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Abstract. A large body of the published literature in nuclear image analysis do not evaluate their findings on an independent
data set. Hence, if several features are evaluated on a limited data set over-optimistic results are easily achieved. In
order to find features that separate different outcome classes of interest, statistical evaluation of the nuclear features must
be performed. Furthermore, to classify an unknown sample using image analysis, a classification rule must be designed
and evaluated. Unfortunately, statistical evaluation methods used in the literature of nuclear image analysis are often
inappropriate. The present article discusses some of the difficulties in statistical evaluation of nuclear image analysis, and
a study of cervical cancer is presented in order to illustrate the problems. In conclusion, some of the most severe errors in
nuclear image analysis occur in analysis of a large feature set, including few patients, without confirming the results on an
independent data set. To select features, Bonferroni correction for multiple test is recommended, together with a standard
feature set selection method. Furthermore, we consider that the minimum requirement of performing statistical evaluation
in nuclear image analysis is confirmation of the results on an independent data set. We suggest that a consensus of how
to perform evaluation of diagnostic and prognostic features is necessary, in order to develop reliable tools for clinical use,
based on nuclear image analysis.

Keywords: Nuclear image analysis, statistical evaluation, precancerous cells, cancerous cells, testing features, sampling
methods, classification methods

1. Introduction

Automated image analysis in cytology is a field in rapid development. Over the past 10 years there
has been an increasing number of papers dealing with diagnostic, prognostic and therapeutic issues,
using nuclear image analysis. There are several reasons for this development for which the concern
of quality control in cytopathology is the major one.

In the field of diagnosis, there has been an interest to improve the early detection of tumours by
building devices for automatic image analysis of cells. Early detection is still the driving force by
which one hopes to achieve cancer prevention, either through removal of a precancerous lesion or
through an early treatment of a localized cancer. This type of prevention is particularly true for
cervical cancer, where several studies have demonstrated significant reduction in cancer incidence as
well as mortality after starting screening programs [2,23]. Various diagnostic approaches are in use,
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of which histological evaluation and morphologic grading are the most important. However, these
methods are based on subjective evaluations which often result in considerable inter- and intra-observer
variation [52,62,63,107]. Therefore, image analysis methods have been developed in an attempt to
obtain more objective diagnosis. Diagnostic systems using image analysis have been applied to many
different organs, including the uterine cervix [41,49,80,90,102,131,133,137], the ovaries [30,66], the
breasts [9,26,115,119], the liver [37,53,67], the thyroid gland [18,31,68,76,110], the lungs [71], the
kidneys [124], the brain [27], the pancreas [105], the colon [89], the oral cavity [114], the skin
[38,74] and lymphoid tissue [91]. Nuclear image analysis methods are still in an investigative phase,
and although promising achievements have been made, their importance for diagnosis in clinical use
has still to be shown.

Prognosis is another important goal for the use of image analysis in cytology. In pathology, it is
well known that the biological behavior of tumours varies even when the tumours appear similar with
respect to histology and cytology. In spite of such similarities some tumours prove more aggressive
than others [138]. Patients with non-aggressive tumours require little or no clinical intervention besides
surgical removal, while patients with aggressive tumours require additional treatment. For prognostic
evaluation, clinicians and pathologists rely on clinical staging, histological evaluation, morphologic
grading and the more recently developed DNA ploidy assessment techniques. However, the prognostic
information provided by these methods is insufficient. The lack of reliable methods which completely
discriminate aggressive and non-aggressive tumours may lead to patients undergoing either over-
or undertreatment. Therefore, discrimination between patients with aggressive and non-aggressive
tumours is of great importance and would make an individually tailored treatment possible. For
this reason, efforts have been made in the recent years to develop cell image analysis systems as
objective prognostic tools. Image analysis has been used in grading and prognostic evaluation for
cancers originating from the uterine cervix [42,83,93,108,134], the uterine corpus [40], the ovaries
[34,79,85], the breasts [3,4,25,36,61,64,69,71,95,122], the prostate gland [16,51,57,86,88,97,118,127,
129,136], the bladder [78,84,99,117,126,135], the kidneys [48,100], the thyroid gland [75], the lungs
[50,70] and the rectum [87,128].

Besides the applications of image analysis for diagnostic and prognostic purposes, monitoring and
evaluating the effect of radiotherapy and chemotherapy [19,24,29,96,109,116,121,130] have also been
attempted.

