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ABSTRACT: A Perspective of work in our laboratory on the
examination of biologically active compounds, especially natural
products, is presented. In the context of individual programs and
along with a summary of our work, selected cases are presented
that illustrate the impact single atom changes can have on the
biological properties of the compounds. The examples were
chosen to highlight single heavy atom changes that improve
activity, rather than those that involve informative alterations that
reduce or abolish activity. The examples were also chosen to
illustrate that the impact of such single-atom changes can originate
from steric, electronic, conformational, or H-bonding effects, from
changes in functional reactivity, from fundamental intermolecular
interactions with a biological target, from introduction of a new or
altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the
examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were
introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the
structure.

■ INTRODUCTION
Some years ago, I was asked to write a Perspective on our work.
Although the Perspective is long overdue, variations on the
topic highlighted by the title were digested for some time as a
consequence of the invitation. Every individual that examines
the interaction of a small molecule with its biological target,
including proteins and nucleic acids, asks or faces the question
every day on what impact a single atom can have. Whether it is
in the context of drug discovery and the design of small
molecules that selectively bind a therapeutic target, the
delineation of a molecular mechanism of action of a natural
product or chemical probe, the examination of signal
transduction by endogenous signaling molecules, or the study
of the interaction of substrates or inhibitors with an enzyme,
the identification of structural features responsible for
intermolecular ligand binding affinity and selectivity is
fundamental to understanding and advancing science at the
chemistry−biology interface.1−4 For chemists and medicinal
chemists, the impact of not just the molecule, a substructure in
the molecule, or even a substituent or functional group within
the molecule, but the impact and nuanced role of even an
individual atom in the molecule is fascinating, often exhibiting a
remarkable influence.5 Even in fields not directly related to
understanding the behavior of biologically active molecules,
including reagent design, ligand development, catalysis,
molecular recognition, complex molecule total synthesis,
material science, and many others, the decisive role a single
atom in a molecule can play is well appreciated. All those
working in such fields will have their own favorite examples,

whether from their own work or from that of others. At the risk
of disappointing many, I have focused only on examples drawn
from our own work. Hopefully no one will mistake the focus on
our examples as an effort to take credit for countless other
observations that lie at the heart of so much of what we all do
and enjoy. Rather, it is meant to highlight the intricate details
and occasional triumphs in molecular level design for those not
intimately involved. In our efforts, the work has been conducted
in studies typically designed to answer fundamental questions
on ligand−target interactions and have been a part of our
program since my career began. Thus, along with highlights of
advances made in many of our long-standing programs, the
Perspective also focuses on examples within this work where a
single atom change exhibited a productive and remarkable
impact.
Our work most often has been conducted with biologically

active natural products.6−11 The cases presented constitute the
addition, removal, or exchange of a single heavy atom. In many
instances, the changes may entail more than one atom (e.g.,
NH vs O), but for the sake of simplicity and at the expense of
accuracy, I will refer to such changes as single heavy atom
changes. The examples were chosen to illustrate that the
productive impact of single heavy atom changes can originate
from steric, electronic, conformational, or H-bonding effects,
from changes in intrinsic reactivity, from intermolecular
interactions with a protein or nucleic acid target, from
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introduction of a new functionalization site, or from effects as
benign as altering stability or physical properties. The examples
highlighted herein also represent single heavy atom changes
that were found to substantially improve the activity, rather
than those that entail informative alterations that reduced or
abolished activity. Natural products display a constellation of
properties and multiple functions integrated into a compact,
highly functionalized molecule. This is in contrast to other
biomolecules like proteins where separate functional domains
are often linearly linked, rather than integrated into a more
compact structure. As a result, each structural component,
functional group, or substituent within a natural product is
often, but not always, integral to the expression of its biological
activity. When the productive properties of a natural product
are directly related to its emergence in Nature where it has
undergone continuous optimization by natural selection, it may
not be easily subjected to structural modifications. Thus, the
significant improvements highlighted herein not only represent
unusual instances of productive deep-seated modifications of
natural products that were accessed by total synthesis but are
also remarkable in that they are derived from only a single
heavy atom change.
Vancomycin and Its Redesign to Overcome Bacterial

Resistance. It is likely that the work of ours that is most easily
recognized as arising from single heavy atom changes or
exchanges is our efforts on the redesign of vancomycin for
resistant bacteria.12,13 The biological target for the glycopeptide
antibiotics, including vancomycin, is bacterial cell wall
precursors containing D-Ala-D-Ala.14−16 Antibiotic binding to
D-Ala-D-Ala results in inhibition of cell wall maturation. Since
this cell wall target is unique to bacteria and not found in
mammalian hosts, it is responsible for the selectivity of the
antibiotic class for bacteria. The mechanism of resistance to
vancomycin first emerged in Enterococci,17,18 was co-opted
from nonpathogenic bacteria and not independently evolved by
the pathogenic bacteria,19 and involves a single heavy atom
exchange in the biological target.20 This modification is the
exchange of an ester oxygen for an amide NH. The synthesis of
the bacterial cell wall precursors continue with installation of
the pendant N-terminus D-Ala-D-Ala. Like the producer
organisms, resistant bacteria sense the presence of the
antibiotic21 and initiate an intricate late stage remodeling of
their peptidoglycan termini from D-Ala-D-Ala to D-Ala-D-Lac to
avoid the antibiotic.22 As a result of the single heavy atom
exchange, the binding affinity of vancomycin for the resistant
ligand is reduced 1000-fold. Binding studies were conducted
with vancomycin (1) and the model ligands 2−4 that included
examination of the ketone ligand 3, which contains a methylene
that lacks both a lone pair and is incapable of H-bonding.23

