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Abstract

Morphospaces—representations of phenotypic characteristics—are often populated unevenly, leaving large parts unoc-
cupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the
morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as
potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental
bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon
random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the
RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS
shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that:
1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have
not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes
found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several
orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequen-
ces. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA
genotype–phenotype map, a type of developmental bias or “findability constraint,” which limits evolutionary dynamics
to a hugely reduced subset of structures that are easy to “find.”
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Introduction
Darwinian evolution proceeds in two steps. First, random
changes to genotypes can lead to new heritable phenotypic
variation in a population. Next, natural selection ensures that
variation with higher fitness is more likely to dominate a pop-
ulation over time. Much of evolutionary theory has focused on
this second step. By contrast, the study of variation has been
relatively underdeveloped (Smith et al. 1985; Wagner and
Altenberg 1996; Gould 2002; Laland et al. 2014; McCandlish
and Stoltzfus 2014; Wagner 2014; Love 2015; Charlesworth
et al. 2017; Stoltzfus 2019; Uller et al. 2018; Svensson and
Berger 2019; Uller and Laland 2019; Jablonski 2020). If the
variation is unstructured, or isotropic, then this lacuna would
be unproblematic. As Stephen J. Gould wrote in a critique of
those who make this implicit assumption (Gould 2002):

Under these provisos, variation becomes raw mate-

rial only – an isotropic sphere of potential about the

modal form of a species . . .[only] natural selection

. . .can manufacture substantial, directional change.

In other words, if a variation is isotropic, then evolutionary
trends should primarily be rationalized in terms of natural
selection. On the other hand, if there are strong anisotropic
developmental biases, then structure in the arrival of variation
may well play an important explanatory role in the biological
phenomena we observe today. Although the discussion of
how anisotropic variation affects adaptive evolutionary out-
comes has moved on significantly from the days of Gould’s
critique, primarily due to the growth of the field of evo-devo
(Love 2015), it remains a source of significant contention
(Laland et al. 2014; McCandlish and Stoltzfus 2014; Love
2015; Charlesworth et al. 2017; Stoltzfus 2019; Uller et al.
2018; Svensson and Berger 2019; Uller and Laland 2019;
Jablonski 2020).

Unraveling whether a long-term evolutionary trend in the
past was primarily caused by biased variation is not straight-
forward. It often means answering counterfactual questions
(Louis 2016) such as: What kind of variation could have oc-
curred but did not due to bias? An important analysis tool for
such questions was pioneered by Raup (1966), who plotted
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three key characteristics of coiled snail shell shapes in a dia-
gram called a morphospace, finding that only a relatively small
fraction of all possible shapes were realized in nature. This
concept can be generalized to almost any combination of
phenotypic characters (McGhee 2007). The fundamental rea-
son for the anisotropic occupation of a morphospace could
simply be some form of contingency, where the evolution
started at one point in the morphospace and did not have
enough time to fully explore the space. Or it could be some
more predictable cause, such as natural selection disfavoring
certain characteristics, or else developmental bias favoring
certain types of variation (Uller et al. 2018; Jablonski 2020).

One way to make progress on these big questions in evo-
lutionary theory is to study genotype–phenotype (GP) maps
that are tractable enough to provide access to the full spec-
trum of possible variation (Ahnert 2017; Manrubia et al. 2021)
so that counterfactuals (Louis 2016) can be explored. In this
article, we follow this strategy, employing the well-known GP
mapping from RNA sequences to secondary structures (SS),
to explain in detail how noncoding RNA (ncRNA) found in
nature populates the morphospace of all possible RNA SS
shapes.

RNA is a versatile molecule. Made of a sequence of four
different nucleotides (AUCG) it can both encode information
as messenger RNA (mRNA), or play myriad functional roles as
ncRNA (Mattick and Makunin 2006). This ability to take a
dual role, both informational and functional, has made it a
leading candidate for the origin of life (Gilbert 1986). The
number of identified functional ncRNA types has grown rap-
idly over the last few decades, driven in part by projects such
as ENCODE Project Consortium (2012) and Palazzo and Lee
(2015). Well-known examples include transfer RNA (tRNA),
catalysts (ribozymes), structural RNA (most famously rRNA
in the ribosome), and RNAs that mediate gene regulation
such as micro RNAs (miRNA) and riboswitches.

The function of ncRNA is intimately linked to the three-
dimensional (3D) structure that linear RNA strands fold into.
Although much effort has gone into the sequence to 3D
structure problem for RNA, it has proven to be stubbornly
recalcitrant to an efficient solution (Thiel et al. 2017; Miao
et al. 2020). By contrast, a simpler challenge, predicting the
RNA SS which describes the bonding pattern of a folded RNA,
and which is, therefore, a major determinant of tertiary struc-
ture, is much easier to solve (Lorenz et al. 2011; Schuster et al.
1994). A combination of computational efficiency and accu-
racy has made RNA SS a popular model for studying basic
principles of evolution (Hofacker et al. 1994; Schuster et al.
1994; Fontana 2002; Knight et al. 2005; Wagner 2005, 2011;
Smit et al. 2006; Cowperthwaite et al. 2008; Jorg et al. 2008;
Stich et al. 2008; Aguirre et al. 2011; Schaper and Louis 2014;
Dingle et al. 2015; Greenbury et al. 2016; Garc�ıa-Mart�ın et al.
2018; Weiß and Ahnert 2018; Oliver et al. 2019).

