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Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at
peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophys-
iology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-
pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral
bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the
current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we
provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity;
(2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-
pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteopo-
rosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT
in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportu-
nities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture
prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The
prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone
disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly
unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural
deterioration, which would have important implications for the decision on therapeutical interventions.
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Introduction

Introduced over a decade ago, high-resolution peripheral
quantitative computed tomography (HR-pQCT) is a low-
dose X-ray-based imaging technique that was initially devel-
oped to image bone microarchitecture in vivo at peripheral
skeletal sites to gain insight into pathophysiology underlying
skeletal fragility and to improve prediction of fractures. The
effective radiation dose from a standard HR-pQCT scan at the
distal radius or tibia is 3–5 μSv depending on the scanner
generation [1]. Compared to other common medical imaging
techniques, this is considered a low radiation dose procedure.
For example, a hip scan using dual-energy X-ray absorptiom-
etry (DXA) has an effective dose of approximately 9 μSv, a
standard chest X-ray approximately 100 μSv, and a hip CT
scan 2–3 mSv [2, 3]. HR-pQCT assessments have been inte-
grated in large epidemiological cohort studies such as MrOs,
OFELY, CaMos, and the Framingham Osteoporosis Study.
Notably, HR-pQCT has been studied in a number of metabol-
ic bone disorders and clinical applications beyond osteoporo-
sis. For example, it is used in rheumatoid arthritis to assess
joint space width and bone erosions, in osteoarthritis of the
knee and in some distal radius fracture healing studies. This
article provides an overview of current clinical applications
and guidance on interpretation of results and outlines obsta-
cles and necessary steps to facilitate a broader clinical appli-
cation of HR-pQCT beyond current, mostly research-focused
use. The work is a product of a joint IOF-ASBMR-ECTS
working group, which met in person and by teleconference
over several years to produce this document.

Bone density and architecture of distal
forearm and distal tibia

Differences and reference data by age and sex

Significant age-related differences in volumetric bone mineral
density (vBMD), trabecular structure, cortical thickness
(Ct.Th), and cortical porosity (Ct.Po) have been observed in
men and premenopausal and postmenopausal women, in
cross-sectional analyses from population-based cohorts.
Age-related differences in total, trabecular, and cortical
BMD (Tt.BMD, Tb.BMD, and Ct.BMD) of the radius are
summarized in Table 1 and microarchitectural parameters in
Table 2 as absolute values and percent differences between
young normal (age 20–30) and elderly subjects (age 80 or 90)
[4–9, 11, 13]. Dalzell et al. calculated age-related T scores for
vBMD and Ct.Th [6]. For the other studies, T scores shown in
Table 1 were calculated from BMD values and standard devi-
ations of young normal if available. According to the WHO
definition, only DXA-based T scores can be used for the di-
agnosis of osteoporosis; thus, these HR-pQCT T scores

should not be considered for application in clinical practice.
For comparison, T scores of ultradistal radius aBMD (by dual-
energy X-ray absorptiometry (DXA)) reference values
(Hologic) for men and women are also shown in Table 1.
Data from several other papers [14–16] that have reported
age-related changes, but for different age ranges, or in differ-
ent format, are not included in the two tables.

In women, Tt.BMD, Ct.BMD, and Tb. BMD at the radius
decreased on average by 33%, 16%, and 29% between age
20–30 and age 80–90, respectively. For the same age range,
corresponding average decreases for men were 22%, 11%,
and 17%, respectively. Decrease of ultradistal radius DXA
aBMD for reference data used by Hologic, which approxi-
mately corresponds to Tt.BMD, was comparable to HR-
pQCT for women (29%) and men (18%). There are large
differences among studies, demonstrating that interpretation
of age-related changes from cross-sectional studies must be
done with caution. All studies listed in Tables 1 and 2 are
based on cross-sectional data with the exception of Burt
et al. [7]. Moreover, apart from the Brazilian study of
Alvarenga et al. [8] and the Chinese studies of Zhu and
Hung [9, 10], the studies listed in Tables 1 and 2 were con-
ducted in Europe or North America with the first-generation
HR-pQCT scanner (XtremeCT I, Scanco, Switzerland).

Young men had a higher trabecular bone volume fraction
(Tb.BV/TV) due to more numerous thicker trabeculae than
women, in both radius and tibia [5, 6, 11]. Young men also
had higher Ct.Po compared to women and a larger cross sec-
tional total (Tt.Ar) and cortical area (Ct.Ar) and a thicker
cortex (Ct.Th) in the radius and tibia [4–6], though sex differ-
ences were not always significant for Ct.Th [5, 6, 11].
Estimated failure load was significantly higher in young
men compared to women at both sites [4, 5].

Similar to vBMD, age-related percent increases or de-
creases of the structural parameters were larger for women
than for men. In general, the pattern of bone impairment dif-
fered between cortical and trabecular compartments during
ageing. In both sexes and consistent with the age-related de-
crease in Tb.BMD, older individuals had a lower BV/TV at
the radius and tibia. This was accompanied by a reduction in
trabecular number (Tb.N) and thickness (Tb.Th) and increase
in trabecular spacing (Tb.Sp) that were paralleled by an age-
related decline in Ct.Th. and an increase of Ct.Po at the distal
radius and tibia [4–6, 11].

In the cross-sectional studies, the specific pattern of sex-
and site-related age dependency of the various HR-pQCT pa-
rameters varies among studies. For example in the CaMOS
population, BV/TV tended to remain stable until age 50 in
men and women and to decrease thereafter at the distal radius,
whereas it decreased as soon as early adulthood at the distal
tibia [4]. In contrast, in a British population sample, Dalzell
et al. reported a more linear decrease of BV/TV over the age
range 20 to 80 years in the radius as well [6]. In a Danish
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population, Hansen et al. reported a linear decrease of BV/TV
over the full age range for women andmen in the radius, but in
the tibia, they observed a linear decrease until age 50 in wom-
en and age 60 in men followed by a relatively small decrease
afterwards [5]. Similar differences in age-related patterns of
HR-pQCT parameters were found for Tb.Th in women [1–3]

and men [1, 3, 11]. Ct.BMD at the radius and tibia remained
relatively stable until the menopausal transition and until the
age of 60 in men and declined thereafter [5, 6, 11]. The abso-
lute increase in Ct.Po accelerated after age 50–60 and
paralleled the decrease in Ct.BMD [16, 17]. On a percentage
base, the maximum increase in Ct.Po at the radius probably

Table 1 Total, cortical, and trabecular volumetric BMD from first-generation distal radius HR-pQCT and ultra distal radius aBMD from DXA in
women and men

YN mean YN SD Mean at age 80 %Change T score3 Average %change

HR-pQCT female
Tt.BMD Macdonald [4] 319.7 60.8 209.11 − 34.6 − 1.8

Hansen [5] 342.0 72.0 231.0 − 32.5 − 1.5
Dalzell [6] 350.9 177.8 − 49.3 − 3.3
Burt [7] 333.0 264.0 − 20.7
Alvarenga [8] 331.0 268.02 − 19.0
Hung [9] 385.0 241.01 − 37.4
Zhu [10] 331.0 268.0 − 19.0 − 32.7