Unlike the often cited origin of the diminished binding, these
studies revealed that it is the introduction of a destabilizing
electrostatic repulsion (100-fold), more so than a lost H-bond
(10-fold), that is responsible for the majority of the 1000-fold
loss in binding affinity of vancomycin for D-Ala-D-Lac (Figure
1).
This indicated that removal of the destabilizing lone pair/

lone pair interaction without even reengineering a reverse H-
bond could improve affinity for the altered ligand as much as
100-fold. Thus, a binding pocket modification in the
vancomycin core designed to remove the destabilizing lone
pair interactions by replacement of the residue 4 amide
carbonyl with an aminomethylene linkage (compound 7) was
prepared by total synthesis in initial studies (Figure 2).24 This

modification entailed removal of a single heavy atom from the
antibiotic, the residue 4 amide carbonyl oxygen. This change
provided an antibiotic analogue with the balanced dual ligand
binding capabilities needed for vancomycin-resistant organisms
(D-Ala-D-Ala and D-Ala-D-Lac binding), while maintaining the
ability to bind D-Ala-D-Ala required for vancomycin-sensitive
bacteria albeit with an approximately 30-fold reduced affinity.24

In a series of subsequent studies, we reported two additional
vancomycin analogues that also contained single heavy atom
exchanges at this key site in its target binding pocket (residue 4
carbonyl O → S, NH), the latter of which was designed to
more effectively address the underlying molecular basis of
resistance to vancomycin (Figure 2).24−28 On the surface, this
exchange of the vancomycin residue 4 amide carbonyl oxygen
with an amidine NH would seem to be simply compensating
for the target exchange of an amide NH with an ester oxygen.
However, it does much more than that. Not only does the
exchange reinstate full binding affinity to the ligand of the
altered biological target (D-Ala-D-Lac), but it also maintains
near full binding affinity for the unaltered biological target (D-
Ala-D-Ala). We have suggested, and believe we have shown,29

that it displays this dual binding character with the amidine free
base serving as a H-bond acceptor for binding D-Ala-D-Ala, and
with the protonated amidine binding D-Ala-D-Lac, replacing the
destabilizing electrostatic interaction with a stabilizing electro-
static interaction and possibly a weak reverse H-bond. This
remarkable dual binding behavior could not have been easily
predicted and, as a consequence, the residue 4 amidine was not
the first of the modifications that we examined.

Figure 1. Vancomycin binding to model ligands that contain single
heavy atom exchanges.
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The behavior of the vancomycin residue 4 thioamide, a key
synthetic intermediate in route to the corresponding amidine,
was just as remarkable. Although it represents a seemingly
benign single heavy atom exchange in the binding pocket,
replacing an amide carbonyl oxygen with a sulfur atom to
provide a thioamide, it served to completely disrupt binding to
D-Ala-D-Ala (1000-fold loss in affinity)26 and resulted in a
vancomycin analogue devoid of antimicrobial activity.28 In
retrospect, this behavior may be attributed to both the
increased size of the sulfur atom and the longer CS versus
CO bond length, which are sufficient to displace the ligand
from the binding pocket. This unanticipated behavior also
serves to highlight just how remarkable the properties of 6 are
and how well its residue 4 amidine serves as an isosteric
replacement for the vancomycin residue 4 amide in its
interaction with D-Ala-D-Ala.
The two rationally designed binding pocket modifications

found in 6 and 7 reinstated binding to the altered target D-Ala-
D-Lac and maintained binding affinity for the unaltered target D-
Ala-D-Ala. Such dual target binding compounds were found to
reinstate antimicrobial activity against vancomycin-resistant
organisms that employ D-Ala-D-Lac peptidoglycan precursors,
and remain active against vancomycin-sensitive bacteria.
Moreover, the in vitro antimicrobial potencies of such
compounds correlated directly with their absolute dual binding
affinities for model target ligands.
These studies were enabled by the modern techniques of

total synthesis first used to prepare many of the natural

products in the family of glycopeptide antibiotics,30−40 which
provided the foundation on which deep-seated single atom
changes or exchanges could be made in the vancomycin
structure. These studies have been extended further to provide
analogues that contain peripheral modifications of the pocket-
modified vancomycin analogues that introduced added
mechanisms of antimicrobial action independent of D-Ala-D-
Ala/D-Lac binding (Figure 3).28,41 These latter efforts provided

remarkable vancomycin analogues that (1) contain synergistic
binding pocket and one or two simple peripheral modifications,
(2) are endowed with two or three independent mechanisms of
action only one of which is dependent upon D-Ala-D-Ala/D-Lac
binding, (3) display broad spectrum activity against both
vancomycin-sensitive and vancomycin-resistant bacteria (e.g.,
MRSA, VanA/VanB VRE) at stunning potencies (MICs =
0.01−0.005 μg/mL), and (4) are more durable antibiotics than
even vancomycin,41 which has been in the clinic for 60 years.