An important driver of the growing interest in GP maps is
that they allow us to open up the black box of variation—to
explain, via a stripped-down version of the process of devel-
opment, how changes in genotypes are translated into
changes in phenotypes. Unfortunately, it remains much
harder to establish how the patterns typically observed in

studies of GP maps (Ahnert 2017; Manrubia et al. 2021) trans-
late into evolutionary outcomes, because natural selection
must then also be taken into account. For GP maps, this
means attaching fitness values to phenotypes which is diffi-
cult because fitness is hard to measure and is of course de-
pendent on the environment, and so fluctuates.

Progress can still be made by simply ignoring fitness differ-
ences, and comparing patterns in nature directly to patterns
in the arrival of phenotypic variation generated by uniform
random sampling of genotypes, which is also known as
“genotype sampling,” or G-sampling (Dingle et al. 2015). For
example, Smit et al. (2006) followed this strategy and found
that G-sampling leads to almost identical nucleotide compo-
sition distributions for SS motifs such as stems, loops, and
bulges as found for naturally occurring structural rRNA. In a
similar vein, Jörg et al. (2008) calculated the neutral set size
(NSS), defined as the number of sequences that fold to a
particular structure, using a Monte-Carlo based sampling
technique. For the length-range, they could study (L¼ 30
to L¼ 50), they found that natural ncRNA from the
fRNAdb database (Mituyama et al. 2009) had much larger
than average NSS. More recently, Dingle et al. (2015) devel-
oped a method that makes it possible to calculate the NSS, as
well as the distributions of a number of other structural prop-
erties, for a much wider range of lengths. They found, for
lengths ranging from L¼ 20 up to L¼ 126, that the distribu-
tion of NSS sizes of natural ncRNA—calculated by taking the
sequences found in the fRNAdb, folding them to find their
respective SS, and then working out its NSS using the estima-
tor from Jorg et al. (2008)—was remarkably similar to the
distribution found upon G-sampling. A similar close agree-
ment upon G-sampling was found for several structural ele-
ments, such as the distribution of the number of helices, and
also for the distribution of the mutational robustness, con-
firming earlier work on much smaller samples (Fontana et al.
1993).

An alternative to G-sampling is to use uniform random
sampling of phenotypes, so-called P-sampling. If all pheno-
types are equally likely to occur under G-sampling, then its
outcomes will be similar to P-sampling. If, however, there is a
bias toward certain phenotypes under G-sampling, an effect
we will call phenotype bias, then the two sampling methods
will lead to different results. When the authors of Dingle et al.
(2015) calculated the distributions of structural properties
such as the number of stems or the mutational robustness
under P-sampling, they found large differences compared
with natural RNA in the fRNAdb. The fact that G-sampling
yields distributions close to those found for natural ncRNA,
whereas the counterfactual under P-sampling does not, sug-
gests that bias in the arrival of variation is strongly affecting
evolutionary outcomes in nature. As illustrated schematically
in figure 1a, such a bias toward shapes that appear frequently
as potential variation can lead to natural RNA SS taking up
only a small fraction of the total morphospace of possible
RNA shapes. Here we treat the morphospace more abstractly,
but this pattern would carry through with more traditional
morphospaces (Raup 1966) that utilize specific axes to de-
scribe phenotypic characteristics or RNA.
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Nevertheless, the evidence presented so far for this picture
of a strong bias in the arrival of variation has been indirect,
and only for distributions over SS structures because individ-
ual SS rarely appear more than once in the fRNAdb.
Moreover, the measurements have often needed theoretical
input, in that they used theoretical estimates for the NSS of
individual sequences in the ncRNA databases. To conclusively
address big questions related to the role of bias in evolution-
ary outcomes, a more direct measure is needed.

To achieve this goal of directly measuring frequencies, we
first note that any tiny change to the bonding pattern of a full
SS, illustrated by the dot-bracket notation in figure 1b, means
a new SS. In practice, however, many small differences are
often found in homologs, suggesting that these differences are
not critical to function. To capture this intuition that larger-
scale “shape” is more important than some of the finer fea-
tures captured by the full dot-bracket notation, Giegerich
et al. (2004) defined a five-level hierarchical abstract represen-
tation of SS. At each nested level of description, the SS shape
is more coarse-grained, as illustrated in figure 1b. By grouping
together shapes with similar features, frequencies of ncRNA

shapes can be directly measured from a given database. Here,
we mainly use the large, popular, and up-to-date RNAcentral
(RNAcentral Consortium 2021) database.

