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Abstract
Herein, multivariate Lagrange's interpolation polynomial (MLIP) and multivariate least
square (MLS)methods are used to derive linear and higher‐order polynomials for two varied
applications. (1) For an effective fabrication of Pectin degrading Fe3O4‐SiO2 Nano-
biocatalyst activity (IU/mg).Here, the three parameters namely: pH value, pectinase loading
and temperature as independent variables are optimized for the maximal of anobiocatalyst
activity as a dependent variable. (2) For a passive system reliability estimation of decay heat
removal (DHR) of a nuclear power plant. The success criteria of the system depend on three
types temperature that do not exceed their respective design safety limits and are considered
as dependent variables and 14 significant parameters were used as independent variables.
Statistically, the validation of these multivariate polynomials are done by testing of hy-
pothesis. Comparative study of the proposed approach gives significance results in the first
application have the optimum conditions for maximum activity using linear MLIP method
is: 58.64 with pH= 4, pL= 250 and Temp= 4°C. Themaximum activity using second order
MLIP method is 59.825 and method of MLS is 59.8249 with the optimized values of an
independent variables pH = 4, pL = 300 and Temp = 8°C depicted in Table 1. In DHR
system, the significance results are obtained and depicted in Table 2.

1 | INTRODUCTION

Interpolation is one of the most important technique in nu-
merical analysis for the solutions of many real‐time

applications in science and engineering [1]. It is frequently
used to approximate the polynomials for a given set of data. In
most of the cases, an unique analytical expression can be
derived by interpolation of simple algebraic expressions such
as: polynomials, exponential, logarithmic functions and power
curves which enable us to represent a relationship between
dependent over independent variables [2]. However, for huge
data, derivation of interpolating polynomial is very tedious and
more time consuming. Alternatively, the regression analysis is
used to fit a relationship between the simulated values to the
actual data set. Clearly, it expresses a polynomial representation
depending on the existence of a relationship among various
independent variables. In some cases, the observed data are

imprecise while using the uncertainty theory to design the
uncertain regression model of these observed data as uncertain
variables [3]. Also, estimating the parameters of uncertain
regression model using principal of least square. Usually, the
least square method is used in linear regression for a best fit of
a line or curve. This method calculates to minimize the sum of
the squares of offsets for pairs of data points from a curve.
Squares of these offsets are called residuals [4, 5].

For any simulation study in science and engineering, it is not
always feasible to develop an exact representation of input and
output response. Also, if the problem is of higher dimension and
involves large amount of data, validation becomes difficult.
Hence, an universally acceptable method for a real‐time appli-
cation is never possible [2]. In such a case, the linear regression is
used for fitting as a special kind of multiple linear regression
models. This is a popular statistical technique that can be widely
used to derive the linear relationship between variables. Most
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frequently, the practical data have non‐linear or curvilinear
function representation the polynomial regressions methods are
appropriate. Also, the parameters of the polynomial regression
are determined bymethod of least square. This method having a
problem of computing the correlation coefficient among vari-
ables of the polynomial regression that possess an ill‐condi-
tioned/multi‐collinearity. It shows the computations of matrix
operations in least square method approaches to singular value.
Thus, the multi‐collinearity possess an unreliable of the param-
eter estimation in the polynomial regression over the large var-
iances [6, 7]. There aremany steps focused to fit better regression
models to understand the relationship between variables of the
data set, deriving relationship using prediction models, error
estimation and inferences about results of the prediction model
to fit actual data set and this will helps to determine the corre-
lation between the variables. Various regression analysis are used
for data fitting like: linear and multivariate linear regressions,
polynomial and multivariate polynomial regressions, and
quadratic polynomial regressions etc. [8]. The other methods
like, Response Surface Methodology (RSM), central composite
design experiment are used to fit a mathematical expression
between dependent over independent variables [9]. Generally,
the multivariate polynomial regression is extended from the
simple regression model [10]. The disadvantages of the multi-
variate regression models does not have scope for the smaller
data set with high‐levels of mathematical computations. Some-
times, the output of the model cannot be easily interpreted and
the error outputs are not identical. Reasonably for this situation,
most of the researchers preferred method of least square and
method of least absolute value to fit best curve fit. Also, to avoid
ill‐conditioned situation the multivariate Lagrange's interpo-
lating polynomial (MLIP) method is preferred as in view of its
simplistic approach [11], with error approaches to zero.

The objective of the present study is to fit a linear and higher‐
order polynomials byMLIP method and method of multivariate
least square (MLS) [10] for real‐time applications. Statistically,
the validation of derived polynomials by Chi‐square testing for
goodness of fit is applied [12], and the validation of huge number
of polynomials follows large sample test.

Herein, Section 2 discusses the related works. Schematic
representation with advantages of the proposed approach are
explained in Section 3. Section 4 discusses theMLIPmethod and
method of MLS is presented in Section 5. Proposed approach is
applied for two real‐time applications, the statistical validations
with comparative results are discussed in Section 6. Short sum-
mary of Matlab computations with statistical validations are
presented in Section 7 and Section 8 respectively. Finally, the
results and conclusions are summarized in Section 9.

2 | RELATED WORKS

Many of the real‐world applications have multiple input pa-
rameters and output responses. In such applications, multivar-
iate polynomial is derived for m input variables with degree p
over p + m combinations of p distinct data points [13]. These
methods are mathematically discussed using set of input

arguments in [14], the derived polynomials by rational numbers
[15] and Newton form of multivariate polynomial interpolation
are discussed in [2]. Regression model is more useful for pre-
dicting the forecasting technique of future values, data mining
and many applications in engineering domains. In addition, the
Bayesian latent factor regression for multivariate functional
data with variable selection in [16]. In chemical engineering
application, the optimization of acid dye bio‐sorption of
brewery waste biomass using RSM is considered. The per-
centage of removal efficiency is significantly influenced by time,
pH, adsorbent dosage with initial dye concentration and
multivariate polynomial methods are adopted subsequently
[17]. One‐Factor At‐a‐Time (OFAT) procedure is followed by
RSM with canonical analysis was used to optimize the immo-
bilization parameters such as: glutaraldehyde concentration, pH
value, temperature and pectinase loading for the effective
fabrication characterization and application of pectin degrading
Fe3O4‐SiO2 nanobiocatalyst were discussed in [9, 18]. The
other similar real‐world application where multivariate poly-
nomial is used as characterization of the relationship between
strains and drilling depth in a metallurgical plant is discussed in
[19]. Similarly, for the estimation of reliability of a passive decay
heat removal system of a nuclear power plant (NPP), one
simple approach to avoid rigorous computational exercise is by
adopting RSM [20]. Also, the regression analysis and curve
fitting models are used to approximate the analytic expression
of given discrete data. However, the linear and non‐linear
regression models are widely used for passive system reliability
estimation [21]. Multivariate polynomial fit based on the RSM
produces reasonably realistic estimation. The results are not
only computationally efficient but also consistent. The accuracy
and efficiency of this approach is compared to the direct
Monte–Carlo simulation [22]. The success criteria of the system
is taken from [23] and the failure probability evaluation of the
passive system analysis is verified with other techniques such as
fuzzy Monte–Carlo simulation [24]. Passive systems involves in
new generation nuclear design for safety‐critical functions
mainly concentrate to improve safety and reduce human errors
with low cost as well as avoid dependence on the external
power source. Moreover, the reliability estimation of passive
system is theoretically more reliable as compared to active
components. But, uncertainty involved in this system to be very
large. Therefore, we necessarily need to quantify the uncer-
tainty. Some uncertainties may happen due to insufficient in-
formation, such a case the fuzzy set theory is more appropriate
instead of probability concepts [21]. For instance, to handle
large amount of data with finite number of thermal‐hydraulic
code runs, the regression analysis was performed. To perform
an effective regression models, it is necessary to find the effect
of every input parameter that goes to into the system [25].

2.1 | Scope of the proposed study

From the above detailed review, the proposed study addresses
the research gap for polynomial contributions in real‐time
applications.
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1. To develop a relationship between several independent and
dependent variables,

2. Multivariate mathematical methods are preferred,
3. To validate the multivariate polynomials,
4. Testing of hypothesis is applied,
5. Different real‐time applications are discussed,
6. Comparative study of the proposed approach.

3 | SCHEMATIC REPRESENTATION OF
THE PROPOSED APPROACH

This section discusses the detailed workflow, proposed
approach, merits and demerits of the mathematical models for
real‐time applications.

