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Abstract: Here, a direct adaptive control strategy with parametric compensation is adopted for an uncertain non-linear model
representing blood glucose regulation in type 1 diabetes mellitus patients. The uncertain parameters of the model are updated
by appropriate design of adaptation laws using the Lyapunov method. The closed-loop response of the plasma glucose
concentration as well as external insulin infusion rate is analysed for a wide range of variation of the model parameters through
extensive simulation studies. The result indicates that the proposed adaptive control scheme avoids severe hypoglycaemia and
gives satisfactory performance under parametric uncertainty highlighting its ability to address the issue of inter-patient variability.

1௑Introduction
Blood glucose (BG) concentration in a healthy person is regulated
within a safe range of 70–180 mg/dl due to insulin secretion by the
pancreas. When there is an autoimmune destruction of pancreatic
β-cells, negligible or no such secretion takes place in human body,
leading to a disease called type 1 diabetes mellitus (T1DM).
Patients suffering from T1DM have impaired glucose–insulin
regulation mechanism, leading to prolonged hyperglycaemia
(glucose level >180 mg/dl) [1]. To avoid this situation, the patients
rely on multiple daily insulin injections in an attempt to restore
normal glucose concentration level. As this manual (or open-loop),
insulin therapy is based on irregular glucose measurement, thus at
certain instances, due to improper insulin dosages, glucose
concentration can drastically fall <50 mg/dl, leading to a situation
called hypoglycaemia. The hypoglycaemic situation in T1DM
patients can cause hypoglycaemic coma and death, whereas
hyperglycaemia can lead to long-term complications like cardiac
arrests, leg amputations, renal failure, and diabetic retinopathy [2].
To circumvent these situations, a closed-loop control strategy is
required for continuous glucose measurement, which is realised
through an artificial pancreas system (APS) [3] to mimic glucose–
insulin homoeostasis artificially.

The main research for APS involves the design of an efficient
closed-loop control strategy based on the mathematical model of
the T1DM patient. The patient models are classified as intravenous
and subcutaneous [4]. In the present work, widely used Bergman's
minimal model [5] is considered as an intravenous patient model.
This model is also referred in the literature as intravenous glucose
tolerance test (IVGTT) model. In reality, model parameters are
uncertain and vary from patient to patient (called as inter-patient
variability) as well as within the same patient (called as intra-
patient variability) owing to the variation of physiological
parameters like insulin sensitivity, exercise, stress, infection, and
food intake [6]. Significant challenges arise in the design of closed-
loop control for BG regulation when model parameters are
uncertain. In the present work, the problem is solved with a new
adaptive control strategy.

Some of the adaptive control strategies [7–9] applied or
developed for this problem are summarised here in brief. Standard
adaptive control strategies like minimum variance control [10, 11]
and self-tuning regulator [12–14] in conjunction with parameter
estimation via Kalman filtering and recursive least square methods
were incorporated for this problem. Adaptive linear quadratic
Gaussian controllers have been proposed in [15, 16] for Dalla

Man's subcutaneous model [17] and Hovork's model [18]. Both
IVGTT and subcutaneous-based model reference adaptive control
(MRAC) techniques exist [19–22] where MRAC is implemented in
conjunction with (i) modified smith-predictor structure [20], and
(ii) adaptive disturbance rejection [21]. Apart from these
algorithms, an adaptive controller with online parameter adaptation
[23] and a non-linear adaptive control method based on exact
feedback linearisation [24] was proposed. In the recent past, a wide
range of adaptive model predictive controllers (MPC) have been
proposed for BG regulation [18, 25–27]. Careful study of the
methodology and philosophy of these methods reveals inherent
deficiencies in these control methods: (i) aggressive control leading
to hypoglycaemic events [10, 11], (ii) use of linearised version of
non-linear physiological model leading to significant loss of
information related to non-linear system characteristics [12–16,
19–22] and (iii) in some cases, model parameters do not convey
any physiological significance (such as information about insulin
sensitivity) explicitly [10–14].

In the present work, a new adaptive state feedback control for a
non-linear IVGTT model is designed via Lyapunov stability theory.
The proposed control technique has the following advantages: (i)
unlike most of the adaptive control methods, the proposed
approach is based on a non-linear IVGTT minimal model that can
express important physiological parameters (like insulin
sensitivity) in terms of model parameters, (ii) no cost function is
associated with the control law to give closed-form solutions due to
the use of Lyapunov theory, and (iii) unlike other MRAC schemes,
here a non-linear reference model is considered.