Ct.BMD Macdonald [4] 835.6 56.0 639.61 − 23.5 − 3.5
Hansen [5] 898.0 49.0 767.0 − 14.6 − 2.7
Khosla [11] 893.0 45.2 700.31 − 21.6 − 4.3
Dalzell [6] 938.5 664.4 − 29.2 − 5.4
Burt [7] 955.0 888.0 − 7.0
Alvarenga [8] 1017.0 925.02 − 9.0
Hung [9] 1030.0 915.01 − 11.2
Zhu [10] 1016.4 915.0 − 10.0 − 15.9

Tb.BMD Hansen [5] 160.0 36.0 116.0 − 27.5 − 1.2
Dalzell [6] 157.0 125.0 − 20.4 − 1.0
Burt [7] 176.0 135.0 − 23.3
Alvarenga [8] 172.0 137.02 − 20.3
Hung [9] 170.0 100.01 − 41.2 − 29.0
Zhu [10] 164.7 105.0 − 36.2

DXA ultradistal radius white female
aBMD ref Data Hologic 0.442 0.058 0.314 − 29.0 − 2.2
HR-pQCT male
Tt.BMD Macdonald [4] 350.2 11.3 242.91 − 30.6 − 9.5

Hansen [5] 354.0 53.0 321.0 − 9.3 − 0.6
Dalzell [6] 395.2 261.4 − 33.9 − 2.0
Burt [7] 355.0 297.0 − 16.3
Zhu [10] 384.2 314.3 − 18.2 − 21.7

Ct.BMD Macdonald [4] 785.6 62.8 670.71 − 14.6 − 1.8
Hansen [5] 873.0 42.0 850.0 − 2.6 − 0.5
Khosla [11] 850.3 38.0 716.61 − 15.7 − 3.5
Dalzell [6] 937.0 763.0 − 18.6 − 3.9
Zhu [10] 969.3 930.0 − 4.1 − 11.1

Tb.BMD Hansen [5] 199.0 33.0 165.0 − 17.1 − 1.0
Dalzell [6] 193.0 170.0 − 11.9 − 1.4
Burt [7] 226.0 186.0 − 17.7
Zhu [10] 197.9 155.2 − 21.6 − 17.1

DXA ultradistal radius female
aBMD ref Data Hologic 0.544 0.06 0.445 − 18.2 − 1.7

%Change: percentage changes between young normal and subjects at age 80 of vBMD, the distal radius (HR-pQCT), and a BMDof the ultradistal radius
(DXA). YN: young normal (age 25–30).Mean: mean BMD values for given age. SD: population standard deviation. %Change: average change of study
results for the given vBMD value. Ethnicities: Macdonald and Burt: participants from the Calgary, Alberta, cohort of the Canadian Multicentre
Osteoporosis Study (CaMos); Hansen: subjects recruited via the Danish Civil Registration System; Dalzell: primary care patients from Norfolk,
England; Alvarenga: employees of the University of São Paulo, Brazil; Khosla: random sample of Rochester, MN, US residents; Zhu and Hung:
community dwelling/ambulatory Chinese fromHong Kong. For the other studies, T scores were calculated from BMD values and standard deviations of
young normal
1Mean at age 90
2Median instead of mean values were published in this study
3Dalzell et al. have calculated age-related T scores for vBMD and Ct.Th [6]
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occurs between ages 50 and 60, with a median yearly increase
of 7.1% in women and 2.8% in men compared to 0.35% in
premenopausal women [18, 19].

There are three studies assessing age-related changes
with longitudinal HR-pQCT measurements, of 1-, 3-, and
5-year duration, in populations 20 to 80 years old [7, 19,
20]. Consistent with cross-sectional studies, Burt et al.
showed an increase in trabecular area (Tb.Ar) and Ct.Po
with decreases in Tt.BMD, Ct.BMD, Ct.Th, and Ct.Ar in
both sexes over 5 years [7]. Tb.N decreased after age 50 [7,
19, 20]. However, no significant changes in Tb.Th and
separation (Tb.Sp) were found in the 5-year study of Burt
et al., in contrast to Kawalik et al. [20], but this study only
included postmenopausal women and the duration was on-
ly 1 year. Between age 40 and 70, a small increase (0.4 to
0.7% per year) in bone strength was observed, possibly
because of the increase in bone size and lack of trabecular
bone changes, which was more likely to occur in males
than females and at the tibia rather than the radius [7].
When comparing models predicting rate of change from
cross-sectional data to the longitudinal change, Burt et al.
reported similar outcomes for Tt.BMD and Ct.Th at the
radius and Ct.BMD at the tibia, but changes of other pa-
rameters may be overestimated from cross-sectional data
by onefold to fivefold [7].

Normative HR-pQCT data are needed to compare an indi-
vidual or a population of interest relative to a reference cohort.
Some normative datasets have been published for the first-
generation HR-pQCT for Caucasian and mixed Caucasian
and Asian adolescent populations [21, 22] and adult popula-
tions in America, Europe, and China [5, 8, 10, 11, 23].
Recently, normative data have been published for the
second-generation HR-pQCT for Chinese [24] and Canadian
men and women [25].

Differences by body composition

Evans et al. reported that obese individuals may have higher
Tt.BMD and Tb.BMD than their normal-weight counterparts.
Tb.N, Ct.Th, and Ct.TMD were also higher in obese people,
and Ct.Po was lower [26]. The magnitude of the difference
observed between obese and normal weight individuals using
HR-pQCT was comparable to that observed using DXA, sug-
gesting that the higher bone density in obesity is not solely an
artifact resulting from greater soft tissue thickness [26].
However, higher absolute values of bone densities, cortical
and trabecular architecture, and strength indices were not in
proportion to the excess of BMI and particularly of fat mass in
obese postmenopausal women [27]. This absence of bone
adaptation to higher body weight has also been observed in
obese adolescent girls [28]. In addition, long-term and recent
weight loss have been associated with lower cortical density

and thickness, higher cortical porosity, and lower trabecular
density and number [29].

Differences by race/ethnic origin

Several studies have reported differences in HR-pQCT out-
comes by race and ethnic origin. For example, a more favor-
able bone microarchitecture is seen in young adult black com-
pared to white men and women. Specifically, black men and
women have greater Ct.Ar, Tt.BMD, and Ct.Th and lower
Ct.Po, with greater Tb.Th and Tt.BMD and higher μFEA-
estimated failure load than white individuals [30]. Also, black
individuals exhibit an enhanced plate-like morphology and
greater trabecular axial alignment than white individuals
[31]. Perimenopausal and postmenopausal black women have
greater plate-like trabecular morphology and greater axial
alignment of trabeculae, whereas white women have a more
rod-like trabecular network [32]. These findings demonstrate
that more favorable bone microarchitecture may contribute to
the improved bone strength and lower fracture risk in black
versus white individuals.

