cohort with more
patients were needed to validate the performance of this signature
(p = 0.6). Stratified analysis was done in dataset GSE20685
between patients with chemotherapy and without chemotherapy.
In patients receiving chemotherapy, RFS of high-risk group was
worse than that of low-risk group (Supplementary Figure 5,
p < 0.0003). In patients without therapy, the RFS of high-risk
group was worse than that of low-risk group, but there was

no statistical significance (p = 0.1). Meanwhile, our signature
outperformed age, stage, and PAM50 subtype in both datasets
(Figure 6). For 3-year tROC curves, AUC area was 0.693, 0.538,
0.479, and 0.475 for risk score, age, stage, and PAM50 subtype in
entire dataset (Figure 6A). For 5-year tROC curves, AUC area
was 0.754, 0.521, 0.450, and 0.456 for risk score, age, stage, and
PAM50 subtype in entire dataset (Figure 6B). For 3-year tROC
curves, AUC area was 0.756, 0.440, 0.721, and 0.596 for risk score,
age, stage, and PAM50 subtype in external validation dataset
(Figure 6C). For 5-year tROC curves, AUC area was 0.733, 0.410,
0.697, and 0.566 for risk score, age, stage, and PAM50 subtype in
external validation dataset (Figure 6D).

DEGs Between High-Risk and Low-Risk
Groups
Differentially expressed genes were calculated between high-risk
and low-risk groups in GSE21653 dataset. A total of 398 were
identified, among which 285 genes were upregulated and 113

FIGURE 5 | Kaplan–Meier plot of risk score in different subtypes. Kaplan–Meier plot of risk score in stage I–II (A) and stage III–IV (B) in the entire dataset.
Kaplan–Meier plot of risk score in stage I–II (C) and stage III–IV (D) in external validation dataset.
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FIGURE 6 | AUCs of tROC curve for clinicopathologic parameters and risk score. (A) tROC curves of 3-year survival for clinicopathologic parameters and risk score
in the entire train dataset. (B) tROC curves of 5-year survival for clinicopathologic parameters and risk score in the entire train dataset. (C) tROC curves of 3-year
survival for clinicopathologic parameters and risk score in the validation dataset. (D) tROC curves of 5-year survival for clinicopathologic parameters and risk score in
the validation dataset.

genes were downregulated (Figures 7A,B). Downregulated genes
were only enriched in PPAR signaling pathway (Figure 7C),
whereas upregulated genes were involved in cell cycle, oocyte
meiosis, chemokine signaling pathway in KEGG analysis, and
in identical protein binding, tubulin binding, and microtubule
binding in GO analysis (Figures 7D,E). Interestingly, both in
our signature and DEGs, cell cycle and oocyte meiosis were
both enriched, indicating cell cycle was an important way
regulating cell viability.

WGCNA
WGCNA was performed in GSE21653 dataset to identify hub
genes. Soft threshold power of 5 was selected to ensure a
scale-free network (Figure 8A). A total of 37 clusters were
clustered using cut height 0.25 (Figure 8B). Several modules
were correlated with high-risk group (Figure 8C), including
light yellow module (correlation parameter = 0.68, p < 0.001),
red module (correlation parameter = 0.5, p < 0.001), and
brown module (correlation parameter = 0.56, p < 0.001,
Figures 8D–F). Upregulated DEGs from GSE21653 dataset,
genes from three modules, and 86 oncogenes were overlapped
and 25 genes were shared in these three groups (Figure 8G).

Enrichment analysis showed that cell cycle, progesterone-
mediated oocyte maturation, and oocyte meiosis pathways
were the top three pathways (Figure 8H). In GO analysis,
the top three items enriched in these 25 genes were enzyme
binding, ATP binding, and adenyl ribonucleotide binding
(Figure 8I). Of the 25 overlapped genes, 9 genes (CDC6,
MCM2, MCM4, CDC20, CDK1, BUB1B, PLK1, CCNA2, GINS1)
were enriched in cell cycle pathway. Similarly, upregulated
DEGs from GSE21653 dataset, genes from three modules,
and 51 oncogenes were overlapped and 25 genes were shared
in these three groups (Supplementary Figure 6). A total
of 13 genes were overlapped and cell cycle was still the
main pathway regulated by these 13 genes. Six genes (CDC6
MCM4 CDK1 BUB1B PLK1 CCNA2) were enriched in
cell cycle pathway.