The modifications of the proposed control technique make it
different from [28, 29] are

i. The uncertainties are considered in the model parameters,
whereas in [28, 29], uncertainties were in the actuator
dynamics.

ii. The reference models were based on linear models, whereas a
non-linear model is used here.

iii. For the first time, adaptive parametric compensation is done
for the model parameters unlike in [28, 29] for a non-linear
T1DM patient model. The control law has guaranteed stability
where the model parameters are adapted online by adaptation
laws.

iv. Unlike in [28, 29], here two sets of constant terms are
introduced, ci, i = 1, …, 4, to impose constraints on the closed-
loop stability and γi s to facilitate improvement in transient
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response. The tuning of γi s are heuristically done from the
expert knowledge of patients’ physiology.

v. The proposed control technique avoids any occurrences of
hypoglycaemic events in the presence of ±30% parametric
uncertainty as well as multiple external meal disturbances for
200 virtual T1DM patients which are validated through
simulation studies.

This paper is structured into five sections. Section 2 contains
the problem formulation constituting of the system description and
the control objectives. The adaptive controller is presented in
Section 3. The simulation results and discussion constitute Section
4, and concluding remarks are provided in Section 5.

2௑Problem formulation
In this section, a brief introduction on the physiological IVGTT
model for the T1DM patient is presented in the first subsection. In
the next subsection, the main objectives of the control algorithm
are clearly stated.

2.1 Mathematical model of T1DM patients

A modified version of Bergman's minimal model as reported in
[30, 31] that offers a good trade-off between glucose–insulin
response and model complexities has been taken into account. It
has numerous applications in clinical trials [32] as well as intensive
care unit medication systems [33]. The model is further modified
by considering the meal disturbance dynamics as reported in [34],
as the fourth state of the state-space model in (1) as presented
below:

ẋ1 = − p1(x1 − Gb) − x1x2 + x4

ẋ2 = − p2x2 + p3(x3 − Ib)

ẋ3 = − p4(x3 − Ib) + u(t)

ẋ4 = − p5x4

(1)

where the state variables xi, i = 1, …, 4, represent the BG
concentration (mg/dl), the remote insulin (min−1), plasma insulin
concentration (mU/l), and the meal disturbance (mg/dl/min),
respectively, given in (1), and Gb and Ib represent the basal value of
plasma glucose concentration and plasma insulin concentration,
respectively.

The first dynamical equation represents the plasma glucose
compartment corresponding to the plasma glucose dynamics. The
second differential equation accounts for the delayed action of
insulin on the glucose dynamics in the body, and the third equation
represents the plasma insulin kinetics where the control input
(external insulin infusion) u(t) appears. The meal disturbance x4

represents the rate of appearance of external glucose in the plasma
glucose compartment due to food intake or exogenous glucose
infusion intravenously. The model parameter, p1 (min−1), and the
ratio p3/ p2 (l/(min × mU)) represent insulin-independent glucose
utilisation and insulin sensitivity, respectively. The parameter p4

(min−1) stands for the insulin degradation rate and p5 (min−1) is the
rate of appearance of meal disturbance in the plasma glucose
compartment [30].

2.2 Control objectives

The main intent of APS is to regulate the plasma glucose
concentration within the safe range (70 − 180 mg/dl) automatically
via external insulin infusion through insulin pump. This is based on
the glucose measurements provided by sensor by avoiding any
events of severe hypoglycaemia ( < 50 mg/dl) and prolonged
hyperglycaemia ( > 180 mg/dl). The design of the adaptive
feedback control law u(t) should be such that the T1DM patient's
BG x1(t) tracks the reference glucose signal x^1(t) generated from a
reference system, in the presence of parametric uncertainty and
meal disturbance. The main control objectives are stated as
follows:

i. The plasma glucose concentration should not decrease <50 
mg/dl in order to avoid severe hypoglycaemic instances.

ii. The plasma glucose concentration x1 should be brought <180 
mg/dl within 150 min after a meal to avoid post-prandial
hyperglycaemia.

iii. The BG should be regulated within the safe range of 70–180 
mg/dl in the presence of parametric uncertainty and external
meal disturbance.

3௑Design of the adaptive feedback control law
The conceptual framework of the proposed adaptive control
technique is composed of (i) a reference model, (ii) parameter
adaptation laws, and (iii) the adaptive control law as illustrated in
Fig. 1. 