Asian young men have smaller bones, thicker and denser
cortices, and more plate-like trabeculae than white young
men, but biomechanical estimates of bone strength do not
differ between groups [33]. Wang et al. observed that premen-
opausal Asian women have thicker cortices and thicker but
fewer trabeculae than Caucasians [34], with higher estimates
of bone stiffness/strength in μFEA [35]. Premenopausal and
postmenopausal Chinese American women have lower Ct.Po
and greater cortical tissue mineral density (Ct.TMD) resulting
in higher Ct.BMD compared to white women. The thicker and
preserved cortical bone structure in Chinese American women
may contribute to greater resistance to fracture compared to
white women [36].

HR-pQCT and fracture

Bone microarchitecture in individuals with prior
fractures

The major i ty of s tudies have shown poor bone
microarchitecture in subjects with prior fractures independent
of sex, age, fracture skeletal site, or baseline health status
[37–49]. In older men, the presence of fragility fractures was
also associated with lower Tb.N, Ct.Th, and Ct.BMD and
increased Ct.Po [50, 51] and a conversion from plates into
rods [52]. In a recent systematic review and meta-analysis,
radial and tibial HR-pQCT parameters, including failure load,
were significantly lower, ranging from − 2.6 to − 12.6%, in
subjects with a prior fracture [53].
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Table 2 HR-pQCT (first generation) microarchitectural parameters and changes in women and men with ageing

YN mean YN SD Mean at age 80 %Change T score2 Average %change

Women

BV/TV Macdonald [4] 0.126 0.028 0.0981 − 22.22 − 1.0

Hansen [5] 0.133 0.030 0.096 − 27.82 − 1.2

Khosla [11] 0.141 0.028 0.1021 − 27.66 − 1.4

Dalzell [6] 0.138 0.132 − 4.35

Hung [9] 0.138 0.0741 − 46.1 − 25.6

Tt.Ar Macdonald [4] 262.8 42.7 266.71 1.48 0.1

Hansen [5] 254.0 44.0 269.0 5.91 0.3

Dalzell [6] 241.0 309.1 28.27

Burt [7] 190.0 185.0 − 2.63

Zhu [10] 197.1 206 4.52 7.5

Tb.N Macdonald [4] 1.95 0.210 1.541 − 21.03 − 2.0

Hansen [5] 1.93 0.260 1.75 − 9.33 − 0.7

Khosla [11] 2.64 0.170 2.291 − 13.26 − 2.1

Dalzell [6] 2.10 1.82 − 12.98

Zhu [10] 1.72 1.21 − 29.65

Hung [9] 1.68 1.181 − 29.7 − 19.3

Tb.Th Macdonald [4] 0.064 0.011 0.0631 − 1.56 − 0.1

Hansen [5] 0.069 0.013 0.057 − 17.39 − 0.9

Khosla [11] 0.053 0.009 0.0431 − 18.87 − 1.1

Dalzell [6] 0.061 0.042 − 31.15

Zhu [10] 0.195 0.195 0.00

Hung [9] 0.09 0.0771 − 14.3 − 16.72

Tb.Sp Macdonald [4] 0.454 0.065 0.6061 33.48 2.3

Hansen [5] 0.448 0.453 0.558 24.55 0.2

Khosla [11] 0.327 0.031 0.3991 22.02 2.3

Dalzell [6] 0.446 0.575 28.92

Zhu [10] 0.547 0.863 57.77

Hung [9] 0.501 0.7641 52.5 36.5

Ct.Ar Macdonald [4] 62.8 10.3 50.81 − 19.11 − 1.2

Hansen [5] 57.0 11.0 39.0 − 31.58 − 1.6

Burt [7] 51.0 41.0 − 19.61

Zhu [10] 55.1 41.4 − 24.86

Hung [9] 55.1 45.51 − 17.4 − 22.5

Ct.Po Macdonald [4] 6.20 3.10 16.21 161.29 3.2

Burt [7] 0.8 2.9 253.01

Zhu [10] 0.4 2.8 600.00

Hung [9] 0.774 2.31 198 303

Ct.Th Macdonald [4] 1.060 0.190 0.8201 − 22.64 − 1.3

Hansen [5] 0.940 0.200 0.710 − 24.47 − 1.2

Khosla [11] 0.825 0.1361 0.388 − 52.97 − 3.2

Dalzell [6] 0.884 0.309 − 65.05 − 4.6

Burt [7] 0.920 0.780 − 15.22

Zhu [10] 1.043 0.76 − 27.13

Hung [9] 1.3 1.061 − 18.8 - − 32.3

Men

BV/TV Macdonald [4] 0.169 0.0301 0.126 − 25.44 − 1.4

Hansen [5] 0.165 0.028 0.137 − 16.97 − 1.0

Khosla [11] 0.178 0.0311 0.131 − 26.40 − 1.5
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Bone microarchitecture and bone strength as
predictors of incident fractures

Six individual studies demonstrated that HR-pQCT variables
could predict incident fractures in postmenopausal women
and older men [54–59]. In the three studies with

postmenopausal women (mean age of 65 to 68 years),
follow-up periods were 5, 9.4, and 5 years. The cohorts
consisted of 740, 598, and 163 women, with a fracture inci-
dence of 9.2%, 22.9%, and 13.5%. The strongest prediction
was found for Tt.BMD and Tb.N at the distal radius [54–56].
In the three studies with older men (mean age 74 to 84 years),

Table 2 (continued)