3.1 | Context and solution technique

In this section, the aim of the study, mathematical methods,
procedure for deriving polynomials and validations are dis-
cussed in detail.

Aims: The advantages of multivariate polynomial methods
to develop the relationship between dependent and several
independent variables which will be used to identify the sig-
nificant contributor of the output in an application.

Methods: For the above context, the mathematical methods
are very much essential for solving real‐time applications.
Therefore, MLIP and method of MLS are preferred to fit a
linear and higher‐order polynomials for the above real‐time
applications. The necessary and sufficient condition for the
uniqueness of MLIP method is that the sample square matrix is
non‐singular [13, 26]. In practical application, if the sample
matrix is singular then the MLIP method fails (ill‐conditioned).
In such a case, the method of MLS is preferred to quantify the
polynomial coefficients [4]. Here, Microsoft Mathematics tool
and Matlab programming language were used for performing
high‐level computations of this approach. Thus, the list of
factors are ordered and is used to fit a multivariate polynomial
shown in Figure 1.

Procedure: A detailed procedure for deriving multivariate
polynomials with their statistical validation of the applications
are shown in Figure 2. The results were carried out and we
concentrated more on stress in the statistical validation to
assess the practical significance of the problem.

Polynomial Validation: To verify and validate the
multivariate linear and/or higher‐order polynomials by
testing of hypothesis is preferred. Moreover, the contribu-
tion of the statistical analysis is to assess the practical sig-
nificance of the testing results. Thus, the derivation of
multivariate polynomials depends on each sample square
matrix of the above methods. More clearly, the sample
square matrix is selected based on the size of sample runs.
The above mathematical methods are directly applied for
one and only one sample matrix to derive polynomial which
is possible only when the number of independent variables
involved in the practical application is same as the number

of sample runs (each non‐singular matrix of the method
derives one multivariate polynomial). Otherwise, if the size
of sample runs is more as compared to number of inde-
pendent variables, then more than one polynomial compu-
tation is applicable for the simulation study. Therefore, the
above methods are applicable for polynomial computations
while the selection of sample square matrices depending on
the combination among all sample runs, that is the size
of the sample runs N is more as compared to number of
variables K (selection of K multivariate vectors out of sam-
ple size N) then counting the selection of sample square
matrices is

N
K

� �

¼
N !

K!ðN − KÞ!
; K ¼ 0; 1; 2; 3…;N

Finally, validation of the derived polynomial follows small
sample test, if the number of sample square matrices are less or
equal to 30. Otherwise, the method follows large sample test. In
small sample test, the χ2 testing for goodness of fit is performed
in which the experimental outputs are taken as observed fre-
quency (Oi). The simulated outputs are the expected frequencies
(Ei) calculated from derived polynomials by both mathematical
methods which are treated as output arguments depending on
the corresponding input data set. To validate these polynomials,
the following hypothetical assumptions are:

1. Testing the hypothesis against the derived polynomials of
the application which depends on the number of matrices
(size say: n). Also, the null hypothesis of the problem is
decided based on the sample square matrices which are less
than or equal to 30.

2. Under H0: ‘The multivariate polynomial fit is good one’.
That is, there is no significant difference between the
observed and expected frequencies.
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F I GURE 1 Factors considered for fitting of multivariate polynomials
by mathematical methods
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3. Otherwise H1: ‘The multivariate polynomial fit is not good
one’. That is, there is a significant difference between the
observed and expected frequencies.

4. Test statistic: Under H0, the test statistic is given by

χ2 ¼
Xk

i¼1

ðOi − EiÞ
2

Ei
∼ ðk − 1Þ d: f

5. Inferences: Let χ2α be the table value of Chi‐square dis-
tribution at α level of significance with (k − 1) d.f. If the
hypothesis is accepted, then the polynomial fit is a true
representation of the problem under study. Otherwise, it

is concluded that the fit is not a true representation of
the application.

6. If the number of matrices are greater than 30 then to
validate the above null hypothesis under large sample test.

Case Study: There are two different applications were
discussed below.

1. Application of multivariate polynomial for estimation of
reliability for a safety‐critical system in an NPP.

2. An effective fabrication of pectin degrading Fe3O4‐SiO2

Nanobiocatalyst activity (IU/mg).

  Real-time
Applications

  Multivariate Lagrange’s
 Interpolation Polynomial
       Method (MLIP)

    Problems having
Several Independent 
    & Dependent 
         Variables

  Constructing a 
 Sample Square
       Matrix

Non-singular     Singular Method of Multivariate
   Least Square (MLS)

Fit a Linear and / or Higher
   Order Polynomials

Calculating Expected
 Frequency form the 
       Polynomials
(Simulated Outputs)
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         Fails  

   Inference on 
the Multivariate
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F I GURE 2 Detailed workflow for fitting of multivariate polynomials
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The mathematical approach for the solutions of above case
study are shown in Figure 3.

3.2 | Merits and De‐merits: multivariate
polynomial methods

The next section outlines the merits and demerits of the
mathematical methods in practical situations.

3.2.1 | Merits

The merits of the proposed work are discussed in the
following.

1. Mathematical relationship between variables response is
developed as a multivariate linear and higher‐order poly-
nomials using MLIP and/or MLS methods.

2. Extrapolating beyond the range of input arguments, the
input and output relationship is developed without
repeating the experiments (simulation).

3. The polynomial representation is quickly solvable and
consumes less time to obtain the desired results.

4. The verification and validation of the polynomials can be
carried out using χ2 testing for goodness of fit. Otherwise, it
follows large sample test.

5. The multivariate polynomial methods are more helpful for
further reliabilityquantifications insafety‐critical applications.

3.2.2 | Demerits

The demerits of the method is given below.

1. When the application consists of huge number of param-
eters, it is very tedious to develop an exact relationship
between input and output arguments.

2. The computational complexity increases with the number
of variables making tool‐based polynomial computation
difficult for method of MLS.

3. Derivation of second‐order polynomials is difficult; since
the method of MLS does not guarantee if the determinant
of sample square matrices are zero or tends to zero (ill‐
conditioned criterion).

The unique multivariate polynomial fit derived by MLIP
method is discussed in the next section.

4 | MULTIVARIATE LAGRANGE's
INTERPOLATING POLYNOMIAL

Let f(X1, X2, …, Xm) be multinomial function of m indepen-
dent variables x1, x2, …, xm over degree p in [27]. There are
(p + m)Cp = ρ as number of terms in f, the necessary con-
dition that ρ number of distinct data points f(x1,i, x2,i, …, xm,

i) = fi in Rmþ1 and f is uniquely defined [8, 10]. Then,

f ðX1;…;XmÞ ¼
X

ei: 1≤p
αei X

ei ; 1 ≤ i ≤ ρ ð1Þ

Where αei are the coefficients in f. The MLIP function is of
the form

LðxiÞ ¼
Xρ

i¼1
fi liðxÞ ð2Þ

Here, li(X ) is a multinomial function of several indepen-
dent variables X1, X2, …, Xm having the property that X is
equal to ith data point, that is X = xi (x1,i, x2,i, …, xm,i).
Moreover, li(X ) satisfies the following condition:

liðXÞ ¼
liðxiÞ ¼ 1; if j ¼ i;
ljðxiÞ ¼ 0; if j ≠ i:

�

ð3Þ

F I GURE 3 Multivariate polynomial fit: real‐
time applications
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The function fi gives system of linear equation

f i ¼
X

ei: 1≤p
αei x

ei
i ; 1 ≤ i ≤ ρ ð4Þ

The sample square matrix M ¼ xeji
� �

with determinant det
(M) is non‐singular. Therefore,

MjðXÞ ¼

xe11 … xeρ
1

⋮ ⋯ ⋮
xe1i ⋯ xeρ

i

⋮ ⋯ ⋮
xe1ρ ⋯ xeρ

ρ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

)jth row ð5Þ

At X = xi in Mj(X) has ith row appears twice, then
detððMjðXÞÞiÞ ¼ 0 for ði ≠ jÞ. Hence, liðXÞ ¼ ΔiðXÞ

Δ . The
unique multivariate linear and higher‐order polynomial is

f ðX1;X2;…;XmÞ ¼
Xρ

i¼1

ΔiðXÞ
Δ
� f i ð6Þ

If MLIP method fails, then the method of MLS is preferred.

