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We analyze work extraction from an autonomous (self-contained) heat-powered optomechanical setup. The
initial state of the quantized mechanical oscillator plays a key role. As the initial mean amplitude of the
oscillator decreases, the resulting efficiency increases. In contrast to laser-powered self-induced oscillations,
work extraction from a broadband heat bath does not require coherence or phase-locking: an initial
phase-averaged coherent state of the oscillator still yields work, as opposed to an initial Fock-state.

Q
uantum optomechanics has exhibited tremendous theoretical and experimental progress in recent years
towards controlled manipulations of the interaction of cavity photons with mechanical oscillators1–31. A
prominent application of such manipulations has been the cooling of the mechanical oscillator7,8,14 and

the converse regime of the amplification of its motion16,20–24. Provided the total damping rate of the oscillator is
negative, the laser-driven cavity mode can parametrically amplify the mechanical motion in a self-sustained limit-
cycle of oscillations16–24,32 that has a nonclassical counterpart25–30.

Here we explore a different avenue, by raising the question: can the quantized oscillator transform thermal
energy from a heat bath (rather than a laser) into mechanical work33–35,60 and thus act as a heat engine? Is such
work similar to the self-induced oscillation discussed above? These questions pertain to a subtle and unsettled
issue: what is the proper definition of work in a quantized (non-driven) heat engine and what limitations does
thermodynamics set on its extraction?

We address these issues in the context of a realizable model that consists of a working medium, here the optical
mode, constantly coupled to two distinct thermal baths and the mechanical oscillator that extracts the work. This
is the standard situation in quantum open systems: our cavity mode constantly and unavoidably interacts with the
outside electromagnetic vacuum (the cold bath) and with a spectrally filtered heat source (hot bath). This setup is
an example of a continuous heat machine that35, contrary to more commonly known strokes-operated machines
(such as the Carnot or Otto engine)4,34–42, does not involve decoupling from and recoupling to alternate (hot and
cold) thermal baths. Continuous, fully quantized machines may therefore be operated completely autonomously,
without external intervention, after launching them in a ‘‘push & go’’ fashion. While there is a well-established
definition of work as long as the heat machine is driven by an external field (acting as a piston)35,36,43, it is more
subtle to quantify work once this field is quantized. This subtlety is related to the fundamental question: How is
the energy exchange between two quantum systems divided between heat and work?

Here we invoke the general and rigorous definition of maximal work storage (capacity) in the device: it is
measured by the nonpassivity (see below)44–46 of the quantum state of the ‘‘piston’’, here the mechanical oscillator.
The ‘‘piston’’ interacts with the working medium (here the optical mode), which in turn is thermalized by the two
baths. As the piston evolves, typically in a non-unitary fashion, its maximal work capacity (nonpassivity) changes.
This rate of change is the maximal extractable power. In driven-piston scenarios34–43,47,48 work can be extracted by
the piston from the system via unitary or classical operations. It is then independent of the initial state of the
piston, which is not a thermodynamic resource. By contrast, we are concerned with work capacity in an auto-
nomous, quantized setup that crucially depends on the initial state of the oscillator just as the work stored in an
initially compressed spring. This initial state is then an extra thermodynamic resource quantified by nonpassivity,
which is largely (but not completely) determined by its negentropy (see SI). This extra resource may be crudely
viewed as an additional (pseudo) ‘‘bath’’ whose state-dependent effective temperature TM may be (for some time)
arbitrarily low. Consequently, this extra resource may yield higher efficiency than the standard Carnot-cycle
efficiency 1-Tc/Th, where the only resources are the hot and cold baths at temperatures Th and Tc, respectively.
Consistency with the Second Law is ensured by construction (see SI). Not less important is the validity of this
analysis for arbitrary nonunitary and nonadiabatic evolution43,49,50 in a quantized setup, since nonadiabatic (fast)
evolution may yield much higher maximal power than standard stroke cycles that obey the quasiadiabatic
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Curzon-Ahlborn bound36,51. The present scenario has become
timely, since the quantum state-preparation of the mechanical oscil-
lator is now experimentally-feasible by optical pulses52,53.