DISCUSSION

Breast cancer poses a great threat to women’s health. Reliable
targeted therapy provides prospects for improving the survival of
breast cancer. The CRISPR-cas9 screening serves as a cornerstone
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FIGURE 7 | Difference between high risk and low risk. (A) Differentially expressed genes in high-risk and low-risk group. (B) Heatmap of differentially expressed
genes in high-risk and low-risk group. (C) KEGG analysis of downregulated genes. (D) KEGG analysis of upregulated genes. (E) GO analysis of upregulated genes.

and is an outstanding way to systematically identify synthetic-
lethal genes (Dhanjal et al., 2017). In the current study, we
integrated CRISPR-cas9 screening results of breast cancer from
DepMap with TCGA dataset, and identified 86 oncogenes that
were overexpressed and have a lethal effect on breast cancer.
Enrichment analysis revealed that these genes were enriched in
cell cycle. Moreover, we established a gene signature screened
from 86 genes, and this signature could divide patients into high
risk and low risk. Interestingly, cell cycle pathway also ranked
the first when we analyzed DEGs between high-risk and low-
risk group and genes. Overlap among the 86 oncogenes, DEGs,
and WGCNA analysis highlight the cell cycle pathways as well,
indicating its importance to breast cancer viability.

In our study, 9 cell cycle related genes mainly involved in G1/S
and G2/M phases, and researches on mechanism of these genes
have been conducted. MCM2 and MCM4 genes are members
of minichromosome maintenance (MCM) protein complex. As
a crucial element of the pre-replication complex (pre-RC), they
regulate the helicase activity and the formation of the replication
forks. Meanwhile, they play an important role in the initiation
of DNA replication and unwinding of the DNA strands in the
G1 to S transition phase (Forsburg, 2004). High expression of
MCM2 was associated with poor survival in breast cancer patients
(Samad et al., 2020). In our analysis, we identified that MCM2

and MCM4 are vital to the survival of breast cancer. CDC6 plays
an important role in DNA replication and cells could not initiate
DNA replication without CDC6 (Borlado and Méndez, 2008).
CDC6 helps MCM proteins load onto origins of replication and
promotes them to associate with the chromatin. GINS1 also
had a vital effect on G1/S transition by tightly interacting with
DNA polymerase ε (Pol ε) and participating in DNA replication
(Takayama et al., 2003). The rest of the genes mainly had
critical function in G2 to M transition. CDK1 is one of the
most important proteins that regulate cell cycle progression via
associating with cyclin B1 and promote G2 to M transition. High
expression of CDK1 was reported in breast cancer compared
with normal tissue (Barrett et al., 2002). CDC20 is co-activator
of anaphase promoting complex (APC) which is a complex E3
ubiquitin ligase (Foe and Toczyski, 2011). APCCdc20 destructs
critical cell cycle regulators such as cyclin B, allowing cells to
progress from the metaphase to anaphase transition (Kim and
Yu, 2011). CDC20 was reported higher expressed in breast cancer
and functions as an oncogene, which was also validated in our
analysis (Yuan et al., 2006). BUB1B, which blocks the activation
of APCCdc20, is the central component of the mitotic checkpoint
for spindle assembly, and it was proved overexpressed in breast
cancer and acts as a oncogene (Koyuncu et al., 2020). PLK1,
as a member of polo-like kinase family, is involved in mitotic
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FIGURE 8 | WGCNA analysis related with high risk. (A) Analysis of scale-free fit index for various soft threshold powers. (B) Co-expression network modules for
mRNA. (C) Heatmap of trait correlation with tamoxifen resistance. (D) Scatter plots of module membership in red module and gene significance. (E) Scatter plots of
module membership in brown module and gene significance. (F) Scatter plots of module membership in light yellow module and gene significance. (G) Venn
diagram of overlapped genes among 86 oncogenes, DEGs between high-risk and low-risk patients and WGCNA modules. (H) KEGG analysis of overlapped genes.
(I) GO analysis of overlapped genes.

entry, centrosome maturation, spindle assembly, and cytokinesis
process (Golsteyn et al., 1995; García et al., 2020). Results from
CRISPR-cas9 screening suggested that knocking out these genes
leads to cell death in breast cancer of all subtypes, and inhibitors
targeting these genes may be potential therapeutic strategies
for breast cancer. Furthermore, upregulation of these genes in
breast cancer indicates that they may be good candidates for
drug development.

Previous studies constructed a prognostic signature mainly
based on the gene expression, while we integrated functional
genomic screening with gene expression in the current study.
Our gene signature could divide patients into high risk and low
risk regardless of the tumor stage. For patients with high risk,

appropriate target agent may be prescribed to improve patients’
outcome. The prediction accuracy of our signature was better
than classic clinicopathologic parameters such as tumor stage
or PAM50 subtype. This signature was the only independent
prognostic parameter in multivariate analysis, although subtypes
and stage were widely used in clinical practice.

In conclusion, our research systematically studied genes
vulnerable to cell viability and cell cycle is a vital pathway to
this process. Functional genomic screening was integrated into
our gene signature to predict the prognosis of breast cancer,
which outperformed classical clinicopathological parameters in
prediction accuracy. These cell cycle–related genes may serve as
targets for breast cancer therapy.
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