Since nuclear image analysis methods are still in an investigative phase, various data acquisition,
feature selection methods and evaluation methods need to be analyzed. Unfortunately, inappropriate
statistical evaluation methods are often used [56]. This combination of various approaches and partly
inappropriate statistical methods easily lead to confusing results. Thus, there is a need for standard-
ization in the use of statistical evaluation methods. The aim of the present work is to discuss some
of the caveats in statistical methods applied in nuclear image analysis. To illustrate some of these
problems, results from a study of prognostic factors in cervical cancer are presented. Most of the
aspects discussed in this paper are equally relevant for image analysis of histological data.

2. Nuclear features and feature selection

2.1. Standard features

A variety of different features can be measured in order to describe nuclei. The most commonly used
types of features in nuclear image cytometry are morphometric, densitometric, and textural features.
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• Morphometric features describe the shape and size of nuclei and their internal structures, such as
form, size and number of nucleoli and chromatin granules.
• Densitometric features are based on the gray level density distribution of nuclei or nucleoli. If

nuclei are stained by a stoichiometric DNA stain (e.g., Feulgen), the optical density corresponds
to the relative amount of nuclear DNA.
• Textural features reflect the internal structure and measure features like granularity and regularity

of the chromatin structure, i.e., they measure aspects of the organization of the DNA.

Textural features can be assessed from various matrices which describe the chromatin gray level
distribution. Groups of texture features can be assessed from, e.g., the gray level co-occurrence matrix
(GLCM) (also called Markovian features) [20,43,112,125], the gray level run-length matrix (GLRLM)
[17,39] or the gray level entropy matrix (GLEM) [136]. The matrices can be measured with different
parameters according to the number of gray levels and size of the texture element. An additional group
of texture features are the fractal features, which measure the complexity of the chromatin structure
[60,81]. Consequently, a very large number of features are available to describe the nuclei.

2.2. Single feature evaluation

In cell image analysis, we often want to test whether a feature is significantly different for the distinct
outcome classes under consideration, e.g., patients with and without relapse. Moreover, test statistics
can be used to rank and compare various features. Testing can be done by either parametric or non-
parametric tests, the first depending on distributional assumptions (e.g., assuming that the feature has
a Gaussian distribution) while the second does not. Both non-parametric and parametric tests assume
independent samples. This assumption may be violated in nuclear image analysis if cell measures are
used as independent samples. Cells taken from the same patient are in most circumstances not indepen-
dent, and falsely assumed independence may lead to strongly misleading results (see Sections 5 and 6).

As mentioned earlier, a large variety of features are available to describe the characteristics of a
nucleus. When several features are tested, wrong conclusions may be drawn from incorrect use of
statistical tables designed for single rather than multiple comparisons [56]. The Bonferroni inequality
may be used to correct for multiple tests. Suppose that we have a given number of features (m),
and test for each feature the hypothesis stating that the feature is equally distributed in the outcome
classes: m tests are then performed. Different types of tests may be used, e.g., comparison of means
or variances of two independent groups of observations. For each test a p-value is found. The
Bonferroni inequality ensures that if each hypothesis is rejected when the p-value is less than the
given significance level (α) divided by the number of features (pi 6 α/m), then the probability of
rejecting at least one hypothesis when all are true is no greater than α. That is, the probability of
falsely concluding that one or more features differ between the outcome classes, when all the features
are equally distributed in the outcome classes, is less than the significance level α.

A sharper Bonferroni bound for multiple comparisons has been proposed by Hochberg [46]. In this
sharper test, the p-values are ranked from highest to lowest, and each value is multiplied by its rank
in the list. If the adjusted p-value is less than the selected significance level α, the null hypothesis
(that both groups are equal) is rejected. All remaining null hypotheses with smaller or equal p-values
are also rejected. This sharper Bonferroni bound results in easier rejection of the null hypothesis
and consequently more features are found significantly different in the outcome classes than for the
standard Bonferroni bound.
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2.3. Feature set selection

The number of samples needed to design a classifier should increase with the number of features
included in the classification rule [32,54]. This limitation is related to what Bellman [10] called “the
curse of dimensionality”. This is also related to a phenomenon called the “peaking phenomenon”
which states that for a finite training sample size, the correct classification rate may initially increase
with the addition of new features, attain a maximum and then begin to decrease [104]. Therefore, only
a limited number of features should be included in a classification rule when the number of samples
is limited. The goal of feature selection is to find the subset of features which best characterizes the
differences between the patient groups analyzed.

The number of features used in the classification rule is an important issue in the design of a
pattern recognition system, and the problem has been discussed in many papers [54,55,59,98,104].
Raudys and Jain [104] give recommendations for practical use of statistical pattern recognition. The
recommended number of features depends on the number of samples available and the classifier used.
Given certain assumptions, they recommend that for a linear classifier the number of independent
samples in each class should be at least 5 times the number of features. The linear classifier is a
simple classifier where the boundaries between the outcome classes in the feature space are linear.
For more complex classifiers, a higher ratio between features and samples is necessary.