In this article, we show that the frequency fp with which
abstract shapes are found in the RNAcentral database is ac-
curately predicted by frequencies f G

p that they are found for
G-sampling. We then discuss what these results mean in light
of the longstanding controversies about developmental bias.

Results

Nature Only Uses High Frequency Shapes, Which Are
Easily Found
We computationally generated random RNA sequences for
lengths L ¼ 40; 55; 70; 85; 100; 126, and then folded them to
their SS using the Vienna package (Lorenz et al. 2011), which,
as for other closely similar packages based on thermodynam-
ics (Mathews et al. 2004), such as RNAStructure (Reuter and
Mathews 2010) or Unafold (Markham and Zuker 2008), is
thought to be accurate for the relatively short RNAs we study
here (Methods). Next, we used the RNA abstract shapes

FIG. 1. (a) Conceptual diagram of the RNA SS shape morphospace: The set of all potentially functional RNA is a subset of all possible shapes. In this
article we show that natural RNA SS shapes only occupy a minuscule fraction of the morphospace of all possible functional RNA SS shapes because
of a strong phenotype bias which means that only highly probable (high-frequency) shapes are likely to appear as potential variation. We
quantitatively predict the identity and frequencies of the natural RNA shapes by randomly sampling sequences for the RNA SS GP map. (b)
RNA coarse-grained shapes: An illustration of the dot-bracket representation and five levels of more coarse-grained abstracted shapes for the 5.8 s
rRNA (length L¼ 126), a ncRNA. Level 1 abstraction describes the nesting pattern for all loop types and all unpaired regions; level 2 corresponds to
the nesting pattern for all loop types and unpaired regions in external loop and multiloop; level 3 is the nesting pattern for all loop types, but no
unpaired regions; level 4 is the helix nesting pattern and unpaired regions in external loop and multiloop; and level 5 is the helix nesting pattern and
no unpaired regions.
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method (Giegerich et al. 2004; Janssen and Giegerich 2015)
(see fig. 1b), to classify the folded SS into separate abstract
structures. Similarly, we also took natural ncRNA sequences
from the popular RNAcentral database (RNAcentral
Consortium 2021), folded these, and used the RNA abstract
shape method to assign structures to them (see Methods).

To compare the G-sampled RNA structures to the natural
structures, a balance must be struck between being detailed
enough to capture important structural aspects, but not so
detailed that for a given data set very few repeated shapes are
found, making it impossible to obtain reliable frequencies.
Considering our data sets, we use level 3 for all RNA of length
L¼ 40 and L¼ 55 and level 5 for L � 70. In supplementary
figures S1 and S2, Supplementary Material online, we include
all five other levels for L¼ 55, finding essentially the same
results.

Figure 2 shows the shape frequencies f G
p found by G-sam-

pling, ranked from most frequent to least frequent (blue
dots). The frequencies, or equivalently the NSS of these struc-
tures, vary by many orders of magnitude. The shapes which
also appear in the RNAcentral database have been
highlighted (yellow circles). Natural ncRNA shapes employ
a tiny subset of the most frequent structures. Interestingly,
a remarkably small number of random sequences, on the
order of 103-106 independent random samples, is enough
to find essentially all shapes at these levels of abstraction
found in the RNAcentral database for the lengths studied
here. For a sense of scale, there are 4126 � 7� 1075 sequences
of length 126, so that we are sampling on the order of 1 in
1070th of the total space and still finding all the structures at

the coarse-graining levels chosen. Note that this fraction
decreases as the coarse-graining level increases. For example,
in supplementary figure S1, Supplementary Material online,
where we show that for L¼ 55 strands, for which there are
455 � 1033 total possible sequences, we need on the order of
107 sequences for level 1, up to 104 sequences for level 5.
These numbers of samples all remain remarkably tiny frac-
tions of the total.

To further quantify just how small a subset of the total
morphospace has been explored by nature, we use asymp-
totic analytic estimates of the total set of possible structures
from table 1 of Nebel and Scheid (2009) (but see also earlier
results in Lorenz et al. [2008]). These predict s3L

� 1:85�
1:46L � L�

3
2 for level 3 and s5L

� 2:44� 1:32L � L�
3
2 for

level 5, where we have taken results pertaining to minimum
hairpin length of 3, and minimum ladder length of
1 (which is consistent with the options we used in the
Vienna folding package). From these equations, we estimate
s340
� 104; s355

� 107; s570
� 106; s585

� 108; s5100
� 109,

and s5126
� 1012. By contrast, in the RNAcentral database we

find, at level 3, 18 structures for L¼ 40 and 63 for L¼ 55. At
level 5 we find 16, 25, 35, and 68 independent structures for
L¼ 70, 85, 100 and 126 respectively. We provide a direct
illustration in figure 3 where the top 183 level 3 structures
found for L¼ 55 (after 5� 106 samples) are shown together
with the 63 found in nature. The structures employed by
natural ncRNA take up an incredibly small fraction of the
whole morphospace of possible structures. Moreover, the
relative fraction explored decreases rapidly with increasing
length.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Nature selects highly frequent structures. The frequency f G
p (blue dots) of each abstract shape, calculated by random sampling of sequences