Ramoplanin. The ramoplanins are naturally occurring
lipoglycodepsipeptides42,43 that are 2−10-fold more active
than vancomycin against Gram-positive bacteria, including
MRSA and vancomycin-resistant Enterococci.44,45 Ramoplanin
A2 disrupts bacterial cell wall peptidoglycan biosynthesis,
inhibiting the intracellular conversion of lipid intermediate I to
lipid intermediate II46 and the more accessible extracellular
transglycosylase-catalyzed incorporation of lipid II into the
glycan strand,47 steps that precede the site of action of
vancomycin. Resistance to ramoplanin has not been detected,
and cross resistance between ramoplanin and vancomycin has
not been observed. Thus, it remains equally active against
vancomycin-resistant organisms, including VanA/VanB VRE.
Like vancomycin, ramoplanin acts by binding peptidoglycan
precursors (lipid II > lipid I),48 sequestering these substrates
from enzyme access,49,50 although the structural details of these
interactions are not yet defined. In fact, ramoplanin embodies
all the characteristics of vancomycin that contributes to its
durability against resistance development. However, its
instability derived from rapid depsipeptide hydrolysis precludes
its use for systemic infections and has limited its clinical
exploration.42 Our development of the first and still only
convergent total synthesis of the ramoplanin A1−A3
aglycons51−53 set the stage for its use in the preparation of
key analogues. In these efforts, we demonstrated that synthetic

Figure 2. Vancomycin analogues that incorporate single heavy atom
changes in the binding pocket.

Figure 3. Vancomycin analogue that contains a single atom change in
the binding pocket, reinstating activity against vancomycin-resistant
bacteria, and two peripheral modifications that add two additional
independent mechanisms of action.
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[L-Dap2]ramoplanin A2 aglycon (9), which bears a linking
amide in place of the sensitive depsipeptide ester in the
backbone of the 49-membered macrocycle, is roughly 2-fold
more potent ramoplanin A2 and its aglycon, and stable to
hydrolytic cleavage (Figure 4).54,55 Here, the single heavy atom

exchange does not impact the interaction of the natural product
with its biological target or substantially alter its functional
activity, but it substantially improves its limiting metabolic
stability.
In our studies and on this stable amide template, a scan of

the complete structure was conducted (Ala scan, 15 analogues
prepared by total synthesis),56 establishing the impact and
potential role of each residue and providing insights into the
nature of its complex with lipid II.56,57 Highlights derived from
the alanine scan of this amide modified ramoplanin aglycon (9)
include (1) the verification of the dominant role of Orn10

(>500-fold reduction) consistent with an integral role in lipid II
diphosphate binding, (2) the surprisingly modest impact of
Orn4 (44-fold), suggesting that its role in binding lipid II is not
as critical, (3) the disparate importance of each of the residues
in a putative lipid II recognition domain proposed58,59 in early
work (residues 3−10), (4) the significant impact (>20-fold) of
nearly every residue in the dimerization domain (residues 11−
14) later defined by Suzanne Walker60 reflective of its greater
importance, and (5) the lack of importance of the hydrophobic
residues 16−17 within the flexible loop that represents the
membrane interacting domain (residues 15−17, 1−2). We also
showed that the lipid side chain is essential for antimicrobial
activity (200−800-fold reduction) and, in collaboration with
Walker, showed it has no impact on lipid II binding or
transglycosylase inhibition, indicating that its role is likely to
anchor the antibiotic to the bacterial cell wall.54 Complement-
ing these studies on the stable amide-modified ramoplanin 9
and other related studies,61 Walker used inhibition kinetics and
binding assays to establish that ramoplanin preferentially
inhibits the transglycosylase versus MurG catalyzed reactions
of their substrates lipid II versus lipid I, that it exhibits a greater
affinity for lipid II (KD = 3 nM) than lipid I (KD = 170 nM),
and that it binds with a 2:1 stoichiometry consistent with
functional dimerization.49,50

Vinblastine. The biological properties of vinblastine were
among the first to be shown to arise from tubulin binding,
resulting in perturbations in microtubule dynamics that lead to
inhibition of mitosis.62 In fact, it was the discovery of

vinblastine that led to the identification of tubulin as an
especially effective oncology drug target. As discussed below,
vinblastine binds at the tubulin α/β dimer−dimer interface
where it destabilizes microtubulin assembly derived from the
repetitive head-to-tail tubulin binding. This action through
disruption of a protein−protein interaction by vinblastine is
often overlooked in discussions of such targets addressed with
small molecules perhaps because the target identification
preceded the contemporary interest in drugs targeting
protein−protein interactions. Even by today’s standards,
vinblastine and vincristine are superb clinical drugs. They,
and their biological target tubulin, remain the subject of
investigations because of their clinical importance in modern
medicine, complex structures, low natural abundance, and
unique mechanism of action.
In a study designed to probe the impact of catharanthine

indole substituents on an Fe(III)-mediated coupling with
vindoline,63 two new and exciting derivatives were discovered,
10′-fluorovinblastine and 10′-fluorovincristine (Figure 5).64 In

addition to defining a pronounced substituent effect on the
biomimetic coupling that helped refine its mechanism,65

fluorine substitution at C10′ was found to uniquely enhance
the activity (IC50 = 800 pM, HCT116). This exceptional
activity was confirmed with the comparative examination of
vinblastine and 10′-fluorovinblastine in a more comprehensive
human cancer cell line panel graciously conducted at Bristol-
Myers Squibb (Figure 5).66 10′-Fluorovinblastine exhibited a
remarkable potency (avg. IC50 = 300 pM), being on average 30-
fold more potent than vinblastine (avg. IC50 = 10 nM).
As depicted in the X-ray structure of vinblastine bound to

tubulin,67,68 the C10′ site resides at one corner of a T-shaped
conformation of the tubulin-bound molecule, where we have
suggested the 10′-fluorine substituent makes critical contacts
with the protein at a hydrophobic site sensitive to steric

Figure 4. Structure of [L-Dap2]ramoplanin A2 aglycon and a single
heavy atom exchange in 49-membered macrocycle that substantially
improves hydrolytic stability shown to limit the clinical use of
ramoplanin.