Let us consider a reference system that is given by

x^̇1 = − p^ 1 x^1 − Gb − x^1x
^

2 + x^4

x^̇2 = − p^ 2x
^

2 + p^ 3 x^3 − Ib

x^̇3 = − p^ 4 x^3 − Ib + r(t)

x^̇4 = − p^ 5x
^

4

(2)

where p^ i, i = 1, …, 5, are estimated parameters in the reference
system, r(t) is the reference signal, and the reference states are
x^i, i = 1, …, 4.

Subtracting (1) from (2), the error dynamics corresponding to
the error signals ei = x^i − xi, i = 1, …, 4, are obtained as follows:

ė1 = − p
~

1 x1 − Gb − p^ 1e1 − x^2e1 + e4 − x1e2

ė2 = − p
~

2x2 + p
~

3 x3 − Ib − p^ 2e2 + p^ 3e3

ė3 = − p
~

4 x3 − Ib − p^ 4e3 + r − u

ė4 = − p
~

5x4 − p^ 5e4

(3)

where p~i(t) = p^ i(t) − pi, i = 1, …, 5 are the parameter errors.
Now let us define the following adaptive update laws for

estimating the parameters, p^ i, i = 1, …, 5, of reference system (2)

p^̇ 1 = c1γ1
−1

e1 x1 − Gb

p^̇ 2 = c2γ2
−1

e2x2

p^̇ 3 = − c2γ3
−1

e2 x3 − Ib

p^̇ 4 = c3γ4
−1

e3 x3 − Ib

p^̇ 5 = c4γ5
−1

x4e4,

(4)

and choose an adaptive control law u(t) given by

u(t) =
c2

c3

p^ 3(t)e2(t) + r(t) (5)

Fig. 1௒ Adaptive closed-loop control strategy
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where ci, i = 1, …, 5, are certain constants which would be chosen
so as to formulate constraints on certain estimated parameters.

Note: The specific formulations of the parameter adaptation
laws (4) and the control law, u(t), in (5) are designed to ensure the
stability of the proposed control technique by using Lyapunov's
stability theorem.
 

Theorem 1: The adaptive control scheme with control law u(t)
in (5) along with the adaptive laws in (4), when applied to non-
linear error dynamics (3), ensures that all the closed-loop signals of
the system are bounded and the tracking errors asymptotically
approach zero, that is, limt → ∞ ei(t) = 0, i = 1, …, 4 [28, 29].
 

Proof: We choose a positive definite Lyapunov function
candidate V given by

V =
1
2 ∑

i = 1

4

ciei
2 +

1
2 ∑

i = 1

5

γip
~

i
2 (6)

where ci > 0, i = 1, …4, γi > 0, i = 1, …5.
After differentiating V in (6), we get

V˙ =
1
2 ∑

i = 1

4

ciėi
2 +

1
2 ∑

i = 1

5

γip
~̇

i

2
(7)

Since p
~

i(t) = p^ i(t) − pi, i = 1, …, 5, so by differentiating p
~

i(t), we
obtain

p
~̇

i(t) = p^̇ i(t) − ṗi = p^̇ i(t), i = 1, …, 5

where ṗi vanishes as pis are constant terms. Now, substituting the
values of ėi from (3) and p~̇i(t) from (7), we have

V˙ = − c1e1p
~

1 x1 − Gb − c1p^ 1e1
2 + c1e1e4 − c1e1x1e2

−c2x
^

2e1
2 − c2p^ 2e2

2 − c2p
~

2x2e2 + c2p
~

3 x3 − Ib e2

+c2p^ 3e3e2 − c3e3p
~

4 x3 − Ib − c3p^ 4e3
2 − c3e3u

−c4p^ 5e4
2 − c4p

~
5x4e4 + c3re3 + γ1p

~
1p^̇ 1 + γ2p

~
2p^̇ 2

+γ3p
~

3p^̇ 3 + γ4p
~

4p^̇ 4 + γ5p
~

5p^̇ 5

(8)

The Lyapunov stability theorem requires that V˙  should be negative
definite function. Therefore, in the above expression for cancelling
out the terms involving p~i, i = 1, …, 5, we define p^̇ i, i = 1, …, 5 as
in (4). Substituting p^̇ i, i = 1, …, 5 in (8), we get