YN mean YN SD Mean at age 80 %Change T score2 Average %change

Dalzell [6] 0.165 0.154 − 6.67 − 18.9

Tt.Ar Macdonald [4] 349.0 56.41 413.1 18.37 1.1

Hansen [5] 358.0 61.0 362.0 1.12 0.1

Dalzell [6] 296.3 415.8 40.36

Burt [7] 272.0 273.0 0.37

Zhu [10] 258 280.2 8.60 13.8

Tb.N Macdonald [4] 2.20 0.2501 1.92 − 12.68 − 1.1

Hansen [5] 2.06 0.220 2.05 − 0.49 0.0

Khosla [11] 2.60 0.2501 2.77 6.54 0.7

Dalzell [6] 2.25 2.13 − 5.16

Zhu [10] 1.75 1.62 − 7.43 − 3.8

Tb.Th Macdonald [4] 0.077 0.0151 0.065 − 15.58 − 0.8

Hansen [5] 0.080 0.013 0.067 − 16.25 − 1.0

Khosla [11] 0.068 0.0081 0.050 − 26.47 − 2.3

Dalzell [6] 0.074 0.090 21.62

Zhu [10] 0.214 0.205 − 4.21 − 9.22

Tb.Sp Macdonald [4] 0.382 0.0491 0.431 12.83 1.0

Hansen [5] 0.406 0.408 0.436 7.39 0.1

Khosla [11] 0.320 0.0411 0.313 − 2.19 − 0.2

Dalzell [6] 0.376 0.403 7.32

Zhu [10] 0.528 0.602 14.02 7.9

Ct.Ar Macdonald [4] 86.6 14.61 79.1 − 8.66 − 0.5

Hansen [5] 75.0 12.0 74 − 1.33 − 0.1

Burt [7] 68.0 59.0 − 13.24

Zhu [10] 68.2 63.9 − 6.30 − 7.4

Ct.Po Macdonald [4] 8.10 4.301 15.7 94 1.8

Burt [7] 1.92 3.46 80

Zhu [10] 0.83 4 382 185

Ct.Th Macdonald [4] 1.250 0.2501 1.000 − 20.00 − 1.0

Hansen [5] 1.020 0.170 1.040 1.96 0.1

Khosla [11] 0.852 0.1761 0.522 − 38.73 − 1.9

Dalzell [6] 1.050 0.544 − 48.19 − 4.6

Burt [7] 1.010 0.920 − 8.91

Zhu [10] 1.102 1.047 − 4.99 − 19.8

% change: percentage changes between young normal and subjects at age 80 of cortical and trabecular [12] architecture of the radius (HR-pQCT). YN:
young normal (age 25–30). Mean: mean value of microarchitectural parameters for given age. SD: population standard deviation. %Change: average
change of study results for the given microarchitectural parameter. Information on ethnicity, see Table 1. Studies of Burt [7] (longitudinal analysis) and
Macdonald [4] (cross-sectional analysis) used the same population, but because of different analyses, both studies contributed to the average values
1Mean at age 90
2Dalzell et al. have calculated age-related T scores for vBMD and Ct.Th [6]. For the other studies, T scores were calculated from BMD values and
standard deviations of young normal
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follow-up varied between 1.7 years and 5.3 years, but the
number of fractures was relatively low (n = 71–108, 3.6–
15.6%) [57–59]. The strongest association was found for
Tt.BMD and Tb.N at the radius [58, 59] and tibial Ct.Ar and
mass [57].

The Bone Microarchitecture International Consortium
(BoMIC) pooled HR-pQCT data of 7254 participants (66%
women and 34%men, with a mean age of 69 years) from eight
cohorts assembled in the USA (Framingham, Mayo Clinic)
[60], France (QUALYOR) [61], STRAMBO [62], OFELY
[40], Switzerland (GERICO) [63], Canada (CaMos) [39],
and Sweden (MrOS) [64] for a combined prospective analysis
of incident fracture risk [65]. All HR-pQCT data were obtain-
ed with the XtremeCT I device. Within a mean follow-up of
4.6 years, 765 incident fractures occurred. Five hundred nine
fractures (150 wrist, 122 spine, 68 hip, 63 humerus, and 362
other fractures) originated from falls from standing height or
lower. After adjustment for age, sex, height, and cohort,
Tt.BMD, Ct.BMD, Tb.BMD, and parameters of trabecular
structure (Tb.N, Tb.Th, Tb.Sp) and of cortical morphology
(Ct.Ar, Ct.Th, Ct.Po) measured at the distal tibia or distal
radius were significant predictors of incident fracture with
the exception of Ct.Po at the distal radius. Hazard ratios per
1 SD decrease were highest (up to 1.75) for Tt.BMD,
Tb.BMD, and Ct.Ar and varied from 1.12 to 1.58 for the other
parameters.

Failure load calculated from μFEA at the distal radius and
tibia also predicted the risk of fracture, with a HR of 2.13 and
2.40 per 1 SD decrease, respectively, but confidence intervals
were about 3 times as wide as for the other parameters due to a
smaller sample size for μFEA. In sex-stratified analyses, re-
sults for incident fracture were largely similar in women and
men, although effect sizes were somewhat attenuated in men.
Additional adjustment for femoral neck aBMD by DXA or by
FRAX score reduced the HRs, but generally, they remained
significant with the exception of Ct.Th and Ct.Po measured at
the tibia. These findings show that HR-pQCT measurements
predict fracture risk independent of DXA-BMD of the hip.
After adjustment for aBMD of the ultradistal radius by DXA
(and not for aBMD of the hip), Tb.BMD (HR = 1.26) and
Tb.N (HR = 1.18) remained significant predictors of incident
fractures. It is interesting that the ultradistal aBMD adjustment
eliminated the significance of all cortical parameters and even
of bone strength. It is also important to note that for the first-
generation XtremeCT device, Tb.BMD and Tb.N are the two
primary measurements from which all other parameters of
trabecular structure are derived. Therefore, results may be dif-
ferent for the second-generation HR-pQCT scanner.

In multivariate analyses with major osteoporotic fractures
as outcome, the area under the curve (AUC) was used as
performance criterion. Ct.BMD, Tb.N, and Tb.Sp of the radi-
us slightly but significantly improved AUC from 0.73 for
DXA aBMD of the hip alone to 0.75, whereas in the tibia,

cortical, and trabecular HR-pQCT parameters did not further
improve the AUC of 0.72 for DXA aBMD of the hip alone. A
recent report from the QUALYOR and OFELY cohorts re-
vealed that a new measure capturing severe cortical and tra-
becular deterioration, the structural fragility score (SFS), pre-
dicts increased fracture risk irrespective of aBMD in women ≥
70 years of age [66].

In summary, the BoMIC study suggests that the assessment
of cortical and trabecular bone microarchitecture by HR-
pQCT could improve overall fracture prediction in mostly
normal or osteopenic elderly subjects beyond DXA hip
aBMD, but improvement in multivariate models was relative-
ly small. When HR-pQCT indices or failure load were com-
pared with femoral neck aBMD, the overall net reclassifica-
tion improvement value varied between 17 and 21% [65].

Thus, a potential use of HR-pQCT may be the differentia-
tion of patients with severe microstructural deterioration,
within osteopenic or osteoporotic BMD categories, which
would have important implications for the decision on
therapeutical interventions. Recently, it has been reported that
in women with osteopenia, it is cost-effective to treat those
with microstructural deterioration [67].

HR-pQCT in monitoring response
of anti-osteoporotic therapy

The effect of several anti-osteoporotic drugs on HR-pQCT
parameters has been studied (Table 3) [17, 68–81]. All studies
have been performed in postmenopausal women, except for
one small study in premenopausal women.

In the RCTs with oral bisphosphonates alendronate,
risedronate, and ibandronate, no significant differences were
found compared to placebo in HR-pQCT parameters after 12
to 31-month follow-up in postmenopausal women, except for
a 1% higher Ct.BMD in the tibia with alendronate, a 5%
higher Tt.BMD in the radius, a 2% higher Ct.BMD, and a
5% higher Ct.Th in the tibia with ibandronate [68–71].

Strontium ranelate (SrRan) has been compared with
alendronate, but not with placebo [72]. SrRan appeared to
influence distal tibia and FEA-determined biomechanical pa-
rameters more than ALN. However, a possible artifactual con-
tribution of strontium cannot be excluded.

