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Measures of peripheral perfusion can be used to assess the hemodynamic status

of critically ill patients. By monitoring peripheral perfusion status, clinicians can

promptly initiate life-saving therapy and reduce the likelihood of shock-associated death.

Historically, abnormal perfusion has been indicated by the observation of pale, cold, and

clammy skin with increased capillary refill time. The utility of these assessments has been

debated given that clinicians may vary in their clinical interpretation of body temperature

and refill time. Considering these constraints, current sepsis bundles suggest the need

to revise resuscitation guidelines. New technologies have been developed to calculate

capillary refill time in the hopes of identifying a new gold standard for clinical care.

These devices measure either light reflected at the surface of the fingertip (reflected

light), or light transmitted through the inside of the fingertip (transmitted light). These

new technologies may enable clinicians to monitor peripheral perfusion status more

accurately andmay increase the potential for ubiquitous hemodynamicmonitoring across

different clinical settings. This review will summarize the different methods available for

peripheral perfusion monitoring and will discuss the advantages and disadvantages of

each approach.

Keywords: capillary refill time, shock, sepsis, medical device, peripheral perfusion, optics, monitoring,

hemodynamic status

INTRODUCTION

Hemodynamic instability creates an imbalance between oxygen delivery and consumption and
is an important contributor to organ failure (1). Hemodynamic monitoring is crucial to identify
inadequate tissue perfusion in order to prevent organ dysfunction and death (2). Both global and
peripheral biomarkers of tissue perfusion are used clinically as proxies for hemodynamic status.
Global measurements often require invasive techniques, and the extent to which they reflect tissue
oxygenation has been questioned (3).

Blood is diverted from less vital to more vital organs in response to circulatory failure (3–5).
Compared to central organs, the peripheral, non-vital organs are the first to reflect hypoperfusion
during shock and the last to reperfuse during resuscitation (6). As a result, clinicians shift from
global to peripheral perfusion monitoring to promptly recognize deteriorating clinical status and
to assess the effectiveness of resuscitation therapy (7). Measures of peripheral tissue perfusion have
emerged as important tools tomonitor the hemodynamic status of critically ill patients. Efforts have
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been made to determine the ideal method for assessing
peripheral perfusion status, which should be non-invasive, rapid,
reproducible, and easily measured.

Shock is the clinical manifestation of acute circulatory failure.
It is characterized by signs of tissue hypoperfusion (8) and leads
to impairments in cellular oxygen delivery (9, 10). Septic shock
is a form of distributive shock that results from dysregulations
in the host inflammatory response to infection (11). As a leading
healthcare burden, septic shock accounts for one-third to one-
half of all deaths occurring in hospital settings (12), with roughly
32 million sepsis cases per year (13). Given that peripheral
perfusion status can be used to quickly assess shock severity
(14), hemodynamic monitoring can allow clinicians to promptly
initiate therapy, evaluate the effectiveness of interventions, and
assess the patient throughout their recovery.

The monitoring of peripheral perfusion status is a central
element to patient care. Methods to perform this measurement
are of interest and can be complicated. Major modalities that
are used to measure peripheral perfusion status include capillary
refill time (CRT) and temperature. New technologies have been
developed to calculate CRT. These devices measure either light
reflected at the surface of the fingertip (reflected light), or light
transmitted through the inside of the fingertip (transmitted
light). These new approaches can enable clinicians to non-
invasively monitor hemodynamic status withmore accuracy than
traditional measurements andmay become a very valuable aspect
of clinical medicine. This review will discuss the pros and cons
of the available methods to monitor peripheral perfusion in
critically ill patients. The available techniques will be grouped
according to their mechanism of monitoring perfusion status,
including reflected light, transmitted light, and temperature.
Within these categories, the techniques will be further delineated
as either subjective or objective methods of monitoring. This
review therefore provides a novel schema for classifying the
available methods of monitoring peripheral perfusion (Table 1).