Model
We start from the basic optomechanical Hamiltonian wherein an
optical cavity mode (denoted by O), is coupled to (cold and hot)
two thermal baths and to a mechanical oscillator (denoted by M)

HTot~HOzMz O{zO
� �

6 BczBhð Þ;
HOzM~vOO{OzVMM{MzgO{O MzM{

� �
:

ð1Þ

Here O{, O and M{, M are the creation and annihilation operators
of the cavity mode and the oscillator, respectively; vO, VM and g are
their respective frequencies and coupling rate. The cavity mode O
directly interacts with two thermal baths: hot (Bh) and cold (Bc) baths
with non-flat spectra, whereas the oscillator M is damped by a nearly-
Markovian phonon bath. The response (coupling) spectra of the cold
(c) and hot (h) baths may be broad, as opposed to a single-mode laser,
but controllable, as detailed below: we shall take the hot bath to be a
spectrally-filtered broadband source of thermal noise and the cold
bath to be the vacuum that is coupled to the cavity mode, with
typically a Lorentzian-shaped spectrum4,13 (Fig. 1b).

In particular, a toroid microcavity is a candidate for implementing
the model mentioned above. While the microcavity losses are
described by the coupling to the cold bath, a second hot bath could
be coupled to the cavity through an optical fiber taper (see Fig. 1(a)).

Analysis
We transform the operators to those of ~O, ~M, the mixed optical-
mechanical modes that diagonalize HO1M without changing their
frequency (see Methods). Then the interaction between the optical
mode and the baths in (1) is found to indirectly affect the mechanical
oscillator, enabling it to draw energy from the heat bath via the
optical mode. Whereas ~O rapidly reaches a steady state, ~M keeps

evolving thereby allowing its amplification. The evolution equation
of their joint state has the form43,49,50

dr~Oz ~M tð Þ
dt

~
X

q~0,+1

Lq,hzLq,c
� �

r~Oz ~M tð Þ: ð2Þ

Here q 5 0, 61 label the harmonics vO, v6 5 vO 6 VM, respect-
ively, and the Lindblad generators associated with these harmonics in
the two baths, Lj

q j~h,cð Þ, depend on the bath-response rates Gj(vq)
(see Methods) In what follows we shall restrict ourselves to low
excitations and linear amplification of ~M and to the weak optome-
chanical coupling regime. Namely, we shall assume

g
VM

� �2

n ~Mh ivv1,
g2

VM
n~O

� �2
tvv1, ð3Þ

where n ~Mh i and n~O

� �
are the mean numbers of quanta in ~M and ~O,

respectively. In this (quasi steady-state, linear-amplification) regime
we can write a master equation for the slow dynamics of ~M (see
Methods). Upon representing the reduced density matrix of
~M, r ~M~Tr~Or ~Mz~O in terms of coherent states bj i; b[Cf g,

r ~M~
1

2p

ð
C

d2b P bð Þ bj i bh j, where P(b) is the quasi-probability dis-

tribution, this linearized master equation assumes the form of the
Fokker-Planck equation

dP
dt

~
czCM

2
L
Lb

bz
L

Lb� b�
� �

Pzd
L2P

LbLb� ; ð4aÞ

c~
g2

V2
M

|

G vzð Þ nh i~OzG {v{ð Þ nz1h i~O{ G v{ð Þ nh i~OzG {vzð Þ nz1h i~O
� �� �

;

ð4bÞ

d~
g2

V2
M

G v{ð Þ nh i~OzG {vzð Þ nz1h i~O
� �

zdM : ð4cÞ

Here G(v) 5 Gc(v) 1 Gh(v) and CM and dM are the drift and
diffusion rates produce by the direct interaction between ~M and a
phonon bath, while c and d, are their counterparts due to the indirect
coupling between M and the hot and cold bath, through O. They
depend on the combined spectral response (coupling spectra) of the
cold and hot baths, G(v) 5 Gc(v) 1 Gh(v), sampled at the com-
bination frequencies of O and M, 6v6 5 6(v0 6 VM), and on the
mean-number of quanta, n~O

� �
at steady-state. While CM is always

positive, c may be also negative: c is a sum of terms that involve the
joint response of the two baths associated with the q 5 61 harmon-
ics. Spectral separation of the two baths allows the negativity of the
sum, as required for work extraction. When there is only one thermal
bath with inverse temperature b and spectrum G(v), c is positive
definite, i.e. no work is allowed.