After 12 months of treatment in postmenopausal women,
Tt.BMD, Ct.BMD, and Tb.BMD, and Ct.Th were higher in
women treated with denosumab or alendronate compared to
placebo, mainly explained by a 1–2% decrease of Tt.BMD,
Tb.BMD, and Ct.BMD in the placebo group versus 0–1%
increase in the intervention groups [73]. In addition,
Tt.BMD and Ct.BMD were greater with denosumab com-
pared to alendronate, while Ct.Th was higher than PBO (2–
3%) in both intervention groups.
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Compared to placebo, treatment with the cathepsin K in-
hibitor odanacatib led to increased Ct.BMD and Tb.BMD,
Ct.Th, and aspects of trabecular microarchitecture, and esti-
mated strength was reported in a 2-year randomized controlled
trial of 214 postmenopausal women. Treatment differences
compared to placebo were 2–3% in the radius and tibia [74].

The small open-label studies with teriparatide showed a
3 to 5% decrease of Tt.BMD, Ct.BMD, and Tb.Th, with
increased Ct.Po (up to + 10%) and maintained or slightly
increased (+ 0.2%) bone strength [17, 76]. One open-label
study in premenopausal women showed an increased
Tb.BMD (+ 2.5%), trabecular plate bone volume fraction
(7 to 9%), and Ct.Po (+ 18%), resulting in a 1 to 4%
increased stiffness and failure load after 18 months of
teriparatide treatment [75].

Compared to teriparatide, PTH 1-84 showed a comparable
increase in Ct.Po and Tb.N and a decrease of Ct.BMD, al-
though Ct.Th increased with TPTD but not with PTH 1-84,
while bone strength decreased with PTH 1-84 and was un-
changed with TPTD after 18-month treatment in postmeno-
pausal women [78]. In the same study, zoledronate 5 mg in-
fused once yearly resulted in 1 to 3% increased Tt.BMD and
Ct.BMD, Ct.Th, and Tb.BV/TV, with unchanged bone
strength. The combined treatment of PTH 1-84 with
ibandronate resulted in differential effects in the radius and
tibia, with an increase in Tb.BMD, decreases in Tt.BMD
and Ct.BMD, Ct.Th, and bone strength in the radius, and
increases in Tt.BMD, Tb.BMD, and Ct.Po with preserved
bone strength in the tibia [77].

In the three studies comparing and combining teriparatide
with denosumab of Tsai et al., Tt.BMD, Ct.BMD, Ct.Th,
stiffness, and failure load increased in the denosumab-treated
group. In the teriparatide group, Tt.BMD and Ct.BMD de-
creased, while Ct.Po increased, and there was no change in
Ct.Th, stiffness, and failure load [79–81]. The highest
Tt.BMD, Ct.BMD, and Tb.BMD, Ct.Th, stiffness, and failure
load were found in the group with combined teriparatide and
denosumab treatment during 24 months [80]. Switching after
2 years of denosumab treatment to teriparatide for 2 years
resulted in a reduction in Tt.BMD, Ct.BMD, Ct.Th, and esti-
mated strength. Switching from teriparatide to denosumab or
combination therapy improved these parameters with greatest
improvements with combined therapy followed by
denosumab [81, 82].

So far, no HR-pQCT studies have reported treatment ef-
fects for abaloparatide and romosozumab, except for a small
phase 1b study with romosozumab administered for 3 months
showing rapid and large improvements in Tb.BMD (+ 12%),
Ct.Th (+ 13%), and stiffness (+ 35%) [83].

In specific patient groups, treatment effects have been stud-
ied in case reports or in small studies, such as denosumab and
zoledronate in kidney transplant recipients [84, 85],
ibandronate or daily 1-hydroxycholecalciferol in Chinese

systemic lupus patients [86], and zoledronate in men receiving
androgen deprivation therapy [87].

In summary, treatment monitoring with HR-pQCT allows
for separate analyses of trabecular and cortical architectural
parameters and volumetric BMD, which may contribute to
the understanding of treatment-related effects on cortical and
trabecular compartments and the mechanism of action of dif-
ferent therapies. However, except for the small study with
romosozumab, the differences between active comparators
and placebo are, though statistically significant, often very
small. Of note, none of the studies compared the change of
the various HR-pQCT indices with the least significant
change of these indices.

Secondary osteoporosis and metabolic bone
disorders

HR-pQCT is increasingly used for the assessment of bone
microarchitecture and bone strength in secondary osteoporosis
and metabolic bone disorders to explore the pathophysiology
underlying these disorders. In particular, differences in corti-
cal and trabecular bone pathophysiology which cannot be de-
tected by DXA are of interest. In the following prargraphs, we
provide a brief overview of HR-pQCT findings in several
diseases and conditions.

Type 2 diabetes mellitus

Type 2 diabetes (T2D) is associated with an increased risk of
fracture, while aBMD in T2D is normal or even increased and
therefore underestimates the fracture risk [88, 89]. Findings
from HR-pQCT studies in T2D have been highly variable. In
some, but not all, studies in postmenopausal women, Ct.Po is
greater in T2D compared to controls [18, 90, 91]. In addition,
lower Ct.BMD and Ct.Th have been reported, especially in
the presence of microvascular disease [60, 91]. In a cohort of
elderly Swedish women with T2D, the majority newly diag-
nosed or in monotherapy with metformin, tibial, and radial
trabecular bone volume fraction were higher in the diabetic
group than in controls. In addition, Ct.Po were lower in a non-
standard less distal site [92]. In a study of men and women
with predominantly well-controlled T2D of relatively short-
term duration, T2D was not associated with Tt.BMD, bone
microarchitecture, and strength of the radius and tibia, except
for smaller cross-sectional area of the tibia [93]. Less well-
controlled T2D (HbA1c > 7%) was associated with lower
Ct.BMD and Ct.Th, higher Ct.Po and Tb.N at the radius,
and higher Tb.N and lower Tb.Th at the tibia [93]. In addition,
insulin use was negatively associated with bone density, bone
micro-architectural, and bone strength parameters [94]. It was
also shown that postmenopausal women with T2D duration
less than 10 years had a greater plate-like trabecular network
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and in womenwith T2D duration ≥ 10 years, this did not differ
compared to control subjects, which suggests that early ad-
vantages of trabecular plate qualities are eliminated in the later
stage of T2D [95].

In summary, several studies indicated that cortical and tra-
becular microstructures are impaired in T2D, although these
findings are not universal. This lack of consensus may be due
to differences in the measured location at the radius or tibia,
and/or subject heterogeneity, particularly with regard to the
duration and severity of T2D, and the presence of microvas-
cular complications. The question remains whether these mi-
crostructural deficits explain, at least in part, the increased
fracture risk observed in T2D. Longitudinal evaluation of
bone microstructure is required to describe the evolution of
microarchitectural changes in T2D and its association with
fracture incidence. Also, the pathogenesis of these abnormal-
ities and their relationship to the increased fracture risk needs
further study.