Figure 5. 10′-Fluorovinblastine and 10′-fluorovincristine, unique
impact of an added single heavy atom substituent that improved
target (tubulin) binding affinity and functional activity (30-fold).
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interactions. Although a range of 10′ substituents are tolerated,
the activity of the derivatives exhibited no relationship with the
electronic character of the substituents. Rather, they exhibited
activity that correlated with the substituent size and shape.
Thus, small hydrophobic substituents were found to be
tolerated, but with only one derivative exceeding (R = F) and
several matching the potency of vinblastine (R = Cl, Me, Br vs
H), whereas larger (R = I, SMe) or rigidly extended (R = CN)
substituents substantially reduced activity (10−100 fold).64

Although the enhanced metabolic stability of the 10′-fluoro
derivative could in principle contribute to the increased
potency, the lack of similar effects with related substituents
indicate that a feature unique to the fluorine substitution is
responsible. We have suggested that this is derived from the
interaction of a perfectly sized hydrophobic substituent further
stabilizing compound binding with tubulin at a deeply
imbedded site exquisitely sensitive to steric interactions.
Comparison models of the 10′ substituent analogues built
from the X-ray structure of tubulin-bound vinblastine illustrated
a unique fit for 10′-fluorovinblastine (Figure 6),64 and studies

disclosed later demonstrated that it alone displays a higher
tubulin binding affinity.69 Here, a singularly unique added
heavy atom substantially improved target (tubulin) binding
affinity and the resulting functional activity (30-fold).
These observations emerged in studies that provided a

powerful approach to prepare previously inaccessible vinblas-
tine analogues by total synthesis.70−79 It was the potential for
its improvement that inspired our development of new
synthetic methodology created deliberately for the intended
target.70 Thus, a powerful oxadiazole tandem intramolecular [4
+ 2]/[3 + 2] cycloaddition cascade was introduced80−82 that

not only assembled the full pentacyclic skeleton in a single step,
but also incorporated each substituent, functional group,
embedded heteroatom, and all necessary stereochemistry for
direct conversion of the cascade cycloadduct to vindoline.83,84

Combined with the use of a single-step Fe(III)-promoted
coupling of catharanthine with vindoline and a newly developed
in situ Fe(III)/NaBH4-promoted hydrogen atom transfer free
radical C20′ oxidation,78,79,85,86 the approach provides
vinblastine and its analogues in 8−13 steps. This was used to
provide vinblastine analogues not previously accessible by
semisynthetic modification of the natural products themselves
that contain changes within either the lower vindoline-
derived87−96 or upper catharanthine-derived subunits97−102

with the late stage divergent103 introduction of new
functionality. In addition to the examination of C10′
substituents,64 we have prepared more than 400 analogues of
vinblastine, defining the role of individual structural features
and substituents. These studies have systematically probed the
impact and role of the vindoline C16 methoxy group,79 C4
acetate,90−92 C5 ethyl substituent,93 C6−C7 double bond,94−96
and the vindoline core structure itself96 and have systematically
explored the upper subunit C20′ ethyl substituent,97,98 C16′
methyl ester,99 and added C12′ indole substituents.64 Notably,
attempts at the simplification of the structure with the removal
of a structural feature, a substituent, or even their subtle single
heavy atom modifications have led to substantial reductions in
activity. However, and like the addition of a 10′-fluoro
substituent, added features like that targeting the C20′ ethyl
group with added benign complexity (ABC)97 can effectivity
improve activity. We have shown that the single heavy atom
replacement of the C20′ alcohol with an C20′ amine is
possible85 and that its acylation to afford 20′ ureas or amides
provides substantial100,101 and even stunning69 potency
increases as much as 100-fold (IC50 = 75 pM vs 7 nM,
HCT116). The ultrapotent vinblastines bind tubulin with much
higher affinity and likely further disrupt the tubulin head-to-tail
α/β dimer−dimer interaction by strategic placement of the
conformationally well-defined, rigid, and extended 20′ urea or
amide along the adjacent continuing protein−protein interface.
Several 20′ amides were discovered that match or exceed the
potency of vinblastine, but that are not subject to Pgp efflux and
its derived vinblastine resistance.102 Within this series and
reflecting an additional impact of a single heavy atom change, a
benzamide substituent X was found to predictably impact
activity, displaying a fundamental linear relationship between
potency (−log IC50, HCT116) and the electronic character of
the aryl substituent (σp) (Figure 7). All benzamides shown in
Figure 7 are more potent than vinblastine and those that bear
an aryl electron-donating substituent, some of which constitute
single heavy atom additions, improve the H-bond acceptor
ability of the added amide carbonyl that in turn proportionally
increase the measured tubulin binding affinity (not shown) and
functional activity (Figure 7).102 Finally, compounds in this
series also displayed diminished off target activity (Pgp efflux)
and diminished Pgp-derived resistance (IC50 ratio between
isogenic Pgp-derived resistant and sensitive cell lines, 88-fold
for vinblastine) that correlated with the increasing lipophilic
character of the amide substituent.102 Here, single atom
changes that simply increase lipophilic character (cLogP)
were found to directly correlate with and diminish resistance
derived from Pgp overexpression and drug efflux that limits
vinblastine clinical use (Figure 8). The compounds emerged
from the discovery of a site and functionalization strategy for