Energy amplification. The energy evolution of any initial state of ~M
is found from (4) to be

E tð Þh i ~M~VM
d 1{e{ czCMð Þt� �

cj jzCM
ze{ czCMð Þt n 0ð Þh i ~M

 !
ð5Þ

where n 0ð Þh i ~M is the mean initial number of oscillator quanta.

Typically cj j^ g2

V2
M

�G n~O

� �
z1

� �
where �G is the averaged response

bandwidth of the two baths coupled to the optical mode.
The condition c 1 CM , 0, where CM is the oscillator damping

rate by its environment (and not by the optical mode4,13), ensures the

Figure 1 | (a) Schematic composition of an autonomous optomechanical

implementation of a quantum heat engine: the optical cavity mode

(working fluid) is permanently coupled to hot (H) and cold (C) baths and

to the mechanical oscillator. (b) Schematic description of a ring-cavity

optomechanical setup coupled to a hot bath (spectrally filtered by a stop-

band filter) and a cold bath (whose coupling spectrum is determined by the

cavity linewidth).
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amplification of the oscillator energy, vE tð Þw ~M . However, it does
not represent work extraction: E tð Þh i ~M is ‘‘blind’’ to the quantum
state of the oscillator and does not discern work from heat (or noise)
amplification. In what follows we monitor work extraction by the
quantized oscillator and analyze its dependence on the evolving
quantum state, based on nonpassivity.

Work capacity and extraction as nonpassivity. For a given state of
the oscillator r ~M , the work capacity is the maximum extractable work
expressed by

WMax r ~Mð Þ~ E ~M r ~Mð Þh i{ E ~M r
pas
~M

� 	�D E
ð6Þ

Here r
pas
~M

is a passive state44,45, defined as a state that minimizes the

mean energy of ~M, without changing its entropy, and thus maximizes
the work extractable from the state at hand, r ~M . Equivalently

WMax r
pas
~M

� 	
~0, i.e., a passive state is a state in which work cannot

be extracted. The passivity of a state is manifest by the monotonic
decrease of its energy distribution P(E) from its value at the origin,
E ~M~044,45. Nonpassivity will be shown below to differ from known
characteristics of quantum states, such as their purity or Wigner-
function negativity54,55.

As the initial state of the oscillator, r ~M 0ð Þ, evolves (via a master
equation56,59) to a state r ~M tð Þ, the maximum extractable work
changes, according to Eq. (6), by DWMax tð Þ~WMax r ~M tð Þð Þ{
WMax r ~M 0ð Þð Þ. For an increase of the work capacity with time, it is
necessary to prepare M in a nonpassive state and ensure that c 1 CM

, 0.
The upper bound for WMax r ~Mð Þ is obtained by taking the lower

bound of the second term in Eq. (6), i.e., setting

E ~M r
pas
~M

� 	D E
~ E ~Mh iGibbs, since the Gibbs state is the minimal-energy

state with the same entropy as r ~M
33,34. This passive (effective ‘‘Gibbs’’)

state may be written as ~rGibbs
~M ~Z{1e{

~HM
TM . Its effective temperature

TM is merely a parameter that characterizes the evolution of an
arbitrary r ~M tð Þ.

Upon taking the time derivative of this upper bound of Eq. (6) and
using the properties of ~rGibbs

~M , we find that the extractable power is
maximized by

dW
dt

� �
Max

~
d E ~Mh i

dt
{T ~M

dS ~M

dt
; T ~M

dS ~M

dt
~

d E ~Mh iGibbs

dt
, ð7Þ

where
dS ~M

dt
is the entropy-production rate.