METHODS TO MONITOR PERIPHERAL
PERFUSION

Capillary Refill Methods
Capillary refill time is the time it takes for the color of a
distal capillary bed to return to baseline after applying enough
pressure to cause blanching. Delayed CRT is defined as >2 s
(46) and indicates abnormal circulatory status (47). CRT is used
clinically to assess peripheral circulation for signs of shock and
dehydration (21).

Abbreviations: CRT, Capillary refill time; AUC, area under the curve; SOFA,

sequential organ failure assessment; ICC, interclass correlation; RBC, red blood

cell; DCRT, digitally measured capillary refill time; N, newton; SDF, sidestream

dark field; NIRS, near infrared spectroscopy; PPI, peripheral perfusion index;

PtcO2 , transcutaneous carbon dioxide tensions; OCT, 10 min-oxygen challenge

test; OCI, oxygen challenge index; Q-CRT, quantified CRT; qSOFA, quick

sequential organ failure assessment; SIRS, systemic inflammatory response

syndrome; BRT, blood refill time; CRI, capillary refill index; StO2, peripheral tissue

oxygen saturation; VOT, vascular occlusion test; TLI, total light intensity; Tc-toe,

central-to-toe; Tskin-diff, forearm-to-fingertip; LDF, laser doppler flowmetry.

Reflected Light and Surface Color Changes
Subjective Measures
Clinicians routinely measure CRT using the naked eye. The value
of these measurements in hemodynamic monitoring has been
widely studied. Ait-Oufella et al. (15) examined septic shock
patients 6 h after resuscitation. The investigators found that
prolonged CRTwas a strong predictive factor of 14-daymortality.
Hernandez et al. (4) studied a mixed severe sepsis/septic shock
population 6 h after resuscitation. The authors found that CRT
<4 s was associated with correction of hyperlactatemia at 24 h.
van Genderen et al. (16) examined the diagnostic accuracy of
different peripheral perfusion measures in identifying surgical
patients at high risk of developing post-operative complications.
The investigators reported that CRT displayed the highest
diagnostic accuracy [area under the curve (AUC) 0.91] and was
independent of systemic hemodynamics. Hernandez et al. (17)
compared organ dysfunction in septic shock patients 72 h after
different methods of resuscitation. The authors reported that
peripheral perfusion–targeted resuscitation was associated with
less organ dysfunction compared to lactate-targeted resuscitation
[mean sequential organ failure assessment (SOFA) score 5.6 vs.
6.6]. Peripheral perfusion–targeted resuscitation also trended
toward reduced 28-day mortality, but did not reach the proposed
statistical significance threshold (p = 0.06). Zampieri et al.
(48) reassessed the results of this trial using both a post-
hoc Bayesian analysis and a mixed logistic regression analysis.
The authors reported a very high probability that peripheral
perfusion–targeted resuscitation results in lower mortality and
faster resolution of organ dysfunction than lactate-targeted
resuscitation strategies. These findings highlight the prognostic
value and therapeutic potential of the manual CRT-test.

Subjective CRT measurements are quick, convenient, non-
invasive, and inexpensive methods of measuring hemodynamic
status. However, there are important limitations. Measurements
can be confounded by ambient (49–51), skin (49, 52, 53), and
core temperature (50), ambient lighting (54), gender and age (50–
52). Clinicians may interpret surface color changes differently,
which raises concerns about the reliability of the CRT-test. Ait-
Oufella et al. (15) found that CRT is very reproducible with
an excellent inter-rater concordance (80%: index finger; 95%:
knee). van Genderen et al. (16) reported a good overall agreement
for inter-rater reliability of CRT between different examiners
on different post-operative days (κ = 0.74–0.91). However,
Alsma et al. (55) reported that inter-observer agreement on
CRT is moderate at best, and higher for the distal phalanx (κ
= 0.40) than for the sternum (κ = 0.30). Brabrand et al. (56)
found only moderate inter-observer reliability (κ = 0.56) when
observers categorized CRT as normal or abnormal. When CRT
was measured in seconds, the investigators found an acceptable
interclass correlation (ICC) of 0.62. Quantitative measures of
CRT with clearly defined cut-offs appear to reduce discrepancies
between observers (57).