Figure 6. Model of the 10′-fluoro binding site of 10′-fluorovinblastine
(R = F, top) generated by adding the fluorine substituent to the X-ray
structure of tubulin-bound vinblastine67 (R = H, bottom).64 Modeled
complexes with larger substituents (R = Cl, Me, Br, I) exhibited
increasingly larger destabilizing steric interactions as the substituent
size progressively increased.
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the preparation of a vinblastine analogue that contains a single
heavy atom exchange (C20′ NH2 for OH).85 Its acylation
provided the now readily accessible vinblastine analogues in
three steps from commercially available materials that, unlike
acylated derivatives of the alcohol itself (inactive), not only
increase binding affinity to tubulin (on target affinity) and
potency in cell-based assays, but also simultaneously disrupt
efflux by Pgp (off target source of resistance).102 It is a tribute
to the advances in organic synthesis that such detailed
systematic studies can now be conducted on a natural product
of a complexity as vinblastine once thought refractory to such
approaches.
In the course of these studies, a new and effective tubulin

binding assay was necessarily developed69 to accurately
measure the impact of the structural modifications, and a
number of additional natural products were prepared by total
synthesis104−109 with use of the newly introduced oxadiazole
cycloaddition cascade.110,111

Duocarmycins, Yatakemycin, and CC-1065. The first
family of natural products on which we systematically examined
the impact of deep-seated structural changes is composed of the
duocarmycins, yatakemycin, and CC-1065, and a number of
these modifications involved single atom changes in their
structures. The natural products are exceptionally potent
antitumor compounds that derive their activity through a
sequence selective DNA alkylation.112−114 Our studies provided

not only total syntheses of the natural products,115−127 but also
the characterization of their DNA alkylation properties,
including that of their unnatural enantiomers.128−133 In these
studies, we defined their DNA alkylation selectivity, rates, and
reversibility,134 isolated and characterized their adenine N3
adducts,130,132,135 and defined their stereoelectronically con-
trolled reaction regioselectivity.136−139 We defined the source
of their alkylation selectivity as arising from their noncovalent
binding selectivity preferentially in the narrower, deeper AT-
rich minor groove (shape selective recognition),140−144 and
identified the unusual source of catalysis for the alkylation
reaction that is derived from a DNA binding induced
conformation change that disrupts the stabilizing vinylogous
amide conjugation (shape dependent catalysis).145−151 We
demonstrated and quantified the fundamental role the
hydrophobic character of the compounds plays in the
expression of the biological activity, driving the intrinsically
reversible DNA alkylation reaction, and defined the stunning

Figure 7. Active analogues required a single heavy atom exchange into
the vinblastine structure (C20′ NH2 for OH). In a plot of −log IC50
(nM, HCT116) versus substituent σp, the analogues additionally
displayed a predictable modulation of activity by a substituent (X)
electronic effect, impacting benzamide carbonyl H-bonding with
tubulin, some representing single heavy atom additions. All analogues
shown are more active than vinblastine. Figure 8. Plot of 20′ amide cLogP versus differential activity (IC50

ratio) for isogenic HCT116 resistant (Pgp overexpression) and
sensitive cell lines that progressively exchange in single heavy atoms or
heteroatoms. The correlation defines a linear relationship between
diminished resistance (ratio) that arises from reduced/abolished Pgp
efflux, and a modulated physical property of the compounds (lipophilic
character, cLogP) that can be predictably impacted by single atom
changes. All compounds shown are more potent than vinblastine and
display less resistance (vinblastine ratio = 88).
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magnitude of its effect (hydrophobic binding-driven-bond-
ing).152 In collaboration with Walter Chazin, we provided high-
resolution NMR-derived structures of the natural products and
their unnatural enantiomers bound to DNA (Figure 9)153−155

and established that they are subject to an exquisite “target-
based activation”.156 In the course of these studies, we
introduced a convenient M13-derived alternative to 32P-end-
labeling of restriction fragments for DNA cleavage studies.157

Fundamental relationships between structure and reactivity or
structure and activity,158 and their contributions to the DNA
alkylation properties and biological activity of the natural
products, were established through the examination of more
than 2000 analogues of the natural products that contained
deep-seated structural changes (e.g., CBI).159−202 A compila-
tion of the data derived from more than 30 deep-seated
modifications, many of which entailed single heavy atom
changes,187−202 resulted in the establishment of a predictive
parabolic relationship between the alkylation subunit reactivity
and the resulting cytotoxic potency that spanned a 104−106
range of reactivity and activity (Figure 10).203−206 Presumably,
this fundamental relationship reflects the fact that the
compound must be sufficiently stable to reach its biological
target yet remain sufficiently reactive to alkylate DNA once it
does. The parabolic relationship defined this optimal balance
between reactivity and stability, providing a fundamental design
feature that was used to improve the potency of CC-1065 by a
single heavy atom exchange.
The replacement of the CC-1065 alkylation subunit pyrrole