Chronic kidney disease

Microarchitecture is already impaired in the early stages of
chronic kidney disease (CKD), with lower Tb.N and more
heterogeneous distribution of trabeculae in men and women
and lower Ct.Th in men compared to healthy controls [12].
Compared to stage 3 CKD, stage 4 CKD patients had lower
Tt.BMD, Ct.BMD, and Tb.BMD, lower Tb.BV/TV, Tb.N,
Tb.Th, and Ct.Th, and increased heterogeneity of the trabec-
ular network [96]. Salam et al. reported that distal radius HR-
pQCT could discriminate low bone turnover from non-low
bone turnover in patients with CKD not yet on dialysis, espe-
cially when used in combination with other biomarkers such
as bone specific alkaline phosphatase, PINP, and TRAP5b
[97].

Compared to sex and age matched controls, female hemo-
dialysis patients had lower Tt.BMD, Tb.BMD and Tb.N,
Ct.BMD, thickness, and Ct.Ar in the radius and tibia. The
reduction of these parameters correlated with the severity of
secondary hyperparathyroidism, only in women [98]. Similar
findings regarding cortical loss, and the association with
higher PTH levels was reported in a 1.5-year longitudinal
study, except for Tb.BMD and trabecular microarchitecture
which did not change [99] . In one s tudy, bone
microarchitecture was less deteriorated in patients on perito-
neal dialysis than on hemodialysis [100].

Marques et al. found an inverse correlation between radius
Ct.BMD measured by HR-pQCT, with histomorphometric
bone remodeling markers. Tb.BMD and BV/TV measured
through HR-pQCT in the distal radius correlated with trabec-
ular and mineralized trabecular bone volume. Tb.N, Tb.Sp,
and Tb.Th obtained from HR-pQCT and from bone biopsy
correlated with each other. Patients with Ct.Po on bone
histomorphometry presented lower Ct.BMD at the distal

radius. There was an agreement between HR-pQCT and bone
biopsy parameters, particularly in cortical compartment,
which may point to a new perspective on the fracture risk
assessment for CKD patients [101].

Although data are still limited, Ct.Po seems to be the most
sensitive HR-pQCT parameter to detect changes over time in
CKD. HR-pQCT imaging for Ct.Po assessment may develop
as a possible clinical tool for assessment of disease progres-
sion and treatment efficacy in CKD, but prospective studies
with larger cohorts are needed.

Atypical femoral fracture

Zanchetta et al. reported no differences in any of the HR-
pQCT parameters between postmenopausal women with or
without treatment history and with or without history of atyp-
ical fractures [102]. In addition, they found no specific
microarchitectural features in women who had suffered an
atypical fracture of the femur while receiving bisphosphonate
treatment. In contrast to the study of Zanchetta, in the study by
Popp et al., treatment-naïve participants had greater Tt.Ar,
Ct.Ar, Tb.N, Tb.BMD, stiffness, and failure load compared
with those with an AFF [103]. Further studies are needed to
examine the predictive value of microarchitectural properties
and bone strength in the occurrence of AFF.

Glucocorticoid-induced osteoporosis

At a given aBMD level, patients taking corticosteroids are at
higher risk for fracture than those who do not take these drugs,
suggesting that some type of bone change is not captured by
DXA. Only few HR-pQCT studies are available at present. In
a case-control study of postmenopausal women treated with
oral glucocorticoids for longer than 3 months, GC-treated
women had abnormal Ct.BMD and Tb.BMD and
microarchitecture at both the radius and tibia, including fewer
trabecular plates, less axially aligned trabecular network, low-
er trabecular connectivity, thinner cortices, and lower whole-
bone stiffness [104]. In patients on long-term glucocorticoid
treatment (mean 7.5 years), those with vertebral fracture had a
lower Tt.BMD and Ct.Th independent of aBMD compared to
those with no vertebral fracture [105]. Also, in women using
inhaled glucocorticoids, lower Tt.BMD, Ct.BMD, and
Tb.BMD at both radius and tibia were found, with lower
Ct.Th and Tb.N and greater Tb.Sp and heterogeneity at the
radius and greater heterogeneity at the tibia. Whole bone stiff-
ness was lower at the radius and tended to be lower at the tibia
[106].

Because of the limited number of studies and also because
the underlying glucocorticoid requiring disorders such as
rheumatoid arthritis, systemic lupus erythematosus (SLE), or
chronic obstructive pulmonary disease (COPD) may also
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influence bone microarchitecture, the value of HR-pQCT in
glucocorticoid-induced osteoporosisis is not clear yet.

Rheumatoid arthritis and systemic lupus
erythematosus

Rheumatoid arthritis (RA) is a highly destructive bone dis-
ease. It is well established that RA leads to bone loss, severe
pain, and functional disability of joints as well as to an in-
creased fracture risk. Kocijan et al. showed that RA patients
had decreased Tb.BV/TV at the distal and ultradistal radius
caused by a decrease in Tb.N and Tb.Th. Also, lower Ct.BMD
and cortical thinning, but not Ct.Po, were common in RA. The
increased cortical perimeter (Ct.Pm) in RAmay reflect a com-
pensatory mechanism to counteract cortical thinning and to
restore bone strength [107]. Similar results were reported in
the distal radius of Chinese men with RA [108], and deterio-
ration of microarchitecture was also reported in the head re-
gions of the second and third metacarpal regions [109].

In patients with SLE, it has been shown cross-sectionally
and longitudinally with HR-pQCT that microstructural dete-
rioration is mainly localized in the cortical compartment and
characterized by lower Ct.BMD and Ct.Th and increased
Ct.Po [13, 110, 111].

Osteogenesis imperfecta

The classical osteogenesis imperfecta (OI) types based on the
clinical classification show profound differences in bone mass
and architecture; these differences correlate well with the un-
derlying biochemical and molecular collagen abnormalities.
HR-pQCT revealed significant differences between patients
with OI types I and IV. Patients with type I had lower
Tt.BMD, thinner cortices, and reduced Tb.N compared to pa-
tients with type IV [112]. In adult patients classified as having
mild OI, an age-dependent decrease in DXA Z scores was not
observed, while HR-pQCT revealed a significant reduction in
Tt.BMD and Tb.N in the distal radius and tibia compared to
healthy controls [113]. The mild OI patients had many simi-
larities in the microstructural parameters in comparison to pa-
tients with early osteoporosis, but without mutations in known
disease genes [113].

The potential value of HR-pQCT and the lack of discrim-
inative power of DXA in OI have led to researchers to choose
Tb.BMD as the primary outcome of the recently completed
phase 2 randomized trial of the sclerostin inhibitor
setrusumab.

Primary hyperparathyroidism

In postmenopausal women with untreated PHPT compared
with healthy controls, cortical deterioration was noted at both
the radius and tibia in addition to trabecular deterioration at the

radius, demonstrated by decreased Tb.N and Tb.Th in addi-
tion to increased Tb.Sp and Tb.Sp.SD [114]. Hansen et al. also
noted cortical deterioration at both sites with decreased Tb.N
and slightly increased Tb.Sp at the radius in a cohort of pri-
marily postmenopausal women with untreated PHPT [115].
Post-parathyroidectomy, significant improvements in
Tt.BMD, Ct.BMD, Tb.BMD, and Ct.Th were found at both
the radius and tibia. There were no significant changes in
trabecular microarchitectural parameters, but estimated bone
strength was improved after surgery at both tibia and radius,
starting at 6 months and persisting through 24 months [116].