V˙ = − c1p^ 1e1
2 + c1e1e4 − c4p^ 5e4

2 − c1x
^

2e1
2 − c1e1x1e2

−c2p^ 2e2
2 + c2p^ 3e3e2 − c3p^ 4e3

2 − uc3e3 + rc3e3

(9)

From (9), let us consider V1 as

V1 = − c1p^ 1e1
2 + c1e1e4 − c4p^ 5e4

2

= − c1p^ 1 e1 −
e4

2p^ 1

2

+ c1

e4
2

4p^ 1

− c4p^ 5e4
2

(10)

From (10), we obtain the following stability constraint in terms of
c1 and c4

c1

c4

< 4p^ 1(t)p^ 5(t) (11)

such that it renders V1 ≤ 0 for all times. Again from (9), we
consider V2 as

V2 = − c1x
^

2e1
2 − c1x1e1e2 − c2p^ 2e2

2

= − c2p^ 2 e2 +
c1x1e1

2c2p^ 2

2

+
c1

2
x1

2
e1

2

4c2p^ 2

− c1x
^

2e1
2

(12)

For ensuring V2 ≤ 0, another stability constraint in terms of c1 and
c2 is obtained as

c1

c2

<
4p^ 2(t)x

^
2(t)

x1
2(t)

(13)

It is clear that for guaranteeing negative definiteness of V2, the
continuous computation of the state x1(t), that is, the plasma
glucose concentration can be easily obtained from the glucose
sensors. Since the parameter estimates p^ i(t), i = 1, …, 5, and x^2(t)
are positive values, substituting (10) and (12) in (9), we obtain

V˙ = V1 + V2 + c2p^ 3e3e2 − c3p^ 4e3
2 − uc3e3 + rc3e3

It is already proven that if the two stability constraints (11) and
(13) are satisfied then V1 and V2 are guaranteed to be negative
definite function. By neglecting the terms that are definitely
negative and considering the other terms, the above equation can
be written as

V˙ ≤ c2p^ 3e3e2 − uc3e3 + rc3e3 (14)

Now the choice of control law u(t) should be such that V˙ < 0.
Hence, if we substitute the adaptive control law given by (5) in
(14), we can easily ensure

V˙ ≤ 0 (15)

Thus, the Lyapunov stability theorem guarantees ei(t), i = 1, …, 4,
and p^ i(t), i = 1, …, 5 to be uniformly bounded, and e(t) ∈ L2 space.
Finally, we conclude that limt → ∞ ei(t) = 0. □

4௑Numerical simulations
In this section, simulation studies are carried out to validate the
proposed adaptive control algorithm for APS that is applied to
system (1), to examine the effectiveness of the controller in
regulating plasma glucose concentration in T1DM patients within a
safe range in the presence of external meal disturbance and
parametric uncertainties. The controller gains are provided in
Table 1. 

The parameters ci, i = 1, …, 4, are first fixed to ensure closed-
loop stability by satisfying the two stability constraints that are
derived from the Lyapunov stability analysis. After fixing the cis,
the parameters γi, i = 1, …, 5, are then tuned heuristically for the
finite-time convergence of the estimated parameters to a stable
value, thereby ensuring their boundedness. The reference signal is
considered to be a function of the BG level and is given as

r(t) = 0.09x1 − 6.5. (16)

Three simulation scenarios have been proposed for corroboration
of the adaptive control strategy as discussed subsequently.

Table 1 Controller gains
Gains Values Gains Values
c1 8 × 10−4 c2 5 × 107

c3 2 × 10−3 c4 5 × 104

γ1 5 × 1010 γ2 1 × 108

γ3 1 × 1015 γ4 1 × 105

γ5 2.7 × 108 — —
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4.1 Simulations with single meal disturbance under
parametric uncertainty

4.1.1 Objective: The main objective of the first simulation
scenario is to assess the controller's ability to stabilise the states of
the non-linear model in a finite time under parametric uncertainty.

4.1.2 Protocol: A single meal disturbance is provided at the start
of the simulation and the initial plasma glucose concentration of
T1DM patients are considered to be 250 mg/dl (hyperglycaemia) at
t = 0 min. In order to indicate that there are no prior insulin dosages
and high meal disturbance present, the initial conditions of the
states x2 = 0 min−1 (remote insulin), x3 = 7 mU/l (basal insulin
value), and x4 = 10 (meal disturbance) are considered, respectively.
In order to create a realistic scenario, the model parameters are
considered uncertain and are randomly chosen from a specified
range as provided in Table 2. The parameter p1 is negligible in
T1DM patients and hence, a very small value p1 = 1 × 10−7 is
considered. 