(G-sampling), is plotted versus the rank. Yellow circles highlight which of the randomly generated shapes were also found in the RNAcentral
database. Panels (a–f) are for L ¼ 40; 55; 70; 85; 100; 126, respectively. The number of natural shapes are 18, 63, 16, 25, 35, and 68 in order of
ascending length, whereas the numbers of possible shapes in the full morphospace are many orders of magnitude larger, ranging from �104

possible level 3 shapes for L¼ 40 to �1012 level 5 shapes for L¼ 126. The shapes in nature are all from remarkably small fraction of possible
structures that have the highest f G

p or equivalently the highest NSS. The natural shapes found in the database appear upon relatively modest
amounts of random sampling of sequences.
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Frequencies of Shapes in Nature Can Be Predicted
from Random Sampling
Figure 4 demonstrates that the G-sampled frequency
of shapes correlates closely with the natural frequency of
shapes, for a range of lengths. In supplementary figure S2,
Supplementary Material online, we show for L¼ 55 that sim-
ilar results are found for different levels of shape abstraction so
that this result is not dependent on the level of coarse-
graining.

We note that there is an important assumption in our
interpretation, which is that the frequency with which struc-
tures are found in the RNAcentral database is similar to the
frequency with which they are found in nature. To first order,
it is reasonable to assume that this is true, as the databases are
typically populated by finding sequences that are conserved
in genomes, a process that should not be too highly biased.
Moreover, the good correlation between the f G

p and fp found
here provides additional a posteriori evidence for this as-
sumption as it would be hard to imagine how such close
agreement could obtain if there were strong man-made
biases in the database. Nevertheless, there are structures
that have been the subject of greater researcher interest,
and one may expect them to be deposited in the database
with higher frequency. We give one example in figure 4c of an
outlier that is overrepresented (with high confidence) com-
pared with our prediction, namely the shape [ [] [] [] ], which
includes the classic clover-leaf shape of transfer RNA.

Further, we show in supplementary section C,
Supplementary Material online, that qualitatively similar
rank and correlation plots (supplementary fig. S3,
Supplementary Material online) appear using the popular
Rfam database (Kalvari, Argasinska, et al. 2018; Kalvari,
Nawrocki, et al. 2018), where structures are determined not
by folding, but by a consensus alignment procedure. We also
show in supplementary materials S5 and S6, Supplementary
Material online, that our results are robust to changes in CG
bias, or when we include other suboptimal structures that are
close enough in energy to be accessed by thermal fluctua-
tions. The similar behavior we find across structure prediction
methods, strand lengths, and databases would be extremely
odd if artificial biases were strong on average in the natural
databases. Hence, we believe that our main findings are un-
likely to be due to database biases, although at a finer scale
there may very well be biases, such as the one we present for
tRNA, that are observable, and possibly an interesting source
of new insight. Finally, here we have used relatively short RNA
for the purposes of computationally tractability and accuracy,
in forthcoming work we study much longer RNA, as well as
utilizing different methods.

Discussion
We first recapitulate our main results below under three
headings and discuss their implications for evolutionary
theory.

FIG. 3. Shape array for L ¼ 55 RNA at level 3, showing the 183 shapes found by sampling 5� 106 random sequences, in order of their rank by
frequency f G

p . The 63 naturally occurring level 3 shapes from the RNAcentral database are highlighted in yellow, demonstrating that only a small
fraction of the total morphospace of shapes is occupied by RNAs found in nature, and that these are all highly frequent structures. We estimate
that there are on the order of 107 possible level 3 structures for L¼ 55 RNA, so that this array only shows a tiny fraction of the total morphospace of
shapes.
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Nature Only Utilizes a Tiny Fraction of the RNA SS
Phenotypic Variation That Is Potentially Available
Besides being an interesting fact about the natural world, this
result has implication for synthetic biology as well. There is a
vast morphospace (McGhee 2007) of structures that nature
has not yet sampled. If these could be artificially created, then
they could be mined for new and potentially intriguing
functions.

Remarkably Small Numbers of Sequences Are Needed
to Recover the Full Set of Abstract Shapes in the
RNAcentral Database
This effect is enhanced by the fact that we have coarse-
grained the SS to allow for direct comparisons. As shown in
the supplementary section A, Supplementary Material online,
for finer descriptions of the SS, more sequences are needed to
obtain all natural structures, but the numbers remain remark-
ably small.

For a sense of the scale of the tiny numbers of sequences
needed to produce the full spectrum of structures found in
nature, consider that the total number of sequences NG grows
exponentially with length as NG ¼ 4L. This scaling implies
unimaginably vast numbers of possible sequences, even for
modest RNA lengths. For example, all individual sequences of
length L¼ 77 together would weigh more than the earth,
whereas the mass of all combinations of length L¼ 126 would
exceed that of the observable universe (Louis 2016). Such
hyper-astronomically large numbers have been used to argue
against the possibility of evolution producing viable pheno-
types, based on the claim that the space is too vast to search
through. See the Salisbury-Maynard Smith controversy

(Salisbury 1969; Smith 1970) for an iconic example of this
trope. And it is not just evolutionary skeptics who have
made such claims. In an influential essay, Francois Jacob wrote
(Jacob 1977):

The probability that a functional protein would

appear de novo by random association of amino

acids is practically zero.