There are several methods for selecting a feature set. For a given quality criterion, exhaustive search
(testing all possible combinations) finds the optimal feature set. However, the number of possible sets
grows exponentially with the number of features, and thus makes the method impractical even for a
moderate number of features. A suboptimal approach is the selection of the best single features ac-
cording to some quality criterion. However, the individually best features are often correlated and thus
may give a clearly suboptimal discrimination [21,32,59]. Sequential forward or backward and stepwise
forward–backward selection are other suboptimal approaches [32]. Sequential forward selection [132]
adds one new feature to the current set of selected features in each step. Sequential backward selec-
tion [82] starts with all the possible features and discards one at the time. The main drawback with
forward and backward selection is that when a feature is selected or removed this decision cannot be
changed. This is called the nesting problem. Stepwise forward–backward selection [120] combines a
forward and backward selection strategy, and thus overcomes the nesting problem. Stepwise forward–
backward selection is a special case of “plus l-take away r”, where a given number of features (l)
are included and another given number of features (r) are excluded in each step. A more recently
developed method is the floating search method, which is a generalization of the “plus l-take away r”
method, where the number of features added and removed changes in each step [103,139].

Another group of feature extraction methods performs a transformation in the feature space and
designs new features as (linear) combinations of the old ones, e.g., principal component analysis
(PCA) [7]. The main drawbacks with transformation methods as feature selection methods are that
the new features may be difficult to interpret and that all features used in the transformation must be
measured for each new sample to be classified.

3. Classification methods

The aim of a classification system is to classify an unknown sample into one of the predefined
outcome classes. Further, if the unknown sample differs from all the defined outcome classes, it
may be classified as unknown (outlier), or if it is intermediate between classes, it may be assigned
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Fig. 1. Classification scheme with separate training and test data.

to a “doubt” class. For example, based on prognosis a tumour may be classified as aggressive,
non-aggressive or uncertain.

In order to design a classifier, a data set including samples with known outcome classes has to be
available. Construction of a classifier normally consists of two phases. In the first phase (the training
phase), data with known outcome classes are used to design the classifier. In the second phase (the
testing phase), the performance of the classification rule is estimated, see Fig. 1.

There are different types of classification systems based on a statistical or a structural frame-
work [33]. The present work is focused on the statistical classification methods denoted Bayesian
classification and regression based classification.
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3.1. Bayesian classification

In Bayesian classification, the feature values of each outcome class are assumed to arise from
underlying probability density functions. These functions, often assumed to be Gaussian distributions,
must be estimated from training samples, where the true outcome is known. Furthermore, it is assumed
that the a priori probability of new samples arising from each outcome class is known (or can be
estimated). For given feature values of a new sample, the well-known Bayes formula may be used
to determine the a posteriori probabilities that the new sample belongs to each outcome class. The
Bayes formula may be given as

P (Ai|S) =
p(S|Ai)P (Ai)∑
j p(S|Aj)P (Aj)

,

where S is the feature values of a new sample, Ai is one of the predefined classes, P (Ai) is the a priori
probability for class Ai, p(S|Ai) is the probability density for S given that the sample belongs to
class Ai, and P (Ai|S) is the a posteriori probability that the new sample (S) belongs to class Ai.
If we have two outcome classes A1 and A2, the a posteriori probability for each class (P (A1|S),
P (A2|S) = 1−P (A1|S)) is assessed. In Bayesian minimum error rate classification, the new sample
is classified to the class with highest a posteriori probability [35]. If we assume Gaussian distributed
density functions with common covariance matrix, the Bayesian classification rule becomes a linear
discriminant function, that is, the boundaries between the outcome classes in the feature space are
linear [5]. This latter classification rule is also called minimum distance classification [35].

3.2. Regression

Regression analysis is the analysis of the relationship between one variable (dependent or response
variable) and another set of variables (independent or predictor variables). Regression analysis may
also be used in feature selection, but we focus here on its use in classification.

While Bayesian classification involves separate assessments of the a priori probabilities for the
outcome classes, this is not the case for regression methods. For that reason, regression methods
depend on training sets that are (reasonably) representative with respect to the fraction of cases
belonging to each outcome class.