It is possible that training may improve the reproducibility of
the CRT-test. In our laboratory, we analyzed CRT measurements
made by observers with varying training levels (58). We found
that the mean intra-observer reliability was higher in clinicians
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TABLE 1 | Summary of the available methods used to monitor peripheral perfusion.

Method Subjective measures Objective measures

Reflected light Manual CRT (4, 15–17)

– Quick, convenient, non-invasive, and inexpensive

– Results in lower mortality and faster resolution of

organ dysfunction than other resuscitation strategies

(i.e., lactate)

– Confounded by ambient/skin/core temperature,

ambient lighting, gender, and age

– Debatable interrater reliability

DCRT (18)

– More accurate than clinical assessment

– Limited in populations with darker skin

Polarization spectroscopy (19)

– Measurements correspond with the clinical definition of manual CRT

– Time-consuming

– Limited in chaotic clinical settings

Novel device that adjusts for pressing strength/time (20)

– Allows for standardized protocols

– Limited in populations with darker skin

Automated, pneumatic device (21)

– Continuous measurements

– May reduce clinician burden and inter-observer variability

SDF (22–26)

– Low cost, good portability, high sensitivity

– Assesses deep sublingual arterioles

– Time-consuming

– Limited data utilization

Transmitted light N/A NIRS (27–30)

– Non-invasive, easily monitored, reproducible

– Time-consuming and expensive

PPI (31–35)

– Unambiguous, noninvasive, and continuous evaluations of perfusion status

– Correlates with other variables of peripheral perfusion (pulse pressure, systolic

blood pressure, calf blood-flow, oxygen delivery)

– Predicts impending shock and mortality in septic patients status post-

resuscitation

– Limited in patients with hypothermia, embolism, or local vasospasm

Q-CRT/BRT/CRI (14, 36–40)

– Quick, non-invasive, and reproducible measurements

– Predicts sepsis with same accuracy as lactate and qSOFA/SIRS scores

– May promptly identify abnormal peripheral perfusion and allow for

expedited treatment

Temperature Clinical estimates of cool extremities (41–43)

– Performed quickly and easily

– Provides valuable insight on perfusion status

– Large degree of inter-observer variability

– May be confounded by ambient temperature

Body temperature gradients (4, 44, 45)

– Greater accuracy and reproducibility than subjective assessments

– Limited in anesthetized and cardiac surgical patients

– May be confounded by ambient temperature

CRT, capillary refill time; DCRT, digitally measured capillary refill time; SDF, sidestream dark field; NIRS, near infrared spectroscopy; PPI, peripheral perfusion index; Q-CRT, quantified

CRT; BRT, blood refill time; CRI, capillary refill index; qSOFA, quick sequential organ failure assessment; SIRS, systemic inflammatory response syndrome.

than non-clinicians (0.46 vs. 0.25). It was also the highest
in attending physicians and physician assistants, followed
by residents, nurses, and non-clinicians. Standardization
of compression strength may also improve reproducibility.
Ait-Oufella et al. (15) reported excellent inter-rater concordance
using 15 s of firm pressure. Alsma et al. (55) found only slightly
higher inter-observer correlation using 15 s of pressure compared
to 5 s. Considering practicality in emergent settings, investigators
recommend the use of 5 s of moderate, firm pressure to perform
CRTmeasurements (55, 57). Standardization of the protocol may
help overcome the shortcomings in routinely measuring CRT.

Objective Measures
Technology has been developed to objectively calculate CRT.
These devices also measure reflected light, but eliminate the
variability that exists when clinicians manually measure CRT.