A similar argument could be made for RNA. Our results
suggest instead that a surprisingly small number of random
sequences is enough to generate all the basic RNA structures
needed for life in all its diversity. This finding is relevant for the
RNA world hypothesis, since it suggests that relatively small
numbers of sequences are needed to facilitate primitive life. In
the same vein, it helps explain why random RNAs can already
exhibit a remarkable amount of function (Neme et al. 2017),
similarly to what is suggested for proteins in the rapidly de-
veloping field of de novo gene birth (Begun et al. 2007; de la
Pe~na and Garc�ıa-Robles 2010; Tautz and Domazet-Lo�so 2011;
Wilson et al. 2017).

The Frequency with Which Structures Are Found in
Nature Is Remarkably Well Predicted by Simple G-
sampling
This result is perhaps the most surprising of the three because
these G-sampling ignores natural selection. It is widely
thought that structure plays an important part in biological
function, and so should be under selection.

The key to understanding results (A)–(C) above can be
found in one of the most striking properties of the RNA SS GP
map, namely strong phenotype bias which manifests in the

(a) (b) (c)

(d) (e) (f)

FIG. 4. The frequency of shapes in nature correlates with the frequency of shapes from random sampling. Yellow circles denote the frequencies fp of
natural RNA from RNAcentral. The green line denotes x¼ y, that is natural and sampled frequencies coincide. The log frequency upon G-sampling
f G
p correlates well with fp: (a) L¼ 40 Pearson r¼ 0.92; (b) L¼ 55 r¼ 0.93; (c) L¼ 70 r¼ 0.94; (d) L¼ 85 r¼ 0.86; (e) L¼ 100 r¼ 0.95; (f) L¼ 126

r¼ 0.92; and all correlations have P-value< 10�6. We also highlight a blue structure, namely t-RNA for L¼ 70 which has been the subject of extra
scientific interest, and is hence overrepresented in the database.
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enormous differences in the G-sampled frequencies (or equiv-
alently the NSS) of the SS (Schuster et al. 1994). For example,
for L¼ 20 RNA, the largest system for which exhaustive enu-
meration was performed (Schaper and Louis 2014), the dif-
ference in the f G

p between the most frequent SS phenotype
and the least frequent SS phenotype was found to be 10
orders of magnitude. For L¼ 100 this difference was esti-
mated to be over 50 orders of magnitude (Dingle et al.
2015; Garc�ıa-Mart�ın et al. 2018). Such phenotype bias also
explains why G-sampling and P-sampling are so different
(Dingle et al. 2015): a small fraction of high-frequency phe-
notypes take up the majority of the genotypes, and thus
dominate under G-sampling.

Evolutionary modeling that takes strong bias in the arrival
of variation into account is rare. Population-genetic models
that do include new mutations typically consider a genotype-
to-fitness map, which often includes an implicit assumption
that all phenotypes are equally likely to appear as potential
variation, something akin to P-sampling. A notable exception
is a work by Yampolsky and Stoltzfus (2001) which has been
applied, for example, to the effect of mutational biases
(Stoltzfus and McCandlish 2017; Cano and Payne 2020).

For the specific case of RNA, however, the effect of strong
phenotype bias was treated explicitly in Schaper and Louis
(2014), where it was shown for evolutionary dynamics simu-
lations ranging from the low mutation monomorphic to the
high mutation polymorphic regimes that the mean rate /pq

at which new variation p appears in a population made up of
phenotype q can be quite accurately approximated as
/pq � ð1� qqÞf G

p , where qq is the mean mutational robust-
ness of genotypes mapping to q. In other words, the average
local rate at which variation p appears in an evolving popu-
lation closely tracks the global frequency f G

p , which is exactly
what G-sampling measures.

Although it is not so controversial that biases could affect
outcomes under neutral mutation (Lynch 2007), the stron-
gest disagreements in the field center around the effect of bias
in adaptive mutations (Laland et al. 2014; McCandlish and
Stoltzfus 2014; Love 2015; Charlesworth et al. 2017; Stoltzfus
and McCandlish 2017; Stoltzfus 2019; Uller et al. 2018;
Svensson and Berger 2019; Uller and Laland 2019; Cano and
Payne 2020; Jablonski 2020). Since RNA structure is thought
to be adaptive, the main question to answer is how pheno-
type bias affects RNA evolution when natural selection is also
at work. In Schaper and Louis (2014), the authors explicitly
treat cases where phenotype bias and fitness effects interact.
They provide calculations of an effect called the arrival of the
frequent, where the enormous differences in the rate at which
variation arrives implies that frequent phenotypes are likely to
fix, even if other higher fitness, but much lower frequency
phenotypes are possible in principle. This same effect has also
been observed in the evolutionary modeling of gene regula-
tory networks (Catal�an et al. 2020). To avoid confusion, we
note that the arrival of the frequent is fundamentally different
from the survival of the flattest (Wilke et al. 2001), which is a
steady-state effect. There, two phenotypes compete, and at
high mutation rates, the one with the largest neutral set size
can dominate in a population, even if its fitness is smaller. By