5 | METHOD OF MULTIVARIATE
LEAST SQUARE

The method of MLS for second‐order polynomial over three
independent variables has the form

t0 ¼ tf ð7Þ

Consider tf = a0 + b0x + c0y + d0z + e0xy + f 0yz +
g0zx + h0x2 + k0y2 + m0z2. Estimation of the polynomial co-
efficients a0, b0, c0, d0, e0, f 0, g0, h0, k0, m0 by applying method of
MLS to minimize error Emls from the actual k data points.

Emls ¼
Xk

i¼1
t0i − tf
� �2

ð8Þ

Take partial derivatives of Emls in Equation (8) with respect
to a0, b0, c0, d0, e0, f 0, g0, h0, k0, m0 and equating to zero have the
following equations:

The set of equations (9) to (18) can be rearranged into
matrix form by

Xk

i¼1
ti ¼ na0 þ b0

Xk

i¼1
xi þ c0

Xk

i¼1
yi þ d0

Xk

i¼1
zi

þ e0
Xk

i¼1

xiyi þ f 0
Xk

i¼1

yizi þ g0
Xk

i¼1

zixi þ h0
Xk

i¼1

x2i

þ k0
Xk

i¼1
y2i þm0

Xk

i¼1
z2i

ð9Þ

Xk

i¼1
xiti ¼ a0

Xk

i¼1
xi þ b0

Xk

i¼1
x2i þ c0

Xk

i¼1
xiyi

þ d0
Xk

i¼1
zixi þ e0

Xk

i¼1
x2i yi þ f 0

Xk

i¼1
xiyizi

þ g0
Xk

i¼1
zix2i þ h0

Xk

i¼1
x3i þ k0

Xk

i¼1
xiy2i þm0

Xk

i¼1
xiz2i

ð10Þ

Xk

i¼1
yiti ¼ a0

Xk

i¼1
yi þ b0

Xk

i¼1
xiyi þ c0

Xk

i¼1
y2i þ d0

Xk

i¼1
ziyi

þ e0
Xk

i¼1
xiy2i þ f 0

Xk

i¼1
y2i zi þ g0

Xk

i¼1
xiyizi

þ h0
Xk

i¼1
x2i yi þ k0

Xk

i¼1
y3i þm0

Xk

i¼1
yiz

2
i

ð11Þ

Xk

i¼1
ziti ¼ a0

Xk

i¼1
zi þ b0

Xk

i¼1
xizi þ c0

Xk

i¼1
yizi

þ d0
Xk

i¼1
z2i þ e0

Xk

i¼1
xiyizi þ f 0

Xk

i¼1
yiz

2
i

þ g0
Xk

i¼1

xiz2i þ h0
Xk

i¼1

x2i zi þ k0
Xk

i¼1

y2i zi þm0
Xk

i¼1

z3i

ð12Þ

Xk

i¼1

xiyiti¼a
0
Xk

i¼1

xiyi þ b0
Xk

i¼1

x2i yi þ c0
Xk

i¼1

xiy2i þ d0
Xk

i¼1

xiyizi

þ e0
Xk

i¼1

x2i y
2
i þ f 0

Xk

i¼1

xiy2i zi þ g0
Xk

i¼1

x2i yizi

þ h0
Xk

i¼1
x3i yizi þ k0

Xk

i¼1
y3i xi þm0

Xk

i¼1
xiyiz

2
i

ð13Þ

Xk

i¼1
yiziti ¼ a0

Xk

i¼1
yizi þ b0

Xk

i¼1
xiyizi þ c0

Xk

i¼1
y2i zi þ d0

Xk

i¼1
yiz

2
i

þ e0
Xk

i¼1
xiy2i zi þ f 0

Xk

i¼1
xiy2i z

2
i þ g0

Xk

i¼1
xiyiz

2
i

þ h0
Xk

i¼1

x2i yizi þ k0
Xk

i¼1

y3i zi þm0
Xk

i¼1

yiz
3
i

ð14Þ
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Xk

i¼1
xiziti ¼ a0

Xk

i¼1
xizi þ b0

Xk

i¼1
x2i zi þ c0

Xk

i¼1
xiyizi þ d0

Xk

i¼1
xiz2i

þ e0
Xk

i¼1
x2i yizi þ f 0

Xk

i¼1
xiyiz

2
i þ g0

Xk

i¼1
x2i z

2
i

þ h0
Xk

i¼1

x3i zi þ k0
Xk

i¼1

xiy2i zi þm0
Xk

i¼1

xiz3i

ð15Þ
Xk

i¼1
x2i ti ¼ a0

Xk

i¼1
x2i þ b0

Xk

i¼1
x3i þ c0

Xk

i¼1
x2i yi þ d0

Xk

i¼1
x2i zi

þ e0
Xk

i¼1
x3i yi þ f 0

Xk

i¼1
x2i yizi þ g0

Xk

i¼1
x3i zi

þ h0
Xk

i¼1

x4i þ k0
Xk

i¼1

x2i y
2
i þm0

Xk

i¼1

x2i z
2
i

ð16Þ

Xk

i¼1
y2i ti ¼ a0

Xk

i¼1
y2i þ b0

Xk

i¼1
xiy2i þ c0

Xk

i¼1
y3i þ d0

Xk

i¼1
y2i zi

þ e0
Xk

i¼1

xiy3i þ f 0
Xk

i¼1

y3i zi þ g0
Xk

i¼1

xiy2i zi

þ h0
Xk

i¼1

x2i y
2
i þ k0

Xk

i¼1

y4i þm0
Xk

i¼1

y2i z
2
i

ð17Þ
Xk

i¼1
z2i ti ¼ a0

Xk

i¼1
z2i þ b0

Xk

i¼1
xiz2i þ c0

Xk

i¼1
yiz

2
i þ d0

Xk

i¼1
z3i

þ e0
Xk

i¼1
xiyiz

2
i þ f 0

Xk

i¼1
yiz

3
i þ g0

Xk

i¼1
xiz3i

þ h0
Xk

i¼1

x2i z
2
i þ k0

Xk

i¼1

y2i z
2
i þm0

Xk

i¼1

z4i

ð18Þ

Xk

i¼1

n xi yi zi xiyi yizi zixi x2i y2i z2i

xi x2i xiyi zixi x2i yi xiyizi zix2i x3i xiy2i xiz2i

yi xiyi y2i ziyi xiy2i y2i zi xiyizi x2i yi y3i yiz
2
i

zi xizi yizi z2i xiyizi yiz
2
i xiz2i x2i zi y2i zi z3i

xiyi x2i yi xiy2i xiyizi x2i y
2
i xiy2i zi x2i yizi x3i yizi y3i xi xiyiz

2
i

yizi xiyizi y2i zi yiz
2
i xiy2i zi y2i z

2
i xiyiz

2
i x2i yizi y3i zi yiz

3
i

zixi x2i zi xiyizi xiz2i x2i yizi xiyiz
2
i x2i z

2
i x3i zi xiy2i zi xiz3i

x2i x3i x2i yi x2i zi x3i yizi x2i yizi x3i zi x4i x2i y
2
i x2i z

2
i

y2i xiy2i y3i y2i zi xiy3i y3i zi xiy2i zi x2i y
2
i y4i y2i z
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The above Equation (19), can be written as the Van-
dermonde square matrix over three independent variables.
Then,

1 x1 y1 z1 x1y1 y1z1 z1x1 x21 y21 z21
1 x2 y2 z2 x2y2 y2z2 z2x2 x22 y22 z22
1 x3 y3 z3 x3y3 y3z3 z3x3 x23 y23 z23
1 x4 y4 z4 x4y4 y4z4 z4x4 x24 y24 z24
1 x5 y5 z5 x5y5 y5z5 z5x5 x25 y25 z25
1 x6 y6 z6 x6y6 y6z6 z6x6 x26 y26 z26
1 x7 y7 z7 x7y7 y7z7 z7x7 x27 y27 z27
1 x8 y8 z8 x8y8 y8z8 z8x8 x28 y28 z28
1 x9 y9 z9 x9y9 y9z9 z9x9 x29 y29 z29
1 x10 y10 z10 x10y10 y10z10 z10x10 x210 y210 z210
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Van ∗ Amls ¼ Y ð21Þ

Now, premultiply by VanT on both sides of Equation (21).
Then,

ðVanT ∗ VanÞ ∗ Amls ¼ ðVanÞT ∗ Y

Therefore, the co‐efficient of MLS is computed as

Amls ¼ ðVanT ∗ VanÞ−1 ∗ VanT∗ Y ð22Þ

The matrix Amls gives the coefficient of the second‐
order multivariate polynomial. This way, MLS can be used
to fit a polynomial for real‐time applications with large
number of parameters. In the next section, application of
both mathematical methods are demonstrated through case
studies.