Hypoparathyroidism

Hypoparathyroidism is an uncommon endocrine disorder
characterized by chronic deficiency or absence of parathyroid
hormone, leading to a reduction in bone remodeling and
aBMD measurements above average at all skeletal sites, with
greatest scores observed at the lumbar spine [117]. Using HR-
pQCT, Ct.BMD was higher and Ct.Po lower in the
hypoparathyroid cohort compared with controls at the radius
and tibia in premenopausal and postmenopausal women and
at the tibia in young men. Tb.N was higher in premenopausal
hypoparathyroid women and men, and Tb.Th was lower in
women. Ultimate stress and failure load at both sites for the
hypoparathyroid subjects were similar to controls [117, 118].

Other disorders and conditions

HR-pQCT has been used in other disorders such as celiac
disease, COPD, carcinoid syndrome, hemophilia, Gaucher
and Pompe disease, hypophosphatasia, and X-linked
hypophosphatasia [119–126]. In addition, HR-pQCT has
been used to evaluate the impact of medications known to
have a deleterious effect on bone, such as aromatase inhibitors
or androgen deprivation therapy [127, 128]. Altogether, these
studies demonstrate the potential of HR-pQCT to assess un-
derlying structural defects in these rare bone disorders and in
non-skeletal conditions and treatments that impact the skeletal
system.

In summary, HR-pQCT has improved our understanding
of the pathophysiology of bone fragility in several metabolic
diseases, but we do not yet know how to translate this into
clinical applications.

Novel applications of HR-pQCT

Imaging of hand joints in inflammatory arthritis

Radiographic progression in terms of development of erosion
and joint space narrowing (JSN) are the key outcome mea-
sures in inflammatory arthritis trials and longitudinal
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observational studies. However, plain radiography only pro-
vides a 2D evaluation of a 3D surface, and the development of
small erosions may be missed. HR-pQCT allows detection
and quantification of anabolic and catabolic bone changes of
peripheral joints in a 3D setting [129–133]. Members of the
SPECTRA (Study grouP for xtrEme Computed Tomography
in Rheumatoid Arthritis) have published on the use of this
technology to assess periarticular bone changes in a variety
of arthritis conditions including RA [134–137]. Recently, al-
gorithms have been developed for detection of cortical disrup-
tions, erosions, their volume, and also joint space width in
finger joints [138–142]. Current and future studies focus on
early diagnosis of bone erosions and quantification of repair
and progression of these erosions associated with treatment of
RA patients with synthetic and biologic disease-modifying
anti-rheumatic drugs [136, 143–145]. Disadvantages of HR-
pQCT in particular compared to MRI are the limited coverage
of just the metacarpal and possibly in a second scan of the
phalangeal joints, long scan times (> 5 min) that often result in
motion artefacts, and the limitation to bone-related endpoints.
Important aspects of inflammatory arthritis such as bone mar-
row lesions or synovial fluid cannot be quantified by HR-
pQCT.

Assessment of distal radius fracture healing

Recent studies show that it is feasible to assess clinically rel-
evant and significant longitudinal changes in bone density,
microarchitecture, and mechanical properties at the fracture
region during the healing process of stable distal radius frac-
tures using HR-pQCT [132, 146–148]. This can be performed
by measuring patients with a recent distal radius fracture with
a plaster cast [149, 150]. During follow-up of fracture healing,
it appeared that early changes in Tb.BMD, Tb.Sp, and calcu-
lated torsional stiffness provided valuable information regard-
ing the 12-week clinical outcome in terms of pain, disability,
and range of motion [147]. It was also shown that fracture
healing is not completed by the time the cast is removed at
approximately 6 weeks post fracture. In the following 2 years,
large changes occur in BMD, microarchitecture, and biome-
chanical parameters at the fractured side, with full recovery
after 2 years in comparison to the non-fractured contralateral
side [148].Major limitations of HR-pQCT are the limited scan
length and the restriction to the ultradistal radius and tibia.
Whether tibial shaft fractures, an important location to study
delayed healing, can be studied with the newer XtremeCT II
still needs to be determined.

Assessment of subchondral bone plate and cartilage
thickness in the knee

Recently, HR-pQCT was applied for the assessment of
subchondral bone plate and cartilage thickness in subjects

with anterior cruciate ligament reconstructions versus and
uninjured controls, showing loss of trabecular bone and
increased subchondral bone plate thickness in the recon-
structed knees, consistent with changes associated with
OA progression [151, 152]. Also, reconstructed knees af-
ter meniscal injury demonstrated detectable differences in
BMD and bone microarchitecture on HR-pQCT, despite
having normal radiographs [153]. This application of HR-
pQCT is limited to the newer XtremeCT II device. But
even with this scanner, only one leg fits into the gantry at
a time and most elderly people will not be able to keep
the other leg outside. Thus, while meniscal injury in
younger people may be a good target application, the
investigation of OA in elderly subjects probably is not.
For this purpose, new cone beam CT scanners that allow
scanning of both knees in standing position may be
preferable.

Cone beam CT

A very similar technology to HR-pQCT is cone beam CT
(CBCT), widely used in the dental field. CBCT has re-
cently been modified for orthopedic applications [154].
Spatial resolution is typically measured as a 10% value
of the modulation transfer function (MTF) in line pairs
per mm (lp/mm) and should not be confused with the
voxel size of the reconstructed image. For the XtremeCT
I, a 10% MTF value of 3.84 lp/mm corresponding to a
spatial resolution of 130 μm has been published [155].
Spatial resolution of the XtremeCT II was improved by
about 30%, and 10% MTF values were reported to be >
8.5 lp/mm by Scanco Medical, corresponding to a spatial
resolution of < 60 μm. For CBCT and whole body CT,
comparable 10% MTF values of about 1.5 lp/mm corre-
sponding to a spatial resolution of 330 μm have been
reported for both modalities [156]. It should be noted that
besides spatial resolution, noise is another important pa-
rameter of image quality. Also in the peripheral skeleton
with a given radiation exposure, a higher spatial resolu-
tion can be obtained compared to central measurements,
for example in the spine, because the thickness of tissue
to be penetrated by the X-rays is much smaller and sen-
sitivity of internal organs to radiation damage of many
internal organs is higher than for bone, muscle, and fat
found in the peripheral skeleton.