contrast, the arrival of the frequent is a nonergodic effect in
the sense that it is not about a steady-state with competing
phenotypes in a population. Instead, it is about large differ-
ences in the rate at which variation appears. Indeed, it can be
shown (Schaper and Louis 2014) for the RNA GP map, that to
first order, the number of generations Tp at which variation
on average first appears in a population scales as Tp / 1=f G

p
in both the high and the low mutation regimes. Since f G

p
varies over many orders of magnitude, on a typical evolution-
ary time-scale T, only a limited amount of variation (typically
that with Tp�T) can appear. Variation can only fix if it
appears in a population. Therefore natural selection acts on
SS variation that has been heavily presculpted by the GP map
(Dingle et al. 2015).

The close agreement between G-sampling frequencies and
measured frequencies of natural ncRNA suggests that once
an SS is found that is good enough, natural selection mainly
works by further refining parts of the sequence for function,
rather than significantly altering the SS. Taken together, these
arguments suggest that the arrival of the frequent picture,
which is fundamentally about strongly anisotropic variation,
provides a mechanism that rationalizes all three main classes
of observations above.

Nevertheless, given the wide diversity of possible fitness
functions that will have played a role in the emergence of the
different RNA structures found in the RNAcentral database,
the argument above that strong phenotype bias determines
the outcomes of evolutionary dynamics in such a predictable
way may still seem quite surprising. There is, however, a fas-
cinating connection between the arrival of the frequent effect
in evolution, and a related behavior in the dynamics of opti-
mization in deep neural networks (DNNs). One way of think-
ing about DNNs is as mappings from the (adjustable)
parameters of the DNN (the genotypes), to functions (the
phenotypes), which describe how input data maps to a DNN
output. The volume of parameters mapping to a particular
function is directly proportional to the probability that this
function obtains upon random sampling of parameters, and
is analagous to the NSS in GP maps. As was found for the
RNA GP maps, the mapping from parameters to DNN func-
tions can be hugely biased (Valle-P�erez et al. 2018; Mingard
et al. 2019).

Of course, DNNs are not trained by randomly sampling
parameters, just as an evolutionary process does not use G-
sampling either. Instead, the most popular way to optimize
DNNs is by using stochastic gradient descent (SGD) (Bottou
et al. 2018) which follows the contours of a complex loss-
landscape, much as evolution follows a fitness-landscape over
time. For such highly biased systems, the arrival of the fre-
quent phenomenology predicts that functions with a large
volume of parameters mapping to them are much more likely
to be found by an optimiser than functions with a smaller
volume of parameters are. Interestingly, it was recently shown
for several DNNs and data sets (Mingard et al. 2021) that the
probability that the SGD optimizer converges on a particular
function is well approximated by the (Bayesian) probability
that this function obtains upon random sampling of DNN
parameters, which is directly analogous to G-sampling. Since
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this phenomenology was observed for multiple systems and
loss functions, it suggests that a mechanism much like the
arrival of the frequent works robustly for these highly biased
systems also. As for the RNA system, where G-sampling pro-
vides a good first-order prediction of the frequencies of RNA
structures found in nature, so for DNNs, random sampling of
parameters provides a good first-order prediction of the fre-
quencies that a DNN converges to a particular function when
it is optimized by SGD. This analogy between optimization on
a loss landscape for DNNs and evolutionary dynamics on
fitness landscapes strengthens our hypothesis that the arrival
of the frequency mechanism can explain why, for highly bi-
ased GP maps, multiple evolutionary scenarios produce out-
puts with probabilities given by G-sampling.

It is interesting to consider whether our arguments that
strong phenotype bias affects adaptive evolution can shed
light on a related controversy around mutational biases. For
example, Stoltzfus and McCandlish (2017) argued that tran-
sition–transversion mutation bias in the arrival of mutations
can affect the frequency of adaptive amino acid substitutions.
This conclusion was criticized by Svensson and Berger (2019),
who argued that the bias may not be large enough to over-
come fitness differences, and that there may be alternative
adaptive arguments for the codon substitution patterns ob-
served in Stoltzfus and McCandlish (2017). The basic argu-
ments behind mutational biases having an effect in adaptive
evolution are similar in spirit to our arguments for phenotype
bias, but there are also differences. Phenotype bias is about
the rate at which phenotypes arise, and here we treat all
mutations as being equally likely, whereas mutational bias
captures inhomogeneities in the rate at which mutations arise
along a genome.