Two regression methods, logistic regression [47] and Cox regression [22], are of specific interest.
In its original form, logistic regression was designed for binary outcome variables (e.g., relapse/no-
relapse), but extensions to several ordered or unordered categories are available [47]. For simplicity,
only the binary case, e.g., relapse or no-relapse, will be considered. The regression procedure then
estimates the probability of relapse as a function of the values of the feature variables. These feature
variables are supposed to have a linear effect on a function called the logit:

logit(p) = log

(
p

1− p

)
= b0 + b1x1 + b2x2 + · · ·+ bkxk,

where p is the probability of relapse, xi are the feature variables, bi are the regression coefficients and
k is the number of variables. A classification is obtained by setting thresholds for p, e.g., by defining
two thresholds one may separate the patients into the three groups: probable relapse, uncertain and
relapse unlikely.
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The linear effect of the predictors may be replaced by more complex functions. In so-called additive
models the terms bixi are replaced by general (but smooth) functions f(xi) [44], while neural nets
allow complicated interactions between the variables [106]. The disadvantage of complex models is
the requirement of a large sample size for obtaining reliable estimates of the model parameters.

Both logistic regression and the Bayes scheme described above require the patients in the training
and test sets to be divided into well-defined groups, e.g., relapse, no-relapse. The time aspect of
disease progression is thus neglected. If the time of relapse is thought to carry significant information,
one can use a regression model adapted to survival data. The most well-known is the Cox model [22].
This model makes no assumption about the distribution of survival times. However, the Cox model
also assumes an essentially linear combination of predictors. As for the logistic case, this assumption
may be relaxed [77].

A method which is related to the regression methods is the canonical discriminant analysis [41,111].
It is a dimension-reduction technique which also is related to principal component analysis and canon-
ical analysis [73]. The derived canonical variable is of the form

C = b0 + b1x1 + b2x2 + · · · + bnxn,

where xi is feature number i, bi is the corresponding canonical weight and n is the number of features.
The canonical variable summarizes between-class variation in the same way as principal components
summarizes total variation.

4. Estimation of the classification performance

After a classification rule is designed, estimation of the performance of the classification rule must
be performed. This is a very important part of the classification scheme, since it shows how well the
system will work on unknown samples in the future. However, in most practical situations, there is a
limited set of known samples available, and the problem is how to use the given samples as training
and test sets. More data in the training set will give a better design of the classifier, while more data
in the test set will give a better estimate of the actual error rate.

4.1. Common training and test set

If all the data are used in the training phase, the best possible estimates of the parameters in the
classifier are achieved. However, if the performance of the classifier is estimated by simply applying
the rule on the training samples (resubstitution), the estimated error rate tends to be too optimistic
[9,32], since the parameters are optimized on this particular data set. An alternative is to perform
cross-validation. Here N − n out of N samples are included in the design of the classifier while
the remaining n samples are used to estimate the error rate. This procedure is repeated in a cyclic
way so that all the samples are used once in the estimation of the error rate. Leave-one-out (also
called jack-knife) is a special case of cross-validation with n equal to 1. If the focus is on one
specific classification rule, cross-validation avoids the problems confronted by using resubstitution.
Thus, to estimate the performance of the selected features in the training phase, cross-validation is
recommended. However, cross-validation does not reduce the problem of multiple testing. If several
different rules are tested (formally or informally) and the best result is reported, highly over-optimistic
results will be obtained also when using cross-validation. Therefore, if cross-validation is to be used
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in performance estimation of the classifier, without any tests on an independent data set, a strictly
defined classification procedure is necessary and only one (or at most a few) feature combination
should be tested. One should also note that screening for “good” features means testing several rules.
Thus, using a common training and testing data set will normally not be feasible due to the high
number of potentially useful features. Such a procedure should only be accepted as a part of a pilot
project, where the only purpose would be to decide whether or not to carry out a full study.

4.2. Separate training and test sets

When an independent data set is available for testing, no strict procedure is necessary in the
training phase, and several feature combinations can be evaluated. The strength of the separate
training and testing sets approach is that if the selection procedure in the training phase results in
over-fitting (a feature set or parameter values describing the samples in the training set rather than
general properties of the classes), this will be clearly demonstrated in the test set.

If a classifier is designed and tested with an acceptable result on an independent test set, more
accurate parameter estimates of the classifier may be obtained by including both the training and the
test set in the parameter estimation for classification of new unknown samples.

The problem of how to split the data into training and test sets has been discussed in detail in the
pattern recognition literature (for review, see [104]), but no clear answer exists. The problem depends
on the data and the specific classification task [56]. However, these difficulties should not be used as
an excuse for not testing. Without testing, the probability will be high that the results confuse rather
than inform. A number of studies have been published on nuclear image analysis in diagnosis and
prognosis of cancer without a well-defined test set [1,27,28,36–38,40,41,50,51,65,69,75,83,89,95,99,
112,115,122,127,134,137].