6 | CASE STUDY

In this section, two different case studies were discussed.
The approach for the relationship between case studies and

mathematical methods as graphically shown in Figure 3.
The detailed workflow for fitting linear and higher‐order
multivariate polynomials were shown in Figure 2. Moreover,
the solution methodology described by three steps to
solve the real time applications are listed in the following
order.

1. A brief study and objective of the applications
2. Mathematical analysis (derivation of polynomials)
3. Statistical validation of the polynomials (testing of

hypothesis)
4. Comparative study of the proposed approach

The statistical validation procedure for the derived multi-
variate polynomial is shown in Figure 4.

6.1 | Application 1: an effective fabrication of
pectin degrading Fe3O4‐SiO2 nanobiocatalyst
activity (IU/mg)

This application belongs to chemical engineering domain and
the detailed experiments are discussed in Sections 6.1.1 and
6.1.2. From the detailed description of problem, the proposed
study leads further to a mathematical analysis presented in
Section 6.1.3 onwards.

6.1.1 | Synthesis of ASMPNs and its pectinase
immobilization

Magnetic Nano‐Particles (MNPs) was synthesized using
FeCl2 ⋅ 4H2O and FeCl3 ⋅ 6H2O with molar ratio of 1:2 in

DHR Problem
Chemical Problem

Mathematical
    Methods

MLIP Method
of MLS

     Linear 
Polynomials

Higher Order
 Polynomials

     Small
Sample Test

     Large 
Sample Test

   Chi-Square Test
for Goodness of Fit

Normal Probability
     Distribution

F I GURE 4 Statistical validation procedure for derived multivariate
polynomial models

180 - MUTHUSAMY ET AL.



deionized water with NH4OH as reducing agent. Silica was
coated onto the MNPs using detraethoxyortho silicate.
Amino (NH2) functional group was imparted using APTES
(3‐aminopropyl triethoxysilance). The resulting Silica‐Coated
Amino functionalized Magnetic Nano‐Particles (ASMNPs)
was activated using glutaraldehyde solutions [18]. The acti-
vation was carried out by varying the concentration of
glutaraldehyde (0–12)%. 5 mg of activated ASMPs was
added to the micro litres of pectinase solution (50, 100, 150,
200, 250, 300 and 350) using acetate and phosphate buffer
for various pH (3, 4, 5, 6, 7 and 8) and sonicated for 5 min.
The resulting mixture was stored for 1 h at different tem-
perature (0, 4, 8, 12 and 16) for immobilization. The
nanoparticles was removed using permanent magnet and
washed with clean deionized water.

6.1.2 | Activity of Fe3O4‐SiO2 nanobiocatalyst

The activity of pectin degrading Fe3O4‐SiO2 nanobiocatalyst
was determined by measuring the reducing sugar produced
as a result of reaction between pectinase and pectin. About
500 μL of varying concentrations of pectinase (free pecti-
nase and bound pectinase separately) solution was prepared
using 0.1 M acetate buffer and this was added to 1.0 ml of
pectin solution (prepared using 0.1 M acetate buffer) con-
taining 2.0 mg of pectin. The reaction mixture was incu-
bated for 1 h at 50°C under shaking condition. The
concentration of reducing sugar (galacturonic acid) in the
supernatant was estimated by DNS method as described by
Miller (1959) using D‐(+)‐galacturonic acid monohydrate as
standard [18, 28]. One unit of pectinase activity (IU/mg) is
defined as the amount of galacturonic acid produced (mol)
per mg of pectinase per min at pH 4.0 and 50°C. The
maximum activity of Fe3O4‐SiO2 nanobiocatalyst activity was
achieved using 10% glutaraldehyde [9]. All experiments were
carried out in triplicates and the mean values were calculated
to achieve accuracy.

6.1.3 | Mathematical analysis

The aim of the current study is to derive a linear and higher
order polynomial by MLIP and method of MLS. For this
problem, the One‐Factor At‐a‐Time (OFAT) procedure is
followed by RSM and canonical analysis is used to optimize the
immobilization parameters. Based on the previous study [9],
three parameters were found to be governing and hence these
three independent variables namely: pH, pectinase loading and
temperature were optimized for their maximal Fe3O4‐SiO2

nanobiocatalyst activity (IU/mg) which is a dependent variable.
The levels obtained from OFAT loading for three independent
variables were pH (4.0–6.0); pectinase loading (200–300 μg);
and temperature (0–8°C). This experimental analysis is more
useful for fitting of polynomials by these mathematical
methods.

6.1.4 | MLIP method for Linear Polynomial
Computation

The MLIP method is applied to derive a linear multivariate
polynomial as similar to previous case study. The results of 20
runs for three independent variables such as, pH value (pH),
pectinase loading (pL) and temperature (Temp), as reported in
[9] are given in column 1 of Table 1. Out of these 20 sample run,
four samples selected in random are (4, 300, 8), (5, 250, 4), (4,
200, 8) and (6, 300, 8) with corresponding activity values being
56.95, 54.5, 55.43 and 48.67 respectively. The sample square
matrix is

M ¼

4 300 8 1
5 250 4 1
4 200 8 1
6 300 8 1

0

B
B
@

1

C
C
A ð23Þ

and det(M) = 800 which is non‐singular.

M1 ¼

pH pL Temp 1
5 250 4 1
4 200 8 1
6 300 8 1

0

B
B
@

1

C
C
A;

M2 ¼

4 300 8 1
pH pL Temp 1
4 200 8 1
6 300 8 1

0

B
B
@

1

C
C
A;

M3 ¼

4 300 8 1
5 250 4 1
pH pL Temp 1
6 300 8 1

0

B
B
@

1

C
C
A;

M4 ¼

4 300 8 1
5 250 4 1
4 200 8 1
pH pL Temp 1

0

B
B
@

1

C
C
A

The determinant of the matrices M1, M2, M3 and M4 is

detðM1Þ ¼ 8pL − 400pH

detðM2Þ ¼ 1600 − 200Temp

detðM3Þ ¼ 100Temp − 8pLþ 1600

detðM4Þ ¼ 400pH þ 100Temp − 2400

ð24Þ

Using Equation (6), a unique linear polynomial derived by
the MLIP method is

f ¼
19pL
1250

−
207pH
50

−
49Temp

80
þ
1477
20

ð25Þ

MUTHUSAMY ET AL. - 181



Using this polynomial in Equation (25), expected fre-
quency is obtained for the remaining 16 runs mentioned in
Table 1.

6.1.5 | MLIP method for second order
polynomials

A method for computing linear polynomial is extended for
deriving second‐order polynomials by MLIP method. For
three independent variables, this approach involves a
maximum of nine variables with a constant: 1, pH, pL, Temp,
(pH� pL), (pL � Temp), (pH � Temp), (pH)2, (pL)2, (Temp)2

having the sample square matrix order 10. Therefore, consider
a set of data for deriving the second‐order polynomial, a
randomly selected samples of 10 runs as (5, 250, 4), (5, 250, 8),
(6, 200, 8), (4, 200, 4), (6, 300, 0), (6, 250, 4), (4, 250, 4), (6, 300,
8), (5, 200, 4) and (6, 200, 0) and their corresponding experi-
mental outputs being 54.89, 52.87, 48.2, 56.56, 49.98, 51.95,
59.3, 48.67, 53.08 and 49.02, respectively. The derived second‐
order polynomial is given by

f ðpH ; pL;TempÞ
¼ 40:51500 − ð5:40250� pHÞ þ ð0:22570� pLÞ
þ ð2:7087500� TempÞ
− ð0:01860� pH � pLÞ − ð0:00061250� pL� TempÞ
− ð0:24312500� pH � TempÞ þ 0:7350� ðpHÞ2

− 0:0002090� ðpLÞ2

− 0:153750� ðTempÞ2

ð26Þ

6.1.6 | Method of MLS for second order
polynomials

From Table 1, temperature variable is zero and therefore the
determinant of sample square matrices are singular. In this
case, the MLIP method is not applicable (Refer Section 6.1.4).
Therefore, the method of MLS is preferred to derive a second‐
order polynomial. For this approach, the sample runs are
assumed from the above MLIP method having maximum of
nine variables involved in the polynomial which includes
constant. Using Equations (20) and (22), the Vandermonde