Important physiological factors like insulin sensitivity and
insulin degradation rate in the blood plasma vary within a
population of T1DM patients. A parametric uncertainty range of
±30% is considered here, which is sufficient for the investigation
of the proposed controller in the presence of parametric
uncertainty. It is also reported in [6], that the insulin sensitivity in
T1DM patients can vary up to ±30%. Hence variation in the
parameters p2, p3, and p4 are considered to be ±30%, whereas the
variation in p5 is considered to be ±10% since it represents
intravenous (directly into veins) glucose administration having less
uncertainty than the others.

4.1.3 Discussion: The plasma glucose concentration is brought
down from the hyperglycaemic level within 150 min and ultimately

to the basal value Gb = 80 mg/dl in the presence of high meal
disturbance as depicted in Fig. 2. The attainment of the above
control objective depends on the choice of r(t) which can be
determined by exploiting the knowledge of the physician and
clinical studies or conventional insulin therapy. In this work, the
reference signal, r(t), in (16) exploits the information about x1 such
that x1 is brought under 180 mg/dl within 150 min. Since the
control law, u(t) as illustrated in Fig. 3, is a function of r(t), it
follows the reference signal r(t) after some initial transients in
order to achieve the above-mentioned control objective. In addition
to this, it is the parameter compensation via the parameter adaption
laws that ensure the convergence of the outputs of both the
uncertain and the reference systems to the basal value under
parametric uncertainty as illustrated in Fig. 4. The convergence of
error signals e1, e2, e3, and e4 to zero is shown in Fig. 5. Fig. 6
illustrates that during the whole simulation period, the stability
constraints derived from the Lyapunov stability analysis are
satisfied. 

4.2 Simulations with multiple meal disturbances under
parametric uncertainty

4.2.1 Objective: A 3-day (4320 min) long simulation scenario
with three meal disturbances (breakfast, lunch, and dinner) at each
day is considered here to assess the controller's performance in
day-to-day glucose regulation in T1DM patients.

4.2.2 Protocol: The simulation time 0 min corresponds to 12 AM
of the first day of the simulation, and 1440 min to 12 AM of the
next day. Meal disturbances of 5 mg/dl/min (breakfast), 8 
mg/dl/min (lunch), and 8 mg/dl/min (dinner) are provided at 8 AM
(480 min), 12 PM (720 min), and 8 PM (1200 min), respectively,
and the same meal protocol is followed for the next 2 days. It is
assumed that T1DM patients are in fasting state with no prior
insulin infusions, which is reflected by the initial conditions
x1 = 280 mg/dl, x2 = 0 min−1, x3 = 7 mU/l, and x4 = 0 mg/dl/min
(no initial meal disturbance). A total of 200 Monte Carlo
simulations are carried out where the model parameters are chosen
randomly.

4.2.3 Discussion: T1DM patients have to reset the insulin pump
frequently, as mentioned in [35], it is required to change the
infusion set of the insulin pump in every 2–3 days. For this reason,
a 3-day scenario is considered here to investigate the robustness of
the proposed algorithm with respect to the effect of multiple
external meal disturbances as well as parametric uncertainty
( ± 30%).

It is evident from Fig. 7 that there are no episodes of severe
hypoglycaemia or prolonged hyperglycaemia. The nature of the
corresponding external insulin infusion rates determined by the
adaptive controller is depicted in Fig. 8. Table 3 shows the
percentage of total simulation time, where the BG profiles of
different T1DM patients remain in the hypoglycaemic, safe range,
and hyperglycaemic ranges. The closed-loop BG trajectories are
efficiently maintained within the safe range for 87.5% of the total
time without any occurrences of hypoglycaemia. Post-prandial
hyperglycaemia is completely avoided, as the BG trajectories are
brought <180 mg/dl after each of the meal disturbances within 120 
min for each of the T1DM patients. 