Shavit et al. (18) introduced the concept of digitally measured
CRT (DCRT). DCRT is calculated as the time between the release
of fingertip compression and the recovery frame. In children
with gastroenteritis, DCRT was more accurate at assessing
the presence of significant dehydration than overall clinical
assessment by experienced pediatric ED physicians (AUC 0.99
vs. 0.88). Kawaguchi et al. (20) developed a device that adjusts
for pressing strength and time to determine the characteristics
of the optimal fingernail compression. The authors reported
that fingernail compressions <2 s resulted in unreliable CRT
measurements. They found significant differences in CRT at
pressing strengths of 1 newton (N) and 3N, but no significant
differences between 3, 5, and 7N. The investigators therefore
recommended compressions using 3–7N of pressure for 2 s.
Development of devices that uniformly apply these compression
settings may improve the precision of hemodynamic monitoring
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in clinical settings. Using an automated, pneumatic device,
Blaxter et al. (21) reported a statistically significant increase
in CRT in the majority of patients who underwent forearm
cooling. As the device provides continuous measurements, it
can repeatedly monitor hemodynamic status while reducing
clinician burden and inter-observer variability. John et al. (19)
used video mode polarization spectroscopy to quantify changes
in red blood cell (RBC) concentration. The authors found that
tRtB1 (rapid return of RBC concentration to baseline after release
of fingertip pressure) corresponds best with the clinical definition
of visually inspected CRT. However, clinicians may actually
measure tpk (onset of hyperemia after resolution of blanching)
when they perform the test. The naked eye alone may therefore
be incapable of capturing the fundamentals of the CRT test.
Implementation of this software into clinical care may allow
clinicians tomonitor perfusion status and guide clinical decision-
making with more accuracy. However, this technology is limited
in chaotic clinical settings, where recorded video data can be
shaky and unfocused (36). In contrast to fingertip assessments,
certain technologies evaluate perfusion status via analysis of
reflected light at different areas of the peripheral surface.
Investigators have used sidestream dark-field (SDF) imaging (22,
23) to assess peripheral perfusion via evaluation of the sublingual
microcirculation. In critically ill patients, Klijn et al. (24) reported
that SDF assessed tissue perfusion and oxygenation was not
inferior to invasive hemodynamic measurements in monitoring
fluid responsiveness. SDF provides clear capillary imaging and
can evaluate deep sublingual arterioles (22, 25). However, a
large amount of data is discarded due to image quality artifacts
and manual tracing of the vessels is too time consuming to be
practical for clinical use. The development of automated devices
would increase the clinical utility of SDF measurements (26).

Objective CRT measurements provide detailed data, improve
reproducibility, and minimize observer bias. There are also
disadvantages. Technology that assesses skin color changes (18,
20) is limited in populations with darker skin. The current
design of these devices is impractical for routine use in clinical
settings (18) and the procedures are time-consuming (19).
Future research should focus on making adjustments that reduce
procedural time and allow these devices to be easily implemented
into patient care.

Transmitted Light and Spectrophotometric
Methods
New technologies measure peripheral perfusion by analyzing
light transmitted through the inside of the fingertip. Since
visual assessments cannot be performed, there are no subjective
measures of peripheral perfusion using this methodology.

Near infrared spectroscopy (NIRS) analyzes spectra in
the near-infrared range to quantify oxyhemoglobin and
deoxyhemoglobin levels in order to assess peripheral tissue
oxygen saturation (StO2) (27, 28). The utility of NIRS for
monitoring critically ill patients remains uncertain (28). Lima et
al. (29) investigated the relationship between thenar StO2 during
a vascular occlusion test (VOT) to the peripheral perfusion
status and clinical outcome of critically ill patients. The authors

reported a significantly lower baseline StO2 and StO2 recovery
rate in patients with abnormal peripheral perfusion compared
to patients with normal peripheral perfusion (72 vs. 81 and 1.9
vs. 3.2, respectively). These findings were independent of disease
condition and hemodynamic status. In a follow-up study, Lima
et al. (28) investigated the effect of peripheral vasoconstriction
on thenar StO2. After body surface cooling, the authors reported
a significant decrease in StO2 (82–72%) and StO2 recovery rate
(3.0–1.7%/s). Together, these findings suggest that peripheral
tissue oxygenation varies according to peripheral circulation
status. StO2 measurements should therefore be interpreted in
the context of other markers of peripheral circulation, such
as skin temperature. Given that perfusion status continually
changes in critically ill patients, clinicians must carefully
consider peripheral circulatory status when using NIRS for
hemodynamic monitoring. Although NIRS can non-invasively
evaluate perfusion, it is limited by the fact that the measurements
are time consuming and expensive (30).