TABLE 1 Observed and expected temperature frequency for single polynomial computation

S. No pH, pL Temp Original Values (Oi)

Linear Poly.
MLIP

Second order
Polynomial ‐
MLIP method

Second order
Polynomial ‐
Method of MLS

(Ei) (Ei) (Ei)

1 (4, 300, 8) 56.95 56.96 59.825 59.82499999

2 (5, 250, 4) 54.89 54.50 54.890 54.87999999

3 (5, 250, 0) 53.56 56.95 51.990 51.98999999

4 (5, 250, 8) 52.87 52.05 52.870 52.85999999

5 (5, 250, 4) 54.39 54.50 54.890 54.88999990

6 (6, 200, 8) 48.20 47.15 48.200 48.19999999

7 (4, 200, 4) 56.56 57.88 56.560 56.54999990

8 (5, 250, 4) 54.67 54.50 54.890 54.88999999

9 (5, 250, 4) 54.50 54.51 54.890 54.88999999

10 (6, 300, 0) 49.98 53.57 49.980 49.97999990

11 (4, 300, 8) 57.45 56.95 59.825 59.82499999

12 (6, 250, 4) 51.95 50.36 51.950 51.93999999

13 (4, 200, 8) 55.43 55.42 55.635 55.63499999

14 (5, 250, 4) 54.78 54.50 54.890 54.88999999

15 (4, 250, 4) 59.30 58.64 59.300 59.29999990

16 (6, 300, 8) 48.67 48.66 48.670 48.66599990

17 (5, 300, 4) 54.34 55.26 55.655 55.65499999

18 (5, 200, 4) 53.08 53.74 53.080 53.07999990

19 (5, 250, 4) 54.74 54.50 54.890 54.88999999

20 (6, 200, 0) 49.02 52.05 49.020 49.01899990
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matrix obtained using three independent variables for second‐
order polynomial is given by

1 5 250 4 1250 1000 20 25 62500 16
1 5 250 8 1250 2000 40 25 62500 64
1 6 200 8 1200 1600 48 36 40000 64
1 4 200 4 800 800 16 16 40000 16
1 6 300 0 1800 0 0 36 90000 0
1 6 250 4 1500 1000 24 36 62500 16
1 4 250 4 1000 1000 16 16 62500 16
1 6 300 8 1800 2400 48 36 90000 64
1 5 200 4 1000 800 20 25 40000 16
1 6 200 0 1200 0 0 36 40000 0

0
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ð27Þ

Thus, using Equation (22), the second‐order polynomial is

f ðpH ; pL;TempÞ
¼ 40:51500000109080 − ð5:40250057412231� pHÞ:
þ ð0:22569998099311� pLÞ
þ ð2:70875044599233� TempÞ
− ð0:01860000318557� pH � pLÞ
− ð0:00061250007178� pL� TempÞ
− ð0:24312500483848� pH � TempÞ
þ 0:73499991762037� ðpHÞ2

− 0:00020900000045� ðpLÞ2

− 0:15374999999995� ðTempÞ2

ð28Þ

We observe that, the second‐order polynomial fit by both
mathematical methods are closer and the maximum activity
values are depicted in Table 1.

6.1.7 | Chi‐square testing for goodness of fit

To validate the above all polynomials, the χ2 testing for goodness
of fit is applied which consists of the following five steps:

Step 1 Null hypothesis H0: “The multivariate poly-
nomial fit is good one”. That is, there is no significant
difference between the observed and expected fre-
quencies. Hence, H0: ∑k

i¼1Oi ¼∑k
i¼1Ei.

The observed frequency as the original experimental values
and its corresponding expected frequency is the simulated

outputs calculated from the linear MLIP polynomial using
Equation (25), and second order polynomials using Equations
(26) and (28) respectively.

Step 2 Alternative hypothesis H1: ‘The multivariate
polynomial fit is not good one’. That is, there is a
significant difference between the observed and ex-
pected frequencies. Hence, H1 : ∑k

i¼1Oi ≠ ∑k
i¼1Ei.

Step 3 Under H0, the χ2 test statistic is:

χ2 ¼
Xk

i¼1

ðOi − EiÞ
2

Ei
∼ ðk − 1Þ d:f

¼ 0:000007449600 ðfor linear polynomial by MLIPÞ

¼ 0:000017738610 ðfor 2nd order polynomial by MLIPÞ

¼ 0:000007756862 ðfor 2nd order polynomial by MLSÞ

From the above test statistic, we observe that there is a
negligible error difference between estimated and actual values
showing good inferences about the polynomials.

Step 4 The table value of χ2 distribution for 3 degree of
freedom to fit linear polynomial by MLIP method at
α = 0.05 level of significance is χ2α = 7.815. For both
the MLIP and MLS methods, the table for fitting of
second‐order polynomials at 9 degree of freedom with
α = 0.05 level of significance is 16.919.

Step 5 The data yields a value for the Chi‐squared test
statistic (calculated value) which does not exceed
theoretical value for both polynomial methods.
Therefore, H0 is accepted.

The observed and expected frequencies for linear and
second‐order polynomials are shown in Table 1 and the
comparisons are graphically shown in Figure 5. It is inferred
from Figure 5 that there is no significant difference between
the observed and expected frequencies obtained by methods.
Hence, it may be concluded that ‘the multivariate polynomial
is a good fit’.

In this small sample test, polynomials are derived using
only one sample square matrix as four out of 20 sample runs
using MLIP method and 10 out of 20 sample runs using MLS
method with their polynomial validation is accepted.

6.1.8 | Normal distribution curve fit

Increases in polynomial validation follows large sample test. The
hypothesis of the problem is similar to small sample test. The
normal distribution curve can be drawn by experimental values
versus the simulated outputs estimated by the polynomials.
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1. Method of MLIP for Linear Polynomial: There are 20
sample runs over three independent variables as inputs
which adopt only maximum four sample runs for simulating
each polynomial computation. Therefore, totally, 20C4

combinations of sample runs gives 2170 linear polynomials
in which the sample square matrices are non‐singular out of
4845 combinations and remaining 2676 matrices are sin-
gular (ill‐conditioned). Hence, the linear polynomials eval-
uated using these samples run to fit a normal curve. The
approximation of normal curve fit and its average

probability plots are taken from 2170 polynomials per each
sample matrix are shown in Figure 6 and Figure 7. The
mean and standard deviation of the distribution is 54.2341
and 2.6348 respectively. Also, estimates of 95% confidence
interval for mean lie between 54.209312 and 54.258888.

2. Method of MLIP for Second-Order Polynomial: The above
approach is extended into the second‐order polynomial
computations. Three independent variables involved to
derive a second‐order polynomial over maximum of 20C10

combination of samples runs. There are 2969 second‐order
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polynomials derived out of 184,756 square matrices, and the
remaining 181,787 sample square matrices are singular
(avoid ill‐condition, approximately 10−7 precision is
considered for determinant value). Using the above pro-
cedure, the fitting of normal curve has mean 53.7983 and
standard deviation is 2.8391. Moreover, estimates 95%

confidence interval for mean is: 54.209312 and 54.258888.
The normal probability plot and its average normal prob-
ability plots are shown in Figure 8 and Figure 9.

3. Method of MLS for Second-Order Polynomial: Fitting of
normal curve is also similar approach of MLIP method.
This method adopts only second‐order polynomials over
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20C10 combinations of sample runs. Specifically, the
computation for inverse of a matrix has too high precision
while the value of determinant is too small. Selection of
sample matrices is reduced by repetitions of sample inputs
out of 20 runs as referred in Table 1. In this table, the
repetitions of 5th, 8th, 9th and 19th sample runs were the
same as second run, also the 11th run was same as first
run. Apart these repetition runs, 15 sample runs were
used for computation out of 20 runs to minimize the size
of the sample runs which gives less number of sample
square matrices. Totally, about 1339 polynomials were
derived out of 3003 (minimizes from 184,756 count)
sample square matrices for the computations, while by
avoiding, 1664 matrices were singular (avoid ill‐condition,
and approximately 10−7 precision is considered for the
determinant value). Moreover, the normal distribution
having mean and standard deviation is: 53.3259 and
3.1192. In addition to this, estimates having 95% confi-
dence limit for mean lie between 53.2828 and 53.3690.
The normal curve plot and its average probability plot are
shown in Figures 10 and 11.