Compared to XtremeCT, CBCT systems offer larger scan
ranges and shorter acquisition times. CBCT systems are
smaller and less expensive, but they usually do not provide a
calibrated BMD output. First applications to quantify trabec-
ular bone architecture have shown promising results
[157–159].
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Outlook and proposed clinical use

Since the introduction of HR-pQCT imaging and the first
publications in 2005, significant progress has been made to-
wards the use of high-resolution imaging in research and po-
tentially in clinical routine. There are still a number of obsta-
cles for the more widespread use of HR-pQCT, primarily due
to the small number of installed devices (worldwide there are
fewer than 100 devices throughmid-2020). As a consequence,
the primary use of HR-pQCT has been so far related to re-
search instead of broad clinical application. There are also a
number of technical hurdles complicating routine clinical use:

& Most of the currently available HR-pQCT data have been
collected with the first-generation XtremeCT. Although it
is feasible to cross-calibrate outcomes with those of the
newer XtremeCT II, results are not identical for several
variables. Some study outcomes, particularly trabecular
microarchitecture and cortical porosity, are not compara-
ble between first- and second-generation devices. An au-
tomated cross-calibration between the two devices is not
part of the XtremeCT II analysis software and therefore
cannot be applied in clinical routine yet [1, 160].

& Despite reduced scan time with the XtremeCt II, motion
artifacts, particularly at the radius, remain an issue.
Additional work is needed to develop automated methods
for detecting movement artifacts and correcting the asso-
ciated scan data, if possible. Faster scan time and a larger
region of interest may also be valuable.

& Standardization of HR-pQCT imaging techniques and ter-
minology is necessary. The key recommendations for scan
acquisition and analysis, quality control, training, and the
standardization of reporting of results have recently been
proposed [161]. Implementation of these recommenda-
tions would facilitate the clinical application of HR-
pQCT.

& For routine clinical use, the scan and analysis software
should become more user friendly. Currently technical
support is often required.

& HR-pQCT is a rather expensive technique. As a conse-
quence, the availability of HR-pQCT devices is still lim-
ited, with most scanners installed in research environ-
ments. Clinical benefits for patient diagnosis and monitor-
ing must be high compared to competing techniques to
justify its routine use. In a recent cost-effectiveness anal-
ysis, identifying and treating women ≥ 70 years of age
with osteopenia and microstructural deterioration at the
radius with zoledronate cost-effectively reduced the mor-
bidity and mortality imposed by fragility fractures. This
“targeted” approach was more cost-effective than the usu-
al approach and incured only 25% of total costs [67]. The
clinical future of HR-qQCT may therefore rely on a step-
up approach. Those individuals at obviously high risk

would be treated; those at low risk would not be treated,
and those at intermediary risk could benefit of a second
test like HR-pQCT to identify the subset with microstruc-
tural deterioration benefiting from therapy. Alternatively,
if newer generation machines with quicker and fully auto-
mated analysis, along with lower prices obtained with
wider distribution, the technique might be proposed as
screening in primary care in countries where DXA is not
well reimbursed.

The unique advantage of HR-pQCT is the high spatial res-
olution in vivo, which unlike any other in vivo technique,
allows for the quantification of trabecular and cortical bone
microarchitecture. Thus, as demonstrated in this contribution,
HR-pQCT was instantaneously established as a highly valu-
able research tool to investigate structural aspects of bone
quality. However, its value in clinical trials and in particular
in routine clinical applications must be further explored.
Based on our review, the following applications seem to have
high potential:

& Many of the studies listed above indicate that the assess-
ment of bone microarchitecture by HR-pQCT may im-
prove our understanding of the mechanisms of pathophys-
iology in diseases such as diabetes mellitus, kidney fail-
ure, primary hyperparathyroidism, hypoparathyroidism,
and osteogenesis imperfecta. In addition, HR-pQCT may
also improve our understanding of the mechanisms of ac-
tion of some medications known to have a deleterious
effect on bone such as aromatase inhibitors or androgen
deprivation therapy. Therefore, systematic studies must be
conducted to determine whether these measurements
could improve differential diagnosis and/or treatment
monitoring of these diseases in clinical practice.

& The prospective studies, including the BOMIC pooled
analysis, have shown that assessment of cortical and tra-
becular bone microarchitecture by HR-pQCT improves
overall fracture prediction in mostly normal or osteopenic
elderly subjects beyond DXA hip aBMD, but the added
value was of small magnitude. In addition, it is important
to note that T scores by DXA and HR-pQCT are not
interchangeable and that at present, most clinical decision
algorithms and fracture estimation tools are based on
DXA T scores. The mostly unexplored potential may be
the differentiation of patients with severe microstructural
deterioration, which would have important implications
for the decision on therapeutical interventions. Thus, be-
sides the prediction of fracture risk, identifying subsets of
bone fragil i ty defined by specific patterns of
microarchitecture/bone strength should become a new fo-
cus of HR-pQCT studies.

& The clinical use of HR-pQCT is limited by a lack of gen-
erally accepted, validated, and accessible normative data.
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Normative datasets have been published for some select
populations for the first-generation HR-pQCT, but they
are not part of the scanner analysis software. For the
second-generation HR-pQCT, only 2 papers providing
normative data in a Chinese and Canadian population
are available. In particular, normative data for the
microarchitectural parameters for men and women of var-
ious ethnicities and spanning the age range between 20
and 90 years are required. Collection of these data should
be organized according to standardized protocols. In order
to further promote the use of HR-pQCT to differentiate
pathophysiological mechanisms of different diseases as
suggested above, corresponding disease-specific data
must also be commonly available, ideally installed as part
of the scanner analysis software. Generation of these data
is challenging and requires a joint effort of the HR-pQCT
community.

& HR-pQCT may be included as an outcome in future clin-
ical trials of bone drugs because it can provide insights
into the mechanisms of action. In rare diseases with no
possibility to conduct trials with fracture outcome, e.g.,
OI, this technique is instrumental. It also offers the
p o s s i b i l i t y— i n a d d i t i o n t o c h a n g e s i n
microarchitecture—to perform FEA. It should be further
studied if HR-pQCT changes during the monitoring of
treatment exceed the least significant change, next to the
evaluation of the mean change within or the mean differ-
ence between treatment groups.

& Novel applications, such as the imaging of hand joints in
inflammatory arthritis and the assessment of distal radius
fracture, healing further broaden the spectrum of HR-
pQCT imaging and demonstrate its value beyond the field
of osteoporosis. The clinical value of these new applica-
tions has yet to be demonstrated.

Summary

From the clinical perspective, challenges and prospects of
more widespread use of HR-pQCT seem to be balanced.
Some expert centers have integrated the use of HR-pQCT in
their clinical workflow for the diagnosis of rare diseases and
the quantification of bone erosions in rheumatoid arthritis.
The appearance of cone beam systems that are less costly,
faster, and more versatile than HR-pQCT systems has opened
new areas for dedicated peripheral CT scanners, such as or-
thopedic applications. Standing knee CT for the investigation
of osteoarthric knees is one of the promising applications.
Assessment of fracture healing by these cone beam systems
may compete with the HR-pQCT.

The prospects of HR-pQCT in clinical practice have to be
further studied with respect to medication effects, metabolic

bone disorders, rare bone diseases, and other applications such
as hand joint imaging and fracture healing.
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