Peripheral perfusion index (PPI) has been investigated for
its use in hemodynamic monitoring. Using pulse oximetry, PPI
is calculated from the ratio between the pulsatile and non-
pulsatile signals of absorbed light (31) and provides insight on
the circulatory status of vital organs during shock (32). In a
study on healthy newborn infants, Zaramella et al. (32) compared
the relationship between foot PPI and variables of peripheral
perfusion measured by NIRS on the calf. The authors reported
a significant correlation between foot PPI and both calf blood
flow (r = 0.32) and oxygen delivery (r = 0.32). In a study on
100 children undergoing hemodynamic monitoring, Sivaprasath
et al. (33) reported that PPI had a good correlation with pulse
pressure and systolic blood pressure in all age groups, and a weak
correlation with mean arterial blood pressure and diastolic blood
pressure. The authors concluded that a 57% reduction in PPI
from baseline may predict impending shock in children. He at
al. (34) explored the prognostic value of PPI in septic patients.
The authors reported that PPI was significantly correlated with
baseline transcutaneous carbon dioxide tensions (PtcO2), 10
min-oxygen challenge test (OCT) and oxygen challenge index
(OCI). The authors also found significantly lower PPI, 10 min-
OCT, and OCI values in non-survivors compared to survivors.
These variables predicted ICU mortality with similar accuracy
to arterial lactate level. PPI therefore appears to be a simple yet
powerful predictor of mortality in septic patients status post-
resuscitation. The results of these studies support the use of PPI
for unambiguous, non-invasive, and continuous evaluations of
global resuscitation status and outcome. However, PPI is limited
in patients with hypothermia, embolism, or local vasospasm
(35). Additional studies are necessary to support the routine
monitoring of PPI as a parameter to detect impending shock and
improve clinical outcomes.

Recent research has focused on the development of new
technology that quantifies CRT using a pulse oximeter, which
investigators have called quantified CRT (Q-CRT). Morimura et
al. (14) first introduced this method. The authors analyzed the
infrared transmitted light intensity (TLI) emitted from a pulse
oximeter senor. They defined Q-CRT as the time in seconds
from the release of fingertip compression to TLI reaching 90%
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of baseline. The authors reported that Q-CRT was significantly
correlated with blood lactate levels in ICU patients (rs = 0.681).
Q-CRT has also been correlated with venous blood lactate levels
in ED patients (37). Together, these results suggest that Q-
CRT might be an effective measure of insufficient global tissue
perfusion and shock in both the ICU and ED. In ED patients with
suspected infection, Yasufumi et al. (38) investigated the ability
of Q-CRT to predict sepsis compared with quick sequential
organ failure assessment (qSOFA) and systemic inflammatory
response syndrome (SIRS) scores. The authors reported that
the accuracy of Q-CRT in predicting sepsis was comparable
to qSOFA scores, SIRS scores, and lactate level. Q-CRT may
therefore be a quicker and non-invasive alternative to evaluate
patients with suspected sepsis.

In our laboratory, we modified the TLI calculation used to
measure Q-CRT. We modeled the curve fitting the recovery
phase of the TLI waveform as an exponential decay using the
least squares method, and measured the time at which the fitting
curve returned to 90% (Figure 1). This improved measurement
was named blood refill time (BRT) (39, 40) and later referred to
as capillary refill index (CRI) (36). In a healthy volunteer (39),
we found that our device successfully detected prolonged BRT
(5.8 s) after fingertip cooling to 22.8◦C. In 30 healthy volunteers
(40), we measured BRT at room temperature, after immersion in
cold water, and after re-warming by warm water. We reported
that the “cold” group had significantly longer BRT (4.67 s) than
the “room temperature” (1.96 s) and “re-warm” groups (1.96 s).
Our data suggests a causal relationship between temperature
and peripheral blood perfusion. Healthcare providers routinely
encounter patients with cool fingertips when performing bedside
evaluations of CRT. Our results suggest that clinicians should
interpret these measurements with caution when performed in
the setting of unknown fingertip temperature.