5. Specimen classification

In classification of a specimen, a number of factors must be taken into account. Firstly, a tumour
specimen may contain normal cells of either stromal or epithelial origin. Secondly, within the tumour
there may be a considerable heterogeneity [100,101,123], and small subpopulations of cells may
determine the outcome for the patient. Some studies indicate that cells on the invasive border of the
tumour may behave different biologically from cells in the more central part of the tumour, and that
the former are more indicative for prognosis [13,14,92].

Discrimination of the tumour tissue into cancer cells and normal cells of either stromal or epithelial
origin can be performed by a pathologist. However, how to perform sampling within the ltumour and
to select cells in order to measure the relevant diagnostic or prognostic information is an unsolved
problem. There are at least two different approaches to this dilemma. One approach assumes that most
of the cells have some common features which differ in the distinct outcome classes, and distributions
of the feature value between the outcome classes will be systematically shifted. Cells may then be
randomly selected from the specimen, and classification of a patient can be performed by measuring
the mean, median or standard deviation, etc., of the cell features of each patient. The number of cells
taken from each patient must be sufficient to ensure good estimates of the distribution. An alternative
is to classify each cell and let the classification results be utilized in a voting scheme for each patient.
The patient may be classified into the same class as the majority of the cells.
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If we do not assume that most of the cells differ in the outcome classes, another approach is to
assume that a subpopulation of cells in each tumour is of specific diagnostic or prognostic value.
A patient may then be classified into one of the classes, if a special type of cell is present. The
last method resembles more how the pathologists work, but assumes that the special type of cells is
sufficiently well defined. An alternative is to select cells randomly from the specimen and to create
a histogram of the feature for all the cells from each patient. Characteristics of this distribution may
then be used to classify the patients [11]. This approach is similar to DNA ploidy analysis, which
discriminates subpopulations of cells with different ploidy by analyzing the DNA distribution of each
patient from randomly selected cells. The number of cells taken from each patient must be sufficiently
large so that “rare event” cells are represented in sufficient numbers.

A central question concerning classification of a specimen remains: What is the limiting factor
considering the sample size and the number of features in the classification rule, the number of cells
or the number of patients? There is unfortunately no general answer to this question, but clearly both
numbers are important. However, if we assume a training set with 10 patients in each of two outcome
classes and 2000 cells per patient, there is a total of 20,000 samples in each class. We would then have
many samples per class, but they are certainly not independent for any feature selected. The number
of patients, which are independent, is clearly too low. From a statistical point of view, methods that
assume independent samples should generally assess sample size based on patients rather than cells,
provided that the cells contain sufficient information to represent the patient (tumour or other entity).

A method which can be applied to nuclear image analysis, using both cell and patient information,
is nested variance analysis. In nuclear image analysis, each class is represented by some patients
and from each patient some cells are selected. This procedure is highly hierarchical and there is
dependency between the different levels. Nested variance analysis [8,12] is designed to analyze such
hierarchical structures. The total variance of the data can be separated into parts assignable to cell,
patient and class level. If some specimens are taken from each tumour, the tumour heterogeneity may
also be analyzed. Further, independent tests can be performed at each level so that significance tests
for differences between the outcome classes and between the patients can be performed separately [8].

6. Early cervical cancer as an illustrative study of caveats

The material consists of 113 patients with early cervical cancer (FIGO stage IB), operated with
radical hysterectomy with pelvic lymphadenectomy during 1987–1990 at the Norwegian Radium
Hospital. Only tumours of squamous cell type were included in this study. A total of 22 patients had
a relapse within a period of 5 years, while 91 patients showed no sign of relapse within the follow-up
time. The patients with no relapse had a median follow-up time of 75 months, ranging from 60
to 107. For this study, one 50 µm section was cut from a paraffin block of each tumour. Before this
section was cut, a 5 µm section was cut and stained with hematoxylin and eosin for verification of the
tumour content by a senior pathologist. Monolayers of nuclei were prepared from the thick sections
and Feulgen-stained as previously described [136] and according to well-established techniques [45].
The cells were studied under light microscopy and digitized at a final resolution of 0.254 µm per
pixel.