Equation (7) yields the efficiency bound upon dividing the output

power
dW
dt

� �
Max

by the heat-current input flowing from the hot

bath43, Jh~
X

q~0,+1
Tr ~HOz~HM
� �

Lq,hr~Oz ~M where the sum is

over the harmonics q, Lqh are the corresponding Lindblad operators
associated with Bh and rO1M is the joint O 1 M density matrix. We
then obtain the efficiency bound in the form

g~
dW
dt

� �
Max

Jh
~

d E ~Mh i
dt {T ~M

dS ~M
dt

Jh
w0: ð8Þ

The term {T ~M
dS ~M

dt
on the r.h.s of (8), represents the effective

heating rate which cannot be ignored for a quantum oscillator: it
expresses the rate of loss of nonpassivity.

Work extraction dependence on the quantum state. By contrast to
energy extraction, work-capacity increase (DWMax(t) . 0) requires

an initially non-passive distribution in the (amplification) regime c 1
CM , 0. We seek the conditions for maximal work extraction. A clue
is provided upon introducing the low-temperature approximation to
the entropy production rate in Eqs. (7),(8) for TM < 0

dS ~M

dt
< czCMz2dð Þ ~M{ ~M

� �
{ ~M{� �

~M
� �� �

zd: ð9Þ

The first term is strongly state-dependent, as shown in what
follows.

1) An initially coherent state, jb(0)æ, evolves in the linear amplifica-
tion regime of the Fokker-Planck equation (4a) towards a dis-
tribution that is centered at an exponentially growing b ~M tð Þ and
increasingly broadened by diffusion. The corresponding max-
imal work extraction is given by W ~M~VM b ~M 0ð Þ 2e{(czCM )t





 .
Thus, the coherent-state work capacity exponentially increases

in this regime. The heating term (T ~M
dS ~M

dt
) is minimized by this

state at short times (according to (9)) and yields the optimal
condition for work extraction. It is sustainable at long times, as
an initial coherent state retains its nonpassivity and is never fully
thermalized.

For b ~M 0ð Þj j*1 the maximal efficiency bound g in Eq. (8) may
exceed the standard Carnot bound, due to the slow rising
entropy and effective temperature T ~M . Eventually, the efficiency
will drop below Carnot, since the effective temperature of rGibbs

~M

rises due to diffusion, as 1=T ~M~
Log 1zdt

dt

� �
VM

. It is nevertheless

significant that an initial small-amplitude coherent state allows
to extract work over many cycles with an efficiency above the

standard two-bath Carnot bound 1{
Tc

Th
. The extra efficiency

has its origin in an extra thermodynamic resource (not present
in the standard Carnot engine) that boosts the efficiency while
complying with the second law of thermodynamics (see SI). In
the quasiclassical limit b ~M 0ð Þj j?1 the Carnot bound is recov-
ered. Namely, the maximal power extraction determined by
nonpassivity reproduces in the quasiclassical limit that of an
externally (parametrically) modulated heat engine (proposed
in Ref. 50) that obeys the standard cyclic work definition15.

2) The evolution of an initial phase-averaged coherent state is
obtained by integrating over the initial phase h of a coherent

state. b0j i~ b ~M 0ð Þj jeih, yielding P b’,b�’,t b0j j,0jð Þ!e{ b’j j2|

1z b’0j j2 b’j j2
� �

where b’0j j2~
4 b0j j2

dt
. For b’0j j2w1 this distri-

bution is nonpassive, allowing exponentially growing work
extraction.

3) The Fock- state initial work capacity (VMnM(0)) does not
increase with time, but rather decreases until the state becomes
passive. The reason is the fast thermalization of a Fock state: its
heating rate prevails over the rate of work production, so that
the overall change in work capacity by an initial Fock state is
always negative (Fig. 2).

Thus, as opposed to energy amplification (Eq. (5)), the extractable
work crucially depends on the initial phase-plane distribution of the
piston. Other nonpassive distributions, such as squeezed states or
Schroedinger-cat states, can be shown to undergo faster entropy
production, and are therefore less optimal as far as work production
is concerned.