In this study, all probability plots having the simulated
outputs is very closer to the experimental values and inference
of testing the hypothesis is accepted.

6.1.9 | Comparison of results

The mathematical results are compared to experimental study
in [9], as the empirical polynomials fitted by both methods
shows significance results. The maximum activity of Fe3O4‐

SiO2 Nanobiocatalyst obtained using linear MLIP method is:
58.64 with pH = 4, pL = 250 and Temp = 4°C. In the second‐
order polynomials, for pH = 4, pL = 300 and Temp = 8°C
have a maximal activity by the MLIP method which is 59.825
and by the method of MLS is 59.8249 as depicted in Table 1.
For polynomial fitting, the simulation conducted for different
sample runs is being follows large sample test. Hence, the
statistical validation of each empirical polynomial is closely
fitted to the experimental data in order to determine the effect
of relationship between variables. Thus, the inference of sta-
tistical validation shows that the fitting of multivariate poly-
nomial is good one. In experiment, the maximum activity was
at 54.39 IU/mg when pH = 4.0; Temp = 4°C and pL = 250 μg
while the canonical analysis was performed for the successful
optimization for fabrication of nanobiocatalyst. The glutaral-
dehyde concentration was fixed as 10% and the independent
variables are optimized using OFATmethod followed by RSM.

6.2 | Application 2: polynomial fit for
passive DHR system in NPP

The studies of this application is under NPP and the detailed
experiments are discussed in the following which further leads
mathematical analysis.

6.2.1 | The DHR problem in NPP

The objective of the problem is to evaluate the reliability of
the passive DHR system. The success criteria of the system is
that the fuel clad and the structural temperatures viz., Hot
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Pool Temperature (HPT), Central Sub Assembly Clad Hot
Spot Temperature (CSACHST) and Storage Sub Assembly
Clad Hot Spot Temperature (SSACHST) do not exceed their
respective design safety limits such as 650°C, 1200°C and 950°
C respectively. Moreover, in this problem the HPT, CSACHST
and SSACHST are considered as dependent variables.
Since the execution of the software code to evaluate the

temperatures is time consuming, to estimate the reliability of
the system using a representative equation, MLIP method is
adopted. Using this method, to verify the optimal temperature
do not exceed design safety limits. About 50 experimental runs
are performed for constructing the polynomial. Fourteen
significant parameters used for evaluating the reliability of the
system are identified as: KPre, KDhxp, KIc, KAir, hDhx, hAhx,
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ADhx, AAhx, TAir, Pre, Tp, Ts, Tn, Td the details of which are
explained in [20]. The sample runs are taken from the
experimental values is more useful for further mathematical
computations while the sample square matrix must be non‐
singular. The detailed polynomial computations are discussed
in the following.

6.2.2 | MLIP method for Linear Polynomial
Computation

The MLIP method is applied to this problem similar to the
previous application. The hypothesis is to test the relation
between observed frequencies of three dependent variables
HPT, CSACHST and SSACHST against the simulated outputs
as the expected frequency of the output response from MLIP
method. Therefore, to derive the temperature frequency of
output responses: f(HPT), f(CSACHST), f(SSACHST) for
dependent variables are represented in equations from (29) to
(31) given by

f ðHPTÞ ¼ 77:782219819632 KPRE
− 42:096645476289 KDHXP − 31:745873183089 KIC
þ 186:989665308884 KAIR − 294:913931066576 hDHX
− 107:225829440823 hAHX þ 4:420951347223ADHX
þ 31:825060886859 AAHX − 125:920533158742 TAIR
− 81:852645440360 Preþ 73:486043089831 Tn
þ 17:566786039489 Td þ 24:440443560754 TP
þ 60:586037245240 TS − 3302:419534352170

ð29Þ

f ðCSACHSTÞ ¼ − 249:1951971201760 KPRE
þ 139:2890855498670 KDHXP
− 279:0703797916200 KIC − 192:6072917411010 KAIR
þ 65:3959560743662 hDHX þ 232:5183279357910 hAHX
− 16:2464507730983 ADHX þ 1:4730836130343 AAHX
þ 17:0884264854431 TAIR − 61:4473758399934 Pre
þ 16:5178690283433 Tn − 102:5551707364020 Td
þ 283:1403081252710 TP þ 4:4711305701670 TS
þ 2799:642766849790

ð30Þ
f ðSSACHSTÞ ¼ −109:4098923029040 KPRE

− 16:7118984123392 KDHXP
− 41:5629331867813 KIC þ 180:1420798369090 KAIR
− 187:5149250660080 hDHX þ 151:0601459602000 hAHX
þ 54:8655417234219 ADHX þ 15:1867302711122 AAHX
þ 20:5116521154908 TAIR þ 122:8154196920770 Pre
− 28:8866263797481 Tn þ 132:8818692114280 Td
− 76:9480498146180 TP − 49:3978005066472 TS
− 6968:2818275358700

ð31Þ

In Table 2, the observed frequencies obtained from the
actual computational runs and expected frequencies derived
using above polynomials are given.

6.2.3 | MLIP & method of MLS for second order
polynomials

From Section 6.2.2, the derivation of second‐order polynomial
is computationally not possible, since the sample square matrix

TABLE 2 observed and expected temperature frequency: HPT, CSACHST and SACHST for single polynomial

S. No

Original
Values
(HPT)

Exp.
Values
(HPT)

Original
(CSA‐
CHST)

Exp. Value
(CSA‐
CHST)

Original
(SSA‐
CHST)

Exp. Value
(SSA‐
CHST)

1 649.6 675.07362 1085.6 1157.47997 814.3 797.57605

2 643.8 643.75999 1094.6 1094.58999 789.3 789.28998

3 634.4 643.21452 1068.4 1083.71300 781.5 793.23825

4 646.3 646.29000 1072.7 1072.68991 821.2 821.15998

5 635.2 624.01837 1078.4 1050.83620 794.8 753.94578

6 633.1 633.29996 1073.6 1073.58999 780.9 780.82998

7 642.1 616.10978 1085.1 1114.96405 784.4 844.41758

8 624.6 632.67727 1114.8 1146.62578 792.1 821.29099

9 629.2 667.35138 1083.8 1089.10357 786.3 789.37526

10 628.7 628.69960 1054.2 1054.19299 780.7 780.67998

11 638.9 624.06136 1072.3 1077.18682 805.3 796.12761

12 640.9 657.86159 1097.8 1111.80216 784.6 820.81908

13 637.8 596.98909 1097.6 1081.50013 797.9 795.88379
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consists of all possible second‐order terms for 14 independent
variables. Moreover, order of the matrix is too large (order
120� 120) with determinant is very low, in this case the inverse

matrix computation is too high (ill‐condition). Thus, the higher
order polynomials derived by both methods are not possible to
attain good results.

TAB LE 2 (Continued)

S. No

Original
Values
(HPT)

Exp.
Values
(HPT)

Original
(CSA‐
CHST)

Exp. Value
(CSA‐
CHST)

Original
(SSA‐
CHST)

Exp. Value
(SSA‐
CHST)

14 638.9 638.88995 1089 1088.98999 802.7 802.69798

15 634.6 619.04429 1079 1142.79858 804.9 797.92517

16 633.5 673.86181 1096.6 1092.35269 793.3 758.27552

17 639.0 638.99700 1064.7 1064.67999 803 802.98998

18 640.6 643.28923 1075.7 1112.70293 796.9 830.59095

19 635.8 617.90108 1044.8 1042.24805 820.1 782.15588

20 636.4 636.38000 1037.7 1037.69991 806.7 806.69798

21 630.2 590.48484 1096 1101.37691 813.6 793.76299

22 630.3 661.37687 1072.2 1133.50869 783 766.70721

23 640.0 639.99300 1024.5 1024.47998 836.8 836.78998

24 633.3 615.41134 1058.5 1133.20233 795.8 796.21408

25 638.2 575.78188 1028.3 1082.91289 801.5 733.96968

26 638.3 638.29900 1100.6 1100.57995 792.7 792.68998

27 637.2 667.73988 1083.7 1066.70723 807.4 816.48616

28 618.6 678.51583 1084.1 1070.56832 775.8 872.92135

29 632.7 632.69500 1057.6 1057.58998 777.3 777.26998

30 637.1 625.23807 1077.2 1164.00382 816.5 782.35711

31 643.7 625.31415 1059.6 1088.56706 816 850.89798

32 637.3 651.08291 1069.9 1133.92527 811.1 817.89423

33 629.4 629.36000 1062.5 1062.47991 783.8 783.79598

34 639.0 655.01785 1074 1142.00408 790.2 835.89488

35 636.5 674.71562 1092.2 1086.50945 791.9 795.76720

36 647.3 647.29999 1042.3 1042.29990 812.9 812.89798

37 640.4 670.26116 1103 1054.77981 813.5 757.25437

38 651.9 607.35248 1073.7 1085.50608 817.6 812.61949

39 645.5 645.49994 1069.3 1069.29997 808.1 808.09998

40 644.5 652.04562 1025.1 1072.22319 825.9 910.20027

41 639.4 574.60474 1073.1 1044.58695 816.8 860.03078

42 649.6 649.59998 1088.9 1088.89996 831.3 831.29999

43 637.2 606.70144 1117.1 1090.45455 781.6 800.72866

44 629.0 628.41481 1072.1 1038.71618 783.2 748.81006

45 629.1 634.70355 1087 1037.29209 787.2 821.66816

46 635.5 635.49989 1014.3 1014.29989 794.6 794.59999

47 629.6 603.50246 1038.8 1046.88555 786.1 825.54927
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6.2.4 | Chi‐square testing for goodness of fit