A minimum of 100 epithelial tumour cells were randomly selected from each monolayer by a
pathologist and the nuclei were segmented from the background using a global threshold. The variation
in the illumination of the cell nuclei in the microscope was corrected by subtracting the background
image from the cell nucleus image.
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In this study morphometric nuclear features, morphometric chromatin features and texture features
from the gray level co-occurrence matrix (GLCM), the gray level run-length matrix (GLRLM), the
gray level entropy matrix (GLEM) as well as from the complexity curve [15,58] were analyzed. The
morphometric and textural features are described in detail elsewhere [113]. The number of features
analyzed was 40, but the texture features were measured with various parameter values. We measured
the gray level co-occurrence matrix for different distances (1, 3, 5, 7) and with different number of
gray levels (8, 16, 32, 64). For the gray level run length matrix we tested different number of gray
levels (4, 8, 16, 32, 64) and for the gray level entropy matrix we tested different window sizes (3, 5, 7)
for 8 and 64 gray levels. Thus the resulting number of initial features was 297.

Separate training and test sets were used in this study. A discriminant function was designed by
using approximately half the data (randomly selected), and the classifier was tested on the remaining
independent data. The training set consisted of 10 patients with relapse and 49 patients with no
relapse, and the test set consisted of 12 patients with relapse and 42 patients with no relapse.

In Section 6.1, results are presented which were obtained utilizing the complete initial feature set in
the feature selection procedure. In Section 6.2 the results obtained from analyzing less features (28)
are described.

6.1. Selecting and testing features from a large feature set

6.1.1. Stepwise feature selection and classification
The first feature selection was performed by a stepwise forward–backward selection (plus 1-take

away 1) (SAS procedure stepdisc [111]) with the probability to stay and enter p = 0.15. This
procedure selects features using a quality criterion called Wilk’s lambda. Wilk’s lambda uses the ratio
of the determinant of the within-class covariance matrix and the determinant of the total covariance
matrix [6] to assess the significance of separation between the classes. The mean feature value
of each lesion was applied in the feature selection and the classification procedure. The stepwise
forward–backward feature selection method selected 17 out of 297 possible features as candidates for
use in the classification. A Bayesian classification rule (SAS procedure discrim [111]) was applied
assuming multinormally distributed feature values and equal a priori probability for each outcome
class. Because of few samples in one of the classes, a common covariance matrix was used. The
distribution of the selected features was controlled and the Gaussian assumption considered acceptable.
To illustrate the classification results, Figs 2–4 show the canonical variable (see Section 3.2) of the
feature combinations.

Classification of the samples in the training data applying the 10 best features selected by the
feature selection procedure resulted in an average correct classification rate (CCR) of 95% using
resubstitution and 87% by cross-validation. Testing this classification rule on the independent test set
gave an average CCR of only 60%, and only 3 out of 12 patients with relapse were correctly classified.
Figure 2 shows that almost the same result was achieved when using less features. The estimated
CCR increases with the number of features used in the classification rule on the training data, but
testing shows that the rule is useless. Furthermore, the figure shows that using cross-validation also
results in over-optimistic results. Even the case with only two features, which correspond to one-fifth
of the training samples in the smallest group, shows an over-optimistic result.

One possible explanation for the difference between the classification results of the training and test
data could be that the features selected discriminate the specific patients in the training data, and not
the general classes of patients, i.e., relapse, no-relapse. Logistic regression was also performed on the
same data, and similar results were obtained.
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Fig. 2. Estimated classification result as a function of the number of features used in the classification rule selected from the
initial feature set of 297 features. The resubstitution estimate from the training data is highly over-optimistic and increases
with the number of features used. The cross-validation estimate is also highly over-optimistic and increases with the number
of features used, up to a certain point. Testing the classification rules on the independent test data revealed CCRs of about
60%, which are useless results since only few patients with relapse were correctly classified. CCR, correct classification
rate.

In many studies published on nuclear image analysis the ratio of the number of samples in the
smallest group compared to the number of features in the classification rule is less than 5, without
testing the classification rule on an independent data set [1,27,28,36–38,50,51,65,75,80,83,89,95,99,
112,127,134,137]. The danger of over-optimistic results is then very high, as illustrated by the results
of this study.

6.1.2. Univariate testing and stepwise feature selection
We first tested if the distribution of each single feature differed between patients with and without

relapse from the training data, using the mean feature value for each patient. Utilizing the Wilcoxon
test, 45 features showed significant difference (p < 0.05). These 45 features were submitted to the
stepwise forward–backward feature selection method and four features were selected. Classification
with these four features gave an average CCR of 83% by cross-validation on the training data, while
testing this classification rule on the independent test set gave an average CCR of only 47%.

We also tested if the distribution of each single feature differed between patients with relapse and
patients with no-relapse from the training data, when we corrected for multiple tests. Using Wilcoxon
tests with the Bonferroni correction for multiple tests, as proposed by Hochberg [46], none of the
features showed significant differences (p < 0.05).