NH with a sulfur atom was examined and represents the
exchange of a single heavy atom.207 Its exploration rested with
expectations that it would be substantially more stable than the
alkylation subunit found in CC-1065, leading to a more potent
CC-1065 analogue. Intuitively, this was expected to arise from
the strain release provided by a fused thiophene versus pyrrole,
which in turn may further benefit from the greater electron-
withdrawing character of a thiophene. More quantitatively, this
increased stability could be approximated using semiempirical
calculations (AM1, MNDO) where the thiophene analogue was
selected among several candidate alkylation subunits as being
more stable. Analogs with the altered alkylation subunit, which
lies at the pinnacle of the parabolic relationship, proved to be
both 6-fold more stable (solvolysis) and 3−10-fold more potent

(IC50, L1210) than those that contained the CC-1065
alkylation subunit, and they displayed an unaltered DNA
alkylation selectivity but greater efficiency than CC-1065. Here,
a single heavy atom exchange in the core structure of the CC-
1065 alkylation subunit provided a near optimal increase in
biological potency predictably derived from improvements in
the stability of the reacting DNA alkylation subunit (Figure
10).207

When incorporated into an even further simplified structure,
this modification of the alkylation subunit provided a potent
and efficacious antitumor compound when examined in a
rodent tumor model (Figure 11).207 Unlike many natural
products, members of this class not only tolerate such
simplifying structural changes,161,208 but their physical (sol-
ubility) and biological properties (in vivo efficacy) can be
improved through such changes. An additional instructive
example that highlights the productive changes derived from a
single heavy atom change was the removal of the CC-1065
alkylation subunit C8 methyl substituent. Its removal increased
both the rate and efficiency of DNA alkylation by removing a
steric impediment to reaction with adenine and increased the
biological potency of resulting analogues (Figure 11).192 Here,
the modification represents an unusual example of the
improvement in the biological potency of a natural product
by removal of a seemingly benign single heavy atom from its
structure. Finally and in a culmination of our own efforts, a
unique reductively activated prodrug design that maps
seamlessly onto the compound class was developed, which
bears multiple structural simplifications (Figure 11).209−213

Selected members of this prodrug class are remarkably

Figure 9. NMR structures of natural (+)- and ent-(−)-duocarmycin SA
bound in the same AT-rich site of a deoxyoligonucleotide, illustrating
the alkylation sites on complementary DNA stands offset by one base
pair. Only the binding region of DNA is shown.

Figure 10. Single heavy atom exchange in the CC-1065 alkylation
subunit that improves potency through a predicable reduction in
intrinsic reactivity, placing it at an optimal point on a parabolic
relationship between functional reactivity and activity.
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efficacious and exhibit a much wider dose range for efficacy in
animal tumor models without dose-limiting toxicity.209 Thus,
the exceptional potency of this drug class was tamed by a
unique reductive activation prodrug design especially suited for
this class of candidate drugs. Efforts with this class of molecules
may represent one of the most extensive cases of molecular
modification of biologically active natural products by total
synthesis conducted with the intention of improving their
properties, defining fundamental features of their mechanism of
action, or in the development of clinical candidates.214−219

Bleomycin. Bleomycin A2 is a clinically employed
antitumor drug that derives its properties through the
sequence-selective cleavage of DNA in a process that is both
metal-ion and O2 dependent.

220−224 We developed a modular
total synthesis of bleomycin A2 that permitted the total
synthesis and examination of nearly 70 analogues of the natural
product,225−242 probing each subunit and substituent in the
structure.223 These studies confirmed the origin of DNA
cleavage selectivity derived from G triplex-like H-bonding in
the minor groove,239 defined fundamental conformational
properties of bleomycin that contribute to the efficiency of
DNA cleavage,240,241 clarified the functional roles of the
individual subunits and their substituents,223 and in collabo-
ration with JoAnne Stubbe provided a NMR-derived high
resolution structure of DNA bound deglycobleomycin A2.243 In
the course of these studies, we introduced the powerful
fluorescent intercalator displacement (FID) assay for compre-
hensively establishing DNA binding selectivity or affinity.244,245

These combined studies, in conjunction with then emerging
structural models,246 helped define a remarkable combination
of functional, structural, and conformational properties
integrated into the natural product structure and served to
underscore that it represents a natural product in which each
subunit, each functional group, and nearly each substituent
productively contribute to the expression of its biological
properties.223 Two exceptions to this generalization are the
pyrimidoblamic acid C5 methyl group that could be removed
and replaced with an H atom without impacting its activity,230

and the histidine imidazole N1 atom, which could be exchanged
for an oxygen atom (oxazole vs imidazole) but not removed

(pyrrole versus imidazole).237 These represented cases where a
single heavy atom could be removed or exchanged in the
structure without impacting activity. Important among our
observations was the experimental demonstration of the role
the pyrimidine C4 amino group plays in H-bonding and DNA
recognition and as the source of the DNA cleavage selectivity
(Figure 12).239

The feature I want to highlight for the purpose of this
Perspective was the unrecognized subtle impact that the
valerate methyl and threonine linker substituents play in
preorganization and stabilization of a compact conformation
implicated in DNA cleavage.240,241 Their individual or
combined removal do not alter the metal chelation, O2
activation, or DNA cleavage selectivity of bleomycin, but they
do progressively reduce the DNA cleavage efficiency. Predicable
from first principles of conformational analysis, the heavy atom
substituents combine to restrict the flexible linker region to a
single dominant compact versus extended conformation,
preorganizing the functional components of the molecule into
a rigid conformation productive for DNA cleavage by the
bound complex (Figure 13).
Analogous observations were made in efforts targeting the

protein phosphatase inhibitors fostreicin, cytostatin, and
phostriecin (sultreicin)247−255 where the presence and stereo-
chemistry of benign methyl substituents on an aliphatic chain
substantially impact the biological activity through conforma-
tional restriction of an otherwise flexible chain.252,255