Finally, in order to evaluate the efficacy of the proposed closed-
loop adaptive control scheme for the BG regulation in T1DM
subjects in the presence of multiple meal disturbances and
parametric uncertainty, control variability grid analysis (CVGA) is
performed by carrying out 200 numerical simulations with random
parameters selected from Table 1. As explained in [36], Y-axis and
X-axis represent the maximum and minimum deviations of the BG
during the whole simulation period. Here, 3-day simulation for
each of the random T1DM patients is represented by a black dot on
CVGA plot as shown in Fig. 9. The zoomed image shows the
distribution of the black dots. It can be observed that all the black
dots are confined close to each other forming a cluster (encircled),
and thus, a zoomed view of the cluster containing these black dots

Table 2 Nominal and range of parameters for model (1)
Parameters Values Range
p2 0.015 [0.0105, 0.0195]
p3 2 × 10−6 [1.4 × 10−6, 2.6 × 10−6]
p4 0.2 [0.14, 0.26]
p5 0.05 [0.045, 0.055]
 

Fig. 2௒ Closed-loop BG profile for T1DM patient with nominal model
parameters under the adaptive control law

 

Fig. 3௒ Exogenous insulin infusion rate, u(t), as determined by the adaptive
controller
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is provided for clarity. All the closed-loop BG trajectories are
confined to grid B (in green colour), indicating that all these
closed-loop trajectories remain within a safe range (with highest
BG level <220 mg/dl and lowest BG level >75 mg/dl during the
entire simulation) which is desirable. Thus, the proposed adaptive
control algorithm is efficacious in preventing hypoglycaemic or
hyperglycaemic events under parametric uncertainty and all closed-
loop results have a high degree of proximity as well as consistency.

In the current work, there exist two types of control challenges
in the minimal model, (i) the external meal disturbances, and (ii)
the parametric uncertainty. While the effect of the former is taken
into account by considering meal disturbance as fourth state, x4, the
effect of the latter is expressed as parametric variability in the
minimal model parameters representing important physiological
factors like, insulin sensitivity (p3/ p2), insulin degradation rate (p4),
and the time for maximum peak of the exogenous meal disturbance
(p5). The adaptive control approach employed here is able to
successfully reject the effect of bounded meal disturbances and
parametric uncertainty, so that the desired system performance can
be achieved, thereby demonstrating the robustness of the proposed
controller with respect to the above factors.

4.3 Simulations with unscheduled meal disturbance and
noisy glucose measurements

4.3.1 Objective: The sole objective of third simulation scenario is
to test the controller's robustness with respect to unscheduled meal
disturbance and the presence of noise in the measurements.

4.3.2 Protocol: Initial conditions of the states are kept the same as
in simulation scenario 1. Apart from the meal disturbance of 8 
mg/dl/min at t = 0 min, an unscheduled meal (5 mg/dl/min) is
introduced at t = 30 min. The glucose measurements coming from
the sensor are assumed to be corrupted by a noise signal that is
assumed to be normally distributed having zero mean and variance
20.

4.3.3 Discussion: Despite the presence of unscheduled meal
disturbances, the BG level is brought under 180 mg/dl within 150 
min by the proposed adaptive controller in the presence of noisy
glucose measurements as elucidated in Fig. 10. The red signal is
the corrupted glucose measurement and the black trajectory is the

Fig. 4௒ Reference system parameters: p^ i, i = 1, …, 5

 

Fig. 5௒ Trajectories of error signals ei, i = 1, …, 4, showing the
convergence to zero with time

 

Fig. 6௒ Stability constraints derive from Lyapunov stability analysis
(a) (c1/c4) < 4p^1(t)p^5(t), (b) (c1/c2) < (4p^2(t)x

^
2(t)/x1

2(t))
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actual BG level. The rate of appearance of the meal disturbance in
the blood is depicted in Fig. 11. 

5௑Conclusion
A suitable yet simple adaptive state feedback control scheme is
designed for a non-linear intravenous T1DM patient model in the
presence of parametric uncertainty. To account for the stability of
the error during the design, an inherent parametric compensation
technique is proposed within the adaptation law framework. The
regulation of the glucose concentration and insulin injection profile
under parametric uncertainty and meal disturbances are obtained
for different patient scenarios through many random simulations.
The results of several simulations are depicted via CVGA plot. The
plot clearly reveals the reliability of the proposed control scheme in
maintaining the profile of glucose concentration and insulin
infusion similar to healthy subjects under parametric variability.
Also it avoids occurrences of severe hypoglycaemic events. The
advantage and flexibility in implementation of the proposed
method practically will be more obvious when it is applied to a

more complicated subcutaneous model and that will be treated as a
future work by the authors.
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