Several studies published on nuclear image analysis perform a preselection of features utilizing uni-
variate testing. Since performing univariate testing means testing many hypotheses, separate training
and testing is highly necessary. Several studies perform univariate testing followed by classification
without testing the performance of the classifier on an independent data set [36,38,51,65,75,90,115,
127,128].

6.1.3. Nested variance analysis
In a nested analysis of variance, the outcome classes (relapse and no-relapse) were defined as the

first level variable, with patients as a random variable nested with the classes. The method separates
the total variance between cells into parts attributable to differences between cells in each patient,
patients within each class and classes.
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The analysis was carried out on the training set. When no correction was made for multiple
hypotheses testing, 49 features showed significant differences between relapse and no-relapse (p <
0.05). Testing with the Bonferroni correction, none of the features showed significant differences
between the classes. However, highly significant differences between patients, independent of the
class to which they belonged, were found for almost all features. Hence, these features showed
a significant difference between the individual patients, but no significant difference between the
outcome classes (relapse, no-relapse).

6.1.4. Survival analysis
Survival analysis was performed on the two best features selected by stepwise forward–backward

feature selection method from the 297 features. Relapse-free survival was analyzed from start of
treatment to relapse or May 1996, using univariate and multivariate Cox regression. Survival analysis
was performed independently on the training and the test set.

The univariate Cox regression showed that the difference in survival related to the two best features
was highly significant (p = 0.0003 and p = 0.013) for the training data. Multivariate analysis,
including also tumour size and vessel infiltration, showed that the most important features for survival
were the two nuclear image features (p = 0.0004 and p = 0.013), with tumour size and vessel
infiltration as the third and fourth best features (p = 0.022 and p = 0.008). Univariate and multivariate
analyses were also performed on the test set. The two nuclear features were significant neither in the
univariate nor in the multivariate analysis. Relapse-free survival related to the canonical variable of the
two best nuclear features for the training and test set is shown in Fig. 3. Hence, the survival analysis
shows the same result as found by the discriminant analysis and the logistic regression analysis.

As in discriminant analysis, some studies using survival analysis of nuclear image features analyze
many features without testing the result on an independent data set [3,40,100].

(a) Training data (b) Test data

Fig. 3. Kaplan–Meier estimated survival curve of patients classified as “relapse probable” and “relapse unlikely” using a
threshold on the canonical variable of the two best features from the discriminant analysis. The resubstitution classification
result is presented for the training data. The canonical variable results in two significantly different survival curves in the
training data, while there is almost no visual difference between the two survival curves in the test set.
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6.2. Selecting and testing features from a smaller feature set

We have also evaluated the effect of first performing a more careful initial screening of the features.
Analyzing a texture feature with different parameters, e.g., distance and number of gray levels, often
results in highly correlated features. Therefore, we chose one set of parameters for each texture
method from the initial feature set based on evaluation of the data. For the GLCM features, we
used distance d = 1 and quantized the number of gray levels to 16, resulting in 12 features. For the
GLRLM features, we quantized to 4 gray levels, resulting in 7 features. For the GLEM features, we
quantized to 8 gray levels and used a window size equal to 3, resulting in 9 features. Consequently,
a subset of 28 features were used.

We examined the same feature selection methods as in the previous section (Section 6.1). However,
using a more carefully selected initial feature set did not avoid over-optimistic results of the training
data, as shown in Fig. 4. All the main points found for the larger feature set in the previous section
were also found for the smaller feature set.

For illustrative purposes, we also tested if the distribution of each single feature differed when all
the cells from each group were included, as if they were independent observations. Eighteen features
showed significant differences between relapse and no-relapse at the cell level using significance level
p = 0.0001. Even if the Bonferroni correction for multiple tests was used, the same 18 features gave
significant differences. This obviously erroneous result is probably due to the fact that no correction
was made for the dependency between the cells. A method which does compensate for this dependency
is the nested variance analysis.

6.3. Summary of the classification results

When many features are evaluated, the risk of over-optimistic results on the training data is high and
an independent test set is necessary to evaluate the performance of the classifier. In this study two sets
of features were analyzed, both resulting in highly over-optimistic classification results on the training
data, even when a limited number of features was used in the actual classifier. Both resubstitution

Fig. 4. Estimated classification result as a function of the number of features used in the classification rule selected from the
smaller feature set of 28 features. The resubstitution estimate from the training data is highly over-optimistic and increases
with the number of features used. The cross-validation estimate is also highly over-optimistic and increases with the number
of features used. Testing the classification rules on the independent test data revealed CCRs of about 60%, which are useless
results since only few patients with relapse were correctly classified. CCR, correct classification rate.
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Table 1
Classification results for the different feature selection and classifica-
tion methods used in the cervical study