To validate the linear polynomials, χ2 testing for goodness of fit
for three dependent variables are discussed in the following.

Step 1: Null hypothesis H0:

1. The multivariate polynomial fit for HPT is a good one,
2. Themultivariate polynomial fit forCSACHST is a good one,
3. Themultivariate polynomial fit for SSACHST is a good one.

that is, there is no significant difference between the observed
and expected frequencies for HPT, CSACHST, SSACHST.

H0:
Pk

i¼1
Oi ¼

Pk

i¼1
Ei

Notice that, the observed frequency are the original
experimental values depicted in Table 2 and its corre-
sponding simulated output as the expected frequency as
the simulated outputs are computed from Equations (29)
to (31).

Step 2: Alternative hypothesis H1: The multivariate poly-
nomial fit is not good one for three dependent variables. That
is, there is significant difference between the observed and
expected frequencies.

H1 :
Pk

i¼1
Oi ≠

Pk

i¼1
Ei

Step 3: Under H0, the χ2 test statistic is:

χ2 ¼
Pk

i¼1

ðOi − EiÞ
2

Ei
∼ ðk − 1Þ d:f

¼ 6:92386E − 05 ðMLI Plinear polynomial of HPTÞ

¼ 2:02581E − 06 ðMLI Plinear polynomial of CSACHSTÞ

¼ 1:04369E − 05 ðMLI Plinear polynomial of SSACHSTÞ

From the above test statistic, we observe that the negligible
error difference between estimated and actual values shows
good inferences about the polynomials.

Step 4: The table value of χ2 distribution for 14 degree of
freedom for linear polynomials derived by MLIP method with
α = 0.05 level of significance is χ2α ¼ 23:685. Here, the Chi‐
square test statistic value does not exceed the theoretical
values. Thus, there is no statistical evidence against the null
hypothesis.

Step 5: The null hypothesis of the problem cannot be
rejected. Therefore, the data yields the inference about ‘the
multivariate polynomial fit for HPT, CSACHST and
SSACHST is good one’.

The comparison between the observed and expected fre-
quency temperature for the output response: HPT, CSACHST
and SSACHST is depicted in Table 2.

There are only one sample square matrix is considered
over 15 (randomly picked) out of 47 runs with their
simulated output is closer to the original experimental

values. Once a polynomial with a statistically good fit is
obtained, the polynomial representation can subsequently
be used for deriving the reliability estimate of the system
by simulating the input parameters. Monte–Carlo simula-
tion is a widely accepted and consistent method for
simulation.

6.2.5 | Normal distribution curve fit

In this problem, an increase of polynomial validation follows a
large sample test. The hypothesis of this problem is similar to
small sample test discussed in Section 6.2.4.

1. MLIP method for Linear Polynomial Computation:
Procedure to fit a normal curve is discussed here. Using
the MLIP method, the problem of having 14 independent
over three dependent variables adopts a maximum of 15
sample runs for simulating each polynomial. For large
sample test, total number of sample square matrices are
47C15 combination of sample runs which gives large
number of matrices. Avoiding more time consumption,
only maximum 18 sample runs were considered which are
randomly picked out of 47 sample runs. Now, the MLIP
method is applied only for 18C15 combinations of sample
runs to compute the number of linear polynomials in
which the matrix is non‐singular. Also, estimates of 95%
confidence interval bounds and the characteristics (mean
and standard deviation) of the normal curve are discussed
below.
(a) For 18 sample runs, 73 linear polynomials were derived

for the dependent variable HPT and remaining 743
sample square matrices are closer to singular (avoid ill‐
condition, upto 10−7 precision above is considered for
non‐singular) out of 816 combinations. The mean and
standard deviation are 636.2697 and 5.0281, and esti-
mates of 95% confidence interval for the mean lie
between 635.99783 and 636.54157.

(b) For 18 sample runs, 122 linear polynomials were
derived for the dependent variable CSACHST and the
remaining 694 sample square matrices are closer to
singular (avoid ill‐condition, upto 10−7 precision
above is considered for non‐singular) out of 816
combinations. The mean and standard deviation is:
1072.8 and 24.1708, estimates 95% confidence inter-
val for mean lie between 1071.789048 and
1073.810952.

(c) For 18 sample runs, 167 linear polynomials were
derived for the dependent variable SSACHST and
remaining 649 sample square matrices are closer to
singular (avoid ill‐condition, upto 10−7 precision above
is considered for non‐singular) out of 816 combina-
tions. For SSACHST, the mean and standard deviation
is: 801.0357 and 17.3081, estimates 95% confidence
interval for mean lie between 800.416955 and
801.654445.
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The normal curves for HPT, CSACHST and SSACHST
are shown in Figure 12, Figure 13 and Figure 14,
respectively. Furthermore, the average of normal
probability plots of HPT, CSACHST and SSACHST
for different polynomials per each sample run are
shown in Figure 15, Figure 16 and Figure 17 respec-
tively. In all probability plots, the three dependent
variables satisfythe respective required design safety
limits.

2. MLIP and method of MLS for Second-Order Polynomials:
For normal probability plots, the second‐order polynomial
computation depends on the sample square matrix of
order 120�120. According to Section 6.2.3, there are 18
runs out of 47 sample runs were picked randomly and

determinant value for all matrices (18C15 combinations)
are singular (ill‐condition). In all 816 combinations, the
determinant values of the matrix using the MLIP method
decreases, whereas the inverse of a matrix using the
method of MLS increases. Hence, the fitting of second‐
order polynomials are computationally not possible to
provide good results.

In all probability plots, the simulated outputs are very
closer to the experimental values and validation for testing the
hypothesis is accepted for this problem.

6.2.6 | Comparative study

A set of 47 observed values obtained from the actual experi-
mental runs performed in the system are compared with that
of the polynomial estimates and it is seen from the chi‐square
test that there is a negligible error in the estimated values
compared to the experimental values. This has served as a
comparative study and has provided the required confidence in
the polynomial fit. Moreover, for the 14 parameters being
studied for the analysis, the number of experimental runs is
found to be statistically sufficient based on Wilk's criteria.

7 | MATLAB COMPUTATIONS

From two case studies, the computations of multivariate
polynomials derived by these mathematical approaches are
done using MATLAB programming language. The valida-
tions of these two real‐time applications are statistically
analysed which are depicted in Table 3, Table 4, Table 5,
Table 6 and Table 7.
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8 | SUMMARY OF RESULTS

An important computational observations with conclusions
obtained from two real‐time applications are outlined in the
following.

1. In the NPP problem, 14 experimental runs are used to
derive MLIP method for the output response of critical
temperatures HPT, CSACHST and SSACHST.

2. In chemical application, 4 out of 20 sample runs are
randomly chosen to derive a linear polynomial by the MLIP
method and 10 samples are chosen to fit a second‐order
polynomial by both the MLS and MLIP methods.

3. For both applications, the χ2 testing for goodness of fit is
applied to test single polynomial and the results indicates
the polynomial is a best fit.

4. It is therefore inferred that the polynomial fit can be used for
simulating the results when the computational time for the

F I GURE 1 4 Linear polynomial: normal curve
fit for 3340 probability values
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actual execution of the code is expensive. The polynomial
can also be used to build the response surface simulation.