Enzyme Inhibitors, Fatty Acid Amide Hydrolase. A
number of additional instructive examples of the impact of a
single atom change can be illustrated in a program that
emerged from the discovery of oleamide as an endogenous
signaling molecule promoting physiological sleep.256−259 Even
small changes in the simple structure of the signaling molecule
oleamide (e.g., saturation of the double bond, its relocation by a
single atom, and trans vs cis configuration) result in a loss in
activity.257 The discovery of the physiological role of oleamide
represented the delineation of the first of a growing class of
endogenous signaling fatty acid primary amides260 and was
disclosed shortly after the identification of anandamide,261 a
fatty acid ethanolamide, as the endogenous ligand for the
cannabinoid receptors. This work led to the discovery and
characterization of the enzymes responsible for the release
(PAM) of signaling fatty acid primary amides262 and the
degradation of signaling fatty acid amides (fatty acid amide
hydrolase, FAAH).263−266 It provided orally active, long acting,
potent, and selective α-ketoheterocycle inhibitors of serine
hydrolases including FAAH, used a powerful proteome-wide
activity-based protein profiling (ABPP)-based selectivity assess-
ment for reversible enzyme inhibitors,267−269 characterized
inhibitor bound FAAH X-ray structures,270−272 and provided
the first in vivo validation of FAAH as a candidate therapeutic
target.273−284 This work showed that preventing the enzymatic
hydrolysis of an endocannabinoid (anandamide) provides an
effective approach for the treatment of pain that avoids the side
effects of a traditional blunt force agonist acting on the target
receptors (CB1 and CB2).273,274 Since this only potentiates an
activated signaling pathway by increasing the concentration and
duration of action of the released signaling molecule at its site
of action, it provides a temporal and spatial pharmacological
control not available to a receptor agonist. It is the work that
has been conducted as part of an extraordinary collaboration
with Ben Cravatt, Richard Lerner, Aron Lichtman and many
others, and has inspired efforts to target other enzymes

Figure 11. Additional simplifying structural modifications, an example
of removal of a single heavy atom (Me group) that improves potency
by making the underlying DNA alkylation reaction sterically more
accessible, and a recent efficacious prodrug design on a simplified
structure.
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controlling endocannabinoid signaling for the treatment of pain
and inflammation,280 for the modulation of other GPCR
targets, and provided the foundation for FAAH inhibitors that
progressed into the clinic.282−284

Our systematic examination of α-ketoheterocycles285−289 as
inhibitors of FAAH290−304 was initiated at a time when only a
handful of articles on α-ketoheterocycles had been published.
Representative of all efforts in medicinal chemistry directed at
enzyme or receptor targets, single atom changes in the ligand
had remarkable impacts on target affinity, target selectivity, PK
properties, and in vivo efficacy. Optimization of candidate α-
ketoheterocycles led to the identification of OL-135273 and
later CE-12299 as potent, selective, and efficacious in vivo
inhibitors of FAAH (Figure 14).

The examination of OL-135273 included a systematic
exploration of the central activating heterocycle.298 Several
activating heterocycles were found to improve the inhibitor
potency relative to the oxazole found in OL-135 and
representative examples are presented in Figure 15. In short,
the introduction of an additional heteroatom at position 4
(oxazole numbering, potency: N > O > CH) substantially
increased inhibitory activity that may be attributed to a
combination of the increased electron-withdrawing properties
of the activating heterocycle as well as a reduced destabilizing
steric interaction302 at the active site observed in the X-ray of
the complex of FAAH with OL-135.
We also defined a role for the central activating heterocycle

distinct from that observed with serine proteases287,288 that
explained pronounced substituent effects. The work illustrated
the importance of the electrophilic character of the ketone in

Figure 12. Structure of bleomycin A2, NMR structure of bleomycin
bound to a DNA cleavage site (full deoxyoligonucleotide and
bleomycin disaccharide removed for clarity), key H-bonding role the
pyrimidine C4 amine plays in guanine recognition, and role the minor
groove guanine C2 amine plays in the recognition of bleomycin.

Figure 13. C2 and C4 methyl groups of the valerate linker in
bleomycin induce a rigid, compact versus extended conformation
productive for DNA cleavage; see Figure 12. Each heavy atom
substituent independently increases the efficiency of DNA cleavage
without impacting metal chelation, O2 activation, or the cleavage
reaction and without making direct contact with the target.

Figure 14. FAAH inhibitors.
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driving FAAH inhibition. A well-defined linear correlation
between the Hammett σp constant of the α-ketooxazole C5 or
C4 substituent and FAAH inhibition was established that is of a
magnitude to dominate the behavior of inhibitors (ρ = 3.0−
3.4), indicating that a unit increase in σp results in a stunning
1000-fold increase in Ki.

293,294 This provided a predictive tool
for the rational design of α-ketoheterocycle-based serine
hydrolase inhibitors beyond FAAH where modulation of the
inhibitory potency could be accomplished by substitution of an
oxazole, in some instances by an added single heavy atom,
predictably modulating the intrinsic reactivity of the electro-
philic carbonyl (Figure 16).