Feature selection Classification Results
method method Training Test
SFB Bayes + −
SFB Log. regr. + −
SFB Cox regr. + −
WC + SFB Bayes + −
WC + BON * − −
NV Bayes + −
NV + BON * − −

SFB, stepwise forward–backward selection; WC, Wilcoxon; NV,
nested variance analysis; BON, the sharper Bonferroni correction for
multiple tests; *, not relevant; +, positive result; −, negative result.

and cross-validation estimates of the classification performance obtained from the training set were
over-optimistic. Moreover, an increase in the number of features in the classification rule resulted in
higher differences between estimated classification rate from the training and test set.

There were only small differences between the results obtained with different classification methods.
Table 1 shows the different feature selection and classification methods used in the cervical study,
together with the results from the training and test data. The only feature selection approach which did
not find any significant features in the training set was the nested variance analysis with separate testing
on the class and patient level, including the sharper Bonferroni correction for multiple tests. Thus,
this method seems to give the most realistic result. The important part of the method is the Bonferroni
correction of multiple tests. Utilizing a standard univariate test instead of nested variance analysis
gave almost the same result, but as discussed earlier (Section 5), the nested analysis is expected to be
more efficient. We used the sharper Bonferroni correction for multiple tests (see Section 2.2) in our
study. No features were found to be significantly different in the two groups from the training data
when we used this method. This result indicates that the sharper Bonferroni is a sufficient method to
correct for multiple tests.

7. Conclusions

Computer based image analysis of precancerous and cancerous cells is still in an investigative phase,
and different sampling and classification methods need to be analyzed. The use of common evaluation
methods is clearly needed, in order to be able to compare results and select the significant findings.
Defining common evaluation approaches is not a trivial task, but it should be possible to agree on
some basic guidelines.

The classification performance depends completely on the features selected. Hence, the evaluation
of features and the process of feature set selection are important parts of statistical image analysis,
but is by no means easy. In particular, over-fitting is a serious problem. Over-fitting means that the
selected features give a good characterization of the samples in the specific training data, but not the
general classes. Over-fitting typically occurs if many features are analyzed, when the sample size is
small or if the number of patients in the smallest group (compared to the number of features utilized
in the classification rule) is low.

The choice of classification method was of less importance in our study. Similar observations were
made by Bengtsson [11] and Palcic [94]. The selected feature combination, found by the stepwise
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forward–backward method, discriminated well between the patients with relapse and non-relapse in
the training data, but not in the independent test data. Kaplan–Meier survival curves showed the same
result, as did the Cox regression analysis.

Performing a more careful feature selection using nested analysis of variance with Bonferroni
correction for multiple testing showed that none of the features were significantly different for the
outcome classes (relapse, no-relapse). Furthermore, the patient-to-patient variance was high and
the features showed significant differences between the individual patients. Therefore, a successful
classification of the outcome classes may erroneously be found if a test set is constructed from the
same patients as in the training set, but with other cells [113].

Many studies have analyzed a large number of features, used a low sample-feature ratio, and have
estimated the performance of the classification rule by resubstitution or cross-validation of the training
data. Our example shows that over-optimistic results may easily be obtained if one or more of these
approaches are used.

With respect to the methodological problems, interesting parallels may be drawn to the field of
clinical drug trials. Twenty years ago, a large fraction of the trials was small, loosely co-ordinated
and often methodologically doubtful. Through concerted action of drug agencies (particularly the
FDA in the USA), ethical committees and journals (statistical reviewing), de facto standards have
evolved on how clinical trials should be designed, conducted and reported. These standards have had
a remarkable effect on the quality of such studies. Some of these standards are highly relevant also
in studies based on nuclear image analysis:

• Acceptable experimental designs should be used. In drug trials, comparative randomized studies
are mandatory if practically and ethically possible. In nuclear image analyses, separate training
and testing stands out as a similarly important requirement.
• Proper statistical methods should be applied. In nuclear image analyses, correct handling of the

relation between cells and patients is one of the central statistical requirements. Great caution
must be exercised when applying statistical methods that assume independencies on data where
independencies cannot be established.

The issues discussed in this work may hopefully serve as a background for a discussion on defining
standard methods for statistical evaluation of nuclear image analysis. Standard methods for nuclear
image analysis, taking the statistical problems into consideration, should be worked out in consensus
groups. The authorities will not intervene as they did in the case of drug trials, thus journals and their
refereeing practice will be crucial if such standards are to be established and followed-up in clinical
practice.
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