We compared the accuracy of CRI to CRT calculated via
software analysis of recorded fingertip compression videos
(36). We measured CRT and CRI at room temperature, after
immersion in cold water, and after re-warming by warm water.
To avoid procedural variability in compression, the fingertips
were compressed pneumatically for both CRI and CRT at the
same pressure and duration. We found that there was a strong
correlation between CRI and CRT (r = 0.89). We performed a
validation study in the ED to clinically evaluate the accuracy of
our device (36). We reported a strong correlation between CRI
and CRT (r= 0.76). Given the use of software analysis, we believe
our study provides reliable evidence that the CRI algorithm is
representative of the CRT measurements performed in clinical
practice. We also reported higher CRI and CRT in ED patients
compared to healthy volunteers at room temperature. Using
a Bland-Altman analysis, we found that CRI was consistently
higher than CRT (difference = +1.01). Although CRI and CRT
measurements both represent peripheral perfusion status, this
data suggests that the absolute value of the measurements may
not be equal. Because CRI was associated with a systematic bias
rather than random errors, we recommend it as a reliable and
objective alternative to the manual CRT-test.

Q-CRT/CRI minimizes observer variability and provides
immediate and reproducible data regarding the circulatory

status of critically ill patients. Given that resuscitation
strategies rooted in peripheral perfusion monitoring result
in lower mortality, faster resolution of organ dysfunction,
and decreased fluid requirements (17, 48), Q-CRT/CRI may
have tremendous clinical potential. However, future research
is necessary in populations of critically ill patients in order to
evaluate the efficacy of Q-CRT/CRI in lowering mortality and
reducing individual requirements (i.e., vasopressor, mechanical
ventilation, and renal replacement therapies). With further
clinical support, this technology may be a promising alternative
for continuous monitoring and spot check measurements of
peripheral perfusion.

TEMPERATURE

Body temperature is distributed both centrally (body
core) and peripherally (body shell and environment) (59).
Thermoregulatory status provides insight about the clinical
condition of patients in intensive/critical care units. In response
to shock, blood flow is restricted to central/vital organs at the
expense of peripheral organs. Peripheral temperature is therefore
used as an indicator of hemodynamic status (16, 60). Septic
shock is divided into two categories: “cold” and “warm” shock
(41, 61). Some authors believe that this distinction might confuse
the interpretation of perfusion state (62). Regardless, studies
show that peripheral temperature is still useful in differentiating
well-perfused from hypo-perfused patients (63).

Subjective Measures (Clinical Estimates)
Healthcare providers use clinical judgment to estimate peripheral
body temperature in order to quickly evaluate hemodynamic
status. In ICU patients, Kaplan et al. (42) compared clinician
assessment of distal extremity skin temperature (warm or cool)
to objective markers of hypoperfusion. The authors found that
patients with cool extremities had significantly higher serum
lactate levels and lower cardiac index compared to patients with
warm skin temperature. Hasdai et al. (43) reported that the
presence of cold and clammy skin was an independent predictor
of 30-day mortality in cardiogenic shock patients. 48 h after
resuscitation, Lima et al. (41) found that ICU patients with
cool extremities had significantly higher rates of organ failure
compared to patients with normal skin temperature (SOFA score
9 vs. 7).

Peripheral temperature measurements can be performed
quickly and easily while providing valuable insight on perfusion
status. However, there is a large degree of variability, since
what is considered “cool” to one clinician may not always be
consistent. Changes in ambient temperature may also affect
clinical estimates of skin temperature (41).