5. Practically, in DHR application the number of variable is 14
over three dependent variables derives each linear poly-
nomial. Therefore, this MLIP method fails for second de-
gree polynomial count is C(14 + 2, 2) in which the sample
square matrix consists of order 120 is singular.

6. According to Equation (22), the method of MLS fails for
DHR application, since the matrix is singular.

7. The MLIP method fails, when the sample run are collinear
positions.

9 | CONCLUSIONS AND FUTURE
WORKS

Herein, if the number of sample square matrices (only non‐
singular matrices) are less than or equal to 30, it follows a small
sample test. This is possible, if the number of variables
involved in the application is same as the number of sample
square matrices. Also, polynomials were derived for one and
only one matrix in which χ2 testing for goodness of fit is
accepted. If the number of non‐singular matrices are more
(n > 30), it follows large sample test. Otherwise, the sample
runs are more as compared to the number of variables; hence,
we prefer a combination formula for selection of matrices. In
this case, the polynomial validation by a large sample test is
applied and the size of the sample is decided by n = number of
polyomials � size of sample runs.

Even though, if both method fails when the matrix is sin-
gular, in practical scenario the determinant value tends to zero
then, the inverse computation is practically not possible. To
avoid this situation, we fix the precision of the determinant
values in which the matrix is to be considered as non‐singular. In
DHR problem, this precision is considered as above 10−7 deci-
mal places (avoid for ill‐condition). For the time‐consuming,
consider a random selection of 18 samples runs for the

F I GURE 1 6 Linear polynomial: average normal plot for Figure 13

F I GURE 1 7 Linear polynomial: average normal plot for Figure 14

TABLE 3 Statistical analysis of the first
application by MLIP method

S. no Computations Linear polynomial Second‐order polynomial

1 Method MLIP method MLIP method

2 No. of samples 20C4 20C10

3 Total matrices 4845 samples 184,756

4 Singular 2676 181,787

5 Non‐singular 2170 2969 (above 10−7

decimal places)

6 Total polynomials 2170 2969

7 χ2 testing (α = 0.05) Accepted (3 d.f) Accepted (9 d.f)

8 Normal fit Done (size = 43400) Done (size = 59380)

9 Mean and Std. deviation 54.2341 & 2.6348 53.7983 & 2.8391

10 95% confidence interval 54.20931 & 54.25888 53.77546 & 53.82113
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TABLE 6 Statistical analysis for
CSACHST of the second application

S. no Computations Linear polynomial Descriptions

1 Method MLIP method Without inverse

2 Total runs 47 sample runs 18 runs used

3 No. of samples 18C15 816 samples

4 Total matrices 816 Combination

5 Singular 694 Closer to zero

6 Non‐singular 122 Above 10−7

decimal places

7 Total polynomials 122 Linear polynomial

8 χ2 testing (α = 0.05) Accepted 14 d.f

9 Normal fit Done size = 2196

10 Mean & Std. deviation 1072.8 & 24.1708 Characteristics

11 95% confidence interval 1071.78905 to 1073.81095 Mean

TABLE 5 Statistical analysis for HPT of
the second application

S. no Computations Linear polynomial Descriptions

1 Method MLIP method Without inverse

2 Total runs 47 sample runs 18 runs used

3 No. of samples 18C15 816 samples

4 Total matrices 816 Combination

5 Singular 743 Closer to zero

6 Non‐singular 73 Above 10−7

decimal places

7 Total polynomials 73 Linear polynomial

8 χ2 testing (α = 0.05) Accepted 14 d.f

9 Normal fit Done size = 1314

10 Mean & Std. deviation 636.2697 & 5.0281 Characteristics

11 95% confidence interval 635.99783 to 636.54157 Mean

TABLE 4 Statistical analysis of the first
application by the method of MLS

S. No Computations Second‐order polynomial Description

1 Method Method of MLS Inverse exists

2 No. of samples 15C10 15 out of 20 runs

3 Total matrices 3003 samples Combination

4 Singular 1664 Close to zero

5 Non‐singular 1339 Discrete loop values

Out of 3003 samples

6 Total polynomials 1339 Second‐order polynomials

7 χ2 testing (α = 0.05) Accepted (9 d.f)

8 Normal fit Done Done (size = 20085)

9 Mean & Std. deviation 53.3259 and 3.1192 Characteristics

10 95% confidence interval 53.2828 to 53.3690 Mean
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temperature variables HPT, CSACHST and SSACHST respec-
tively. Moreover, the added advantages are that the MLIP
method is computationally easy as compared to the method of
MLS. In the MLS method, the inverse operation determines the
co‐efficient of second‐order polynomials. It means, a low pre-
cision affects the inverse operation ðVan ◦ VanT Þ−1 as well as
affects this inverse by the product of transpose matrix
ðVan ◦ VanT Þ−1 � VanT (Refer Equation (22)). Therefore,
this is to decide if the adoptable precision values classify the
matrix as either singular or non‐singular. Another disadvantage
is that if the number of variables is increased, and the method of
MLS is difficult. Practically, the MLIPmethod is preferred when
the values of (Van◦VanT) are too high which leads to affect the
inverse and determinant operations of the MLS method. Thus,
the MLIP method is more suitable and the MATLAB compu-
tation provides good precision for the applications.

In the chemical engineering problem, we have 20C4

combinations and 20C10 combinations of sample matrices
were used to fit the linear and second‐order polynomials. The
maximum activity of Fe3O4‐SiO2 nanobiocatalyst activity
achieved using the linear MLIP method is: 58.64 with
pH = 4, pL = 250 and Temp = 4. In addition, pH = 4,
pL = 300 and Temp = 8 has maximal activity for the fitting
of second‐order polynomials by the MLIP method is 59.825,
whereas in the method of MLS it is 59.82499999 as depicted
in Table 1. In the second problem, success criteria of the
DHR system are that the fuel clad and the structural tem-
peratures namely: HPT, CSACHST, SSACHST do not exceed
their respective design safety limits as verified using multi-
variate linear polynomials representation over 14 design var-
iables (independent) by MLIP method mentioned in equation
from (29) to (31). Furthermore, the higher order polynomials
are not suitable, since the number of variables in second
order is large, while their values are closer to zero. Also, the
derived polynomials are validated by χ2 testing for goodness
of fit not rejected at 5% significance level.

Summary of the study was calculated from the mean and
standard deviation and estimates at 95% confidence interval
bounds. Thus, the normal probability curve is plotted and the
average is determined samplewise for different polynomials. In
the first application, the normal probability curve and its
average probability plots are shown in Figures 6‐11 respec-
tively. Also, for second problem, the normal probability curve
and its average probability plots are shown in Figures 12–17
respectively.

In both methods, the number of independent variable is
small then the second‐order polynomial computation by either
using the MLIP or the method of MLS gives similar poly-
nomials in Equations (26) and (28) as discussed in the first
application. The variables take integer values from both
methods which control the inverse operation. In the MLS
method, the sample square matrix is obtained from partial
derivatives (Vandermonde matrix of three variables), while in
the MLIP method it is obtained from matrix‐based approach.
The second‐order polynomial by both methods is closer by
applying the direct MLS method that does not guarantee even
if the values are very small or the determinant is close to zero.
If the matrix values are too small, we cannot determine the
inverse and its product of matrices. Thus, the matrix of these
methods depends on the size: the matrix column as the
number of variables with same size of sample runs constructs
a square matrix. Different case studies were discussed for
fitting the linear and second‐order polynomials over number
of independent versus dependent variables. Thus, the MLIP
method has less computation with less time consumption. For
both applications, the MLIP method is a more adoptable easy
computation for solving real‐time applications. As a future
work, this approach is extended for the quantification of
reliability in the second problem. The number of variables is
greater than the number of sample runs (this matrix must be
rectangular), then a new procedure is required for polynomial
computations.

TABLE 7 Statistical analysis for
SSACHST of the second application

S. no Computations Linear polynomial Descriptions

1 Method MLIP method Without inverse

2 Total runs 47 sample runs 18 runs used

3 No. of samples 18C15 816 samples

4 Total matrices 816 Combination

5 Singular 649 Closer to zero

6 Non‐singular 167 Above 10−7

decimal places

7 Total polynomials 167 Linear polynomial

8 χ2 testing (α = 0.05) Accepted 14 d.f

9 Normal fit Done size = 3340

10 Mean & Std. deviation 801.0357 & 17.3081 Characteristics

11 95% confidence interval 800.41695 to 801.65445 Mean
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