Comparison with self-induced oscillations. The regime of work
extraction in an autonomous optomechanical heat engine (OHE)
differs from the regime of self-induced oscillations (SIO) in its
laser-powered counterpart in several salient respects:

www.nature.com/scientificreports
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1) The OHE regime requires the coupling of the cavity mode to
two distinct heat baths to ensure quasi-cyclic operation (~O
evolves cyclically while ~M does not), with clear thermodynamic
bounds. The SIO-regime does not require such considerations.

2) The SIO regime relies on a single-mode laser drive and does not
occur under broadband driving. By contrast, OHE may be pow-
ered by broadband (albeit spectrally-filtered) hot and cold baths
(Fig. 1).

3) Perhaps most importantly, the SIO regime involves coherent
(phase-locked) oscillator- and cavity- modes, whereas work
extraction in the OHE may occur for a phase-averaged coher-
ent-state of the oscillator, i.e., without any phase locking with
another mode. Namely, work extraction, just as energy-extrac-
tion or SIO, requires c 1 CM , 0. Yet, contrary to SIO, even in
the classical limit the mechanical position need not evolve as x
5 x(0) 1 ACosVMt, but can follow more general trajectories,
such as those corresponding to a phase-averaged ensemble. On
the other hand, the restriction of work extraction to nonpassive
states has no counterpart in the SIO regime.

Discussion
In the present paper we have proposed an autonomous (self-con-
tained) optomechanical heat-engine, allowing for the hitherto unex-
plored role of the state of the quantized mechanical oscillator in the
linear amplification regime, i. e., before the onset of saturation for
large oscillator amplitudes.

These predictions may be tested for an optomechanical setup that
may be powered by thermal noise filtered to eliminate its spectral
overlap with the optical cavity mode. Desirable parameters are

g
VM

� �2

n~O

� �
z1

� �
�G v0ð Þ^ cj jwCM . Taking

g
VM

� �2

n~O

� �
z1

� �
*0:1, the requirement amounts to �G vOð Þ *> 10CM . As an example,
we take a mechanical oscillator with damping CM , 1 kHz, fre-
quency VM , 3 MHz, optomechanical coupling g , 1 MHz,

n~O

� �
=1 (Boltzmann factor or mean thermal occupancy) of the

optical cavity mode. The filtered heat bath is coupled to the cavity
via band stop filter that can have an unlimited bandwidth but a sharp
lower cut off of few MHz width Fig. 1(b). The EM vacuum has a
cavity bandwidth ,1 GHz. Work-extraction rate has been related to
the nonpassivity of the oscillator state, the only rigorously justifiable
measure of work extraction in time-independent autonomous set-
ups44,45. It is shown here to crucially depend on the initial quantum
state, in contrast to mean-energy amplification. The resulting effi-
ciency bound (8) involves the effective temperature T ~M tð Þ. As long
as T ~M tð ÞvTc, Eq. (8) may surpass the standard two-bath Carnot

bound 1{
Tc

Th
. Because it complies with Spohn’s inequality57 (see

SI), the present (evolving) efficiency bound is consistent with the
second law. It shows that the piston may serve as a low-entropy
resource which is excluded by the standard (classical-parametric)
limit of work extraction. It comes about upon allowing for the inev-
itable but commonly ignored entropy growth of the quantum oscil-
lator and its linear amplification at finite times.

The efficiency and work-production rate (power) derived by us
are both practically and conceptually interesting, since the initial
‘‘charging’’ of the oscillator by quantum state-preparation is sought
to be maximally efficient for subsequent operation. Such preparation
is a one-time investment of energy and does not invalidate the work
and its extra efficiency obtained in the linear-amplification regime.
In this respect, our analysis has yielded nontrivial results: (a) As the
initial coherent amplitude of the oscillator decreases, the resulting
efficiency increases, although the entropy growth of the oscillator
might then be expected to reduce (rather than enhance) the effi-
ciency. (b) Work extraction obtained from an initial coherent-state
has been found to be superior to that of other states, because of its
larger sustainable nonpassivity, conditioned on its low heating or
entropy-production rate: This is consistent with the coherent state
being the ‘‘pointer-