Mutation bias is also typically much smaller than pheno-
type bias (Stoltzfus and McCandlish 2017; Cano and Payne
2020; Gomez et al. 2020). The global differences in the f G

p are
enormous. Even in the presence of adaptive forces, this
“findability constraint” limits the evolutionary process to a
tiny subset of high-frequency phenotypes in the morpho-
space. Within the subset of phenotypes that are found, how-
ever, the relative differences in frequencies are relatively small
(on the order of 4 to 5 orders of magnitude in range). As long
as phenotypes are findable, one might think that adaptive
forces could overwhelm the developmental bias, which man-
ifests in differential rates in the arrival of variation (Laland et al.
2014; Charlesworth et al. 2017; Svensson and Berger 2019).
Interestingly, we nevertheless observe a fairly close correlation
between fp and f G

p which suggests that averaged across many
evolutionary scenarios, relatively small differences in the ar-
rival of variation, such as those expected under mutational
bias (Stoltzfus and McCandlish 2017; Cano and Payne 2020;
Gomez et al. 2020), may indeed affect adaptive evolution.

Strong phenotype bias is also consistent with SELEX experi-
ments (Ellington and Szostak 1990; Tuerk and Gold 1990),
where artificial selection for RNA function can, with a rela-
tively small amount of material, lead to the repeated conver-
gent evolution of the same structures. Famous examples
include RNA aptamers (Vu et al. 2012) and the hammerhead
ribozyme (Salehi-Ashtiani and Szostak 2001), which also

shows convergence in nature (de la Pe~na and Garc�ıa-Robles
2010). In light of the unimaginably small portion of the hyper-
astronomically large sequence spaces these experiments ex-
plore, this convergent evolution seems highly surprising. But
when we consider the strong phenotype bias, then a possible
explanation emerges. SELEX experiments rely on artificial se-
lection to refine sequences and hone in on a particular func-
tion. Although natural selection is the ultimate reason why a
particular function emerges (such as self-cleaving catalytic ac-
tivity for the hammerhead ribozyme), we hypothesize that
the same structures emerge because of phenotype bias. After
all, multiple structures could, in principle, produce the same
function. In other words, to use Mayr’s famous ultimate-
proximate distinction (Mayr 1961; Laland et al. 2011; Scholl
and Pigliucci 2015) for RNA SS, phenotype bias is the ultimate,
and not merely the proximate cause of the evolutionary con-
vergence of the structures found in SELEX experiments and in
nature. The idea that developmental biases could help explain
convergence is not new, but we believe that the type of
phenotype bias we are proposing here has not yet been se-
riously considered as a cause of convergence.

How is phenotype bias related to the broader literature on
the developmental bias? To first order, phenotype bias is just
another way of expressing developmental bias: certain phe-
notypes are more likely than others to appear upon muta-
tions. Early work mainly considered developmental bias as a
constraint (Smith et al. 1985), in that it limits what kind of
variation natural selection can work on. The phenotype bias
we observe can be viewed that way. Whether it can also act as
a developmental drive (Arthur 2001) that facilitates adaptive
evolution would hinge on there being advantages to the kinds
of structures that it favors. Indeed, G-sampled RNA structures
are on average different from P-sampled structures. For ex-
ample, they have higher mutational robustness, and fewer
stems (Dingle et al. 2015). So, there is a bias toward these
characteristics, which may be adaptive.

Where RNA phenotype bias differs the most from classic
examples of developmental bias such as the universal penta-
dactyl nature of tetrapod limbs, is that the latter are thought
to occur because evolution took a particular turn in the past
that locked in a developmental pathway, most likely through
shared ancestral regulatory processes (Jablonski 2020). If one
were to rerun the tape of life again, then it is conceivable that
a different number of digits would be the norm. By contrast,
phenotype bias predicts that the same spectrum of RNA
shapes would appear, populating the morphospace in the
same way. It is true that given enough time, a larger set of
RNA shapes could appear, but the exponential nature of
phenotype bias implies that orders of magnitude more
time are needed to see linear increases in the number of
potential shapes, so that we can be pretty confident that a
broadly similar spectrum of shapes would appear again.

It is also interesting to compare phenotype bias to adap-
tive constraints. For example, there are many scaling laws
observed in nature. One of the most dramatic is Kleiber’s
law which states that the metabolic rate of organisms scales
as their mass to the 3/4 power, and which has been shown to
hold over a remarkable 27 orders of magnitude (West and
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Brown 2005)! The morphospace of metabolic rates and
masses is therefore highly constrained. Such scaling laws
can be understood in an adaptive framework from the inter-
action between various basic physical constraints (West and
Brown 2005), rather than from biases in the arrival of varia-
tion. Phenotype bias also arises from a fundamental physical
process (Dingle et al. 2018) and limits the occupation of the
RNA morphospace. But it provides, by contrast, a nonadap-
tive explanation for the constraint. At this level, it may be
closest in spirit to some constraints that are postulated in
biological or process structuralism (Thompson 1942) since
the phenotype bias “findability constraint” arises from the
GP map itself.