The first X-ray structures of the α-ketoheterocycle-based
inhibitors bound to FAAH were disclosed in 2009 in
collaboration with Ray Stevens.270 These cocrystal structures
of OL-135 and its isomer with FAAH confirmed that the
catalytic Ser241 is covalently bound to the inhibitor electro-
philic carbonyl, providing a deprotonated hemiketal mimicking
the enzymatic tetrahedral intermediate (Figure 17). It also
represents an unusual case of exchanging the location of two
complementary heteroatoms in the core structure of the

inhibitor, each of which is essential to the activity. Neither
heteroatom can be replaced with a CH, both heteroatoms are
required, but their locations can exchanged. Additional
cocrystal structures of key α-ketoheterocycles271,272 systemati-
cally probed the three active site regions central to substrate or
inhibitor binding: (1) the conformationally mobile acyl chain-
binding pocket and membrane access channel, (2) the active
site catalytic residues and surrounding oxyanion hole that
covalently binds the α-ketoheterocycle inhibitors, and (3) the
cytosolic port and a newly identified anion binding site. These
structures, including a representative member of the inhibitors
containing a conformationally constricted C2 acyl side chain,299

confirmed covalent attachment through nucleophilic addition
of Ser241 on the inhibitor electrophilic carbonyl and they
captured the catalytic residues in an “in action” state. They also
revealed an unusual Ser217 OH-π H-bond to the activating
heterocycle and defined a prominent role that bound water in
the cytosolic port plays in stabilizing inhibitor binding through
interaction with the pyridyl nitrogen of the OL-135 substituent.
These studies established that the dominant role of the
activating heterocycle is its intrinsic electron-withdrawing
properties and identified the key role of an ordered cytosolic
port water in mediating the stabilizing hydrogen bonding of
optimized oxazole substituents.

Figure 15. Representative OL-135 analogues containing iterative
single heavy atom changes or exchanges in the activating heterocycle.
Reduction in the steric size of the heterocycle position 4 heavy atom
(potency: N > O > CH) contributes to increased inhibitor potency.

Figure 16. −log Ki (μM) for FAAH versus Hammett σp, defining and
quantitating a linear correlation between enzyme inhibition and the
electronic impact of oxazole substituents on intrinsic reactivity of the
electrophilic carbonyl of an α-ketoheterocycle (ρ = 3.0), some arising
from single heavy atom substitution.

Figure 17. Superimposition of the X-ray structures of OL-135 (green)
and its isomer (blue) bound to FAAH that illustrates the
compensating impact of exchanging the location of two comple-
mentary heteroatoms.
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■ CONCLUSIONS

Central to science at the chemistry−biology interface is the
ability of small molecules to selectively bind a unique protein or
nucleic acid target and elicit a response in a biological milieu.
Especially informative are studies on small molecules found in
Nature, biologically active natural products. Beyond their
importance in modern medicine, unraveling the role their
structure features play in the expression of their functional
biological activity is molecular level science at its finest. This
can include not only the identification of structural features that
convey the affinity and selectivity for a biological target or those
that are central to their molecular mechanism of action, but also
how these features are intimately integrated into a complex,
compact structure that simultaneously displays a constellation
of functions. It is even more remarkable that a single heavy
atom in such compounds can impact the underlying
intermolecular interactions or functions in such pronounced
ways. In the context of our work, examples were highlighted
herein in which single heavy atom changes or exchanges
substantially and atypically improve the activity, rather than
those that informatively reduce or abolish activity. The
examples illustrate that their productive impact can originate
from steric, electronic, conformational, or H-bonding effects,
from changes in intrinsic reactivity, from fundamental
intermolecular interactions with a protein or nucleic acid
target, from introduction of a new functionalization site, or
from effects as simple as altering stability or physical properties.
It is, I believe, an instructive series of examples where
modifications that entail even a single heavy atom change can
have remarkable impacts on the expression of the biological
properties of the natural products. In a field where the
simplification of complex structures has been perceived as the
most expeditious path forward and where single heavy atom
removal might fall into the complex end of this category, rarely
does one contemplate the addition or even exchange of a single
heavy atom. Yet, as shown herein, such small changes can have
predicable and especially productive effects. Key to exploring
such nuanced structural modifications is the total synthesis of
the modified compounds, the development of synthetic
strategies and methodology suitable for systematic structural
exploration, and a commitment to their implementation in such
studies. It is a tribute to the advances in organic synthesis that
natural products of the complexity of vancomycin and others
highlighted herein can now be rationally, though not yet
routinely, subjected to systematic probes of their structure and
function with deep-seated structural modifications, even those
involving single atom changes. Perhaps we are approaching a
time when such complex structures, like the typically simpler
compounds of traditional drug discovery, can be routinely
embraced with confidence that their already remarkable
constellation of properties can be just as effectively improved
by subtle, impactful structural modifications. Finally, through-
out the course of my career and in each of our programs, the
questions about such molecules have also progressed from how
do we identify them and can we make them, to can we
understand them and can we improve on them? Similarly, the
question of the impact of single atoms in such structures has
progressed from “what difference can a single atom make?”, to
“can a single atom make a difference?”, and now to “what single
atom can make a difference?” Hopefully, a sense of that journey
is also summarized in this Perspective.305
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(97) Allemann, O.; Brütsch, M.; Lukesh, J. C., III; Brody, D. M.;
Boger, D. L. Synthesis of a potent vinblastine: rationally designed
added benign complexity. J. Am. Chem. Soc. 2016, 138, 8376−8379.
(98) Allemann, O.; Cross, R. M.; Brütsch, M. M.; Radakovic, A.;
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