Objective Measures (Temperature
Gradients)
Body temperature gradients provide objective measures of
peripheral perfusion status. The gradients are created by
calculating the temperature difference between two points, such
as central-to-toe (Tc-toe), forearm-to-fingertip (Tskin-diff), and
peripheral-to-ambient. Skin temperature can be measured using
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FIGURE 1 | Mechanism of the CRI monitoring device. The curve fitting the recovery phase of the TLI waveform is modeled as an exponential decay using the least

squares method. CRI is measured as the time at which the fitting curve returns to 90% of baseline.

infrared thermometer (59), thermocouple disposable probes
(64), or infrared thermography (65). Regardless of the modality
used, these gradients provide non-invasive, accurate measures of
thermoregulatory peripheral vasoconstriction (66). In response
to shock, there is a reduction in fingertip blood flow in order
to maintain perfusion of vital organs. This causes Tskin-diff
and Tc-toe gradients to increase in the presence of constant
environmental conditions (60). Peripheral-to-ambient gradients
decrease during shock (3), despite some limitations that exist
from this interpretation and from using ambient temperature as
a marker.

In critically ill patients, Joly et al. (44) reported a significantly
lower toe-to-ambient gradient in non-survivors (0.9◦C) than in
survivors (3.4◦C). In septic patients, Hernandez et al. (4) found
that return of Tc-toe to normal within the first 6 h of resuscitation
was independently associated with successful resuscitation. It
was also predictive of hyperlactatemia normalization at 24 h.
In septic patients, Bourcier et al. (45) reported significant
decreases in toe-to-room temperature gradients in patients
who died from multiple organ failure (−0.2◦C) compared to
survivors (+3.9◦C). Toe-to-room temperature gradient was also
significantly correlated with other measures of tissue perfusion,
including urine output, arterial lactate level, knee CRT, and
mottling score.

Body temperature gradients provide better reproducibility
than clinical estimates of cool hands/feet (67) and are
more accurate reflections of peripheral blood flow than skin
temperature alone (3, 68, 69). Abnormal gradients can be used as
early indicators of abnormal perfusion, while therapeutic efficacy

can be monitored by normalization of the gradient (70). As
most critically ill adult patients undergo invasive monitoring,
the use of body temperature gradients provides a non-invasive,
economic, and effective alternative to monitor circulatory status
(59). However, body temperature gradients are limited in certain
populations, including anesthetized (71) and cardiac surgical
patients (72). Differences in ambient temperature between the
two measurement sites may also influence Tc-toe and Tskin-
diff gradients. However, any fluctuations in ambient temperature
should affect both sites similarly and minimize any potential
confounds (41).

RECOMMENDATIONS AND
CONCLUSIONS

In order to promptly initiate life-saving clinical interventions and
improve outcomes, an early recognition of shock is key. Many
authors therefore recommend peripheral perfusion measures
to continuously assess the hemodynamic status of critically ill
patients. However, current sepsis bundles suggest the need for the
reassessment of resuscitation guidelines. It appears that the use
of therapies guided by peripheral perfusion measurements result
in favorable clinical outcomes. It is important to acknowledge
that our review does not discuss all of the available technologies
that may be used to evaluate peripheral perfusion status, such
as laser doppler flowmetry (LDF), infrared thermography (73),
and PulseCam technology (74). Nevertheless, clinicians should
choose among the available techniques with an understanding of
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the pros and cons of each approach (Table 1). Newer technologies
that measure CRT, such as the objective CRI device used in
our laboratory, meet many of the important criteria of assessing
peripheral perfusion and are promising tools to monitor shock
status at the bedside. Future studies focused on peripheral
perfusion should further define the clinical implications of
these devices, including their utility in modulating response
to treatment. Adjustments should also be made to make the
devices more practical for routine clinical use. The ability of these
technologies to provide uniform/reproducible measurements
across different clinical settings, decrease the use of hospital

resources, and improve clinical outcomes would strengthen the
role of peripheral perfusion monitoring in the bedside evaluation
of hemodynamic status.
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