In the literature, nomenclature around developmental
biases and evolutionary constraints is not completely settled,
and that ambiguity affects our discussions above. Phenotype
bias is interesting in this regard because on a larger scale it is
perhaps most naturally described as a findability constraint,
whereas on the smaller scale of those phenotypes that are
found, the close agreement between fp and f G

p is perhaps
most naturally described as a developmental bias or a devel-
opmental drive.

Finally, the fact that G-sampling does such a good job at
predicting the likelihood that SS structures are found in na-
ture also has implications for the study of selective processes
in RNA structure (Rivas et al. 2017; Schlick and Pyle 2017). We
propose here that signatures of natural selection should be
measured by considering deviations from the null-model pro-
vided by G-sampling. Our current work has been on relatively
short sequences, where simple SS folding algorithms based on
thermodynamics are thought to work reasonably well. For
longer sequences, other more sophisticated methods that
include, for example, information from evolutionary co-
variance (Rivas et al. 2020), may be needed.

In conclusion, although the RNA sequence to SS map
describes a pared down case of development, this simplicity
is also a strength. Just as in the fields of chemistry and physics,
where the hydrogen atom provides an important model sys-
tem because it is so easily solvable, so the RNA SS GP map
could be viewed as the “hydrogen atom of developmental
biology.” The fact that it is so tractable allows us to explore
counterfactual questions (Louis 2016) such as: what kind of
phenotypic variation is possible in principle, but did not ap-
pear due to phenotypic bias. This system thus provides, to our
knowledge, the cleanest evidence yet for developmental bias
strongly affecting evolutionary outcomes.

Many other GP maps also show strong phenotype bias
(Dingle et al. 2018; Manrubia et al. 2021). An important ques-
tion for future work will be whether there is a universal struc-
ture to this phenotype bias that holds more widely and
whether it also has such a clear effect on evolutionary out-
comes in other biological systems. In this context, we note a
recent proposal (Johnston et al. 2021) that applies a result
related to the coding theorem of algorithmic information
theory (AIT) (Dingle et al. 2018) to predict that GP maps
should be generically biased toward phenotypes with low
descriptional (Kolmogorov) complexity. In close analogy to
what we found for natural RNA here, such simplicity bias was

demonstrated directly for protein quaternary structures in
nature as well as for a related polyomino model for protein
quaternary structures (Ahnert et al. 2010; Johnston et al. 2011;
Greenbury et al. 2014), and also in a gene regulatory network.
If it is indeed the case that strong simplicity bias is common in
nature, and if, as also suggested in (Johnston et al. 2021), the
arrival of the frequent mechanism is important for the evo-
lutionary dynamics of this much wider set of systems, then
the conclusions for evolutionary causation driven by strong
phenotype bias we draw here for RNA should hold much
more widely in nature.

Materials and Methods

Folding RNA
We use the popular Vienna package (Lorenz et al. 2011),
based on the Turner model thermodynamics (Mathews
et al. 2004), to fold sequences to structures, with all param-
eters set to their default values (e.g., the temperature
T ¼ 37

�
C). This method, much like others in its class, is

thought to be especially accurate for shorter RNA. The num-
bers of random samples were 5� 106 for L¼ 40 and L¼ 55,
and 106 for L ¼ 70; 85; 100; 126. For G-sampling, we choose
random sequences, and fold each one. Sequences from the
RNAcentral database were folded using the Vienna package
with the same parameters as above, after removing any du-
plicate sequences.

Abstract Shapes
RNA SS can be abstracted in standard dot-bracket notation,
where brackets denote bonds, and dots denote unbonded
pairs. To obtain coarse-grained abstract shapes (Janssen and
Giegerich 2015) of differing levels we used the RNAshapes
tool available at https://bibiserv.cebitec.uni-bielefeld.de/rna-
shapes (last accessed August 2021) and the Bioconda rna-
shapes package available at https://anaconda.org/bioconda/
rnashapes (last accessed August 2021). The option to allow
single-bonded pairs was selected, to accommodate the
Vienna folded structures which can contain these.

Natural Sequences
For each length, we took all available natural noncoding RNA
sequences from the RNAcentral database (RNAcentral
Consortium 2021). Any repeated sequences were discarded.
The sequence secondary structure predictions were made by
the Vienna package, and then abstract RNA shapes for each
structure were obtained.

The numbers of natural sequences, numbers of shapes,
and fractions of natural shapes found by random sampling,
were:

L¼ 40: 3,160 sequences, yielding 18 unique shapes

at level 3 (18/18 shapes were found by random

sampling);

L¼ 55: 8,619 sequences, yielding 63 unique shapes

at level 3 (63/63 found);

L¼ 70: 78,075 sequences, yielding 16 unique shapes

at level 5 (16/16 found);
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L¼ 85: 76,143 sequences, yielding 25 unique shapes

at level 5 (24/25 found);

L ¼ 100: 20,314 sequences, yielding 35 unique

shapes at level 5 (35/35 found);

L ¼ 126: 14,318 sequences, yielding 68 unique

shapes at level 5 (68/68 found).

In total 224/225 (i.e., >99%) of the shapes in the database
were found by relatively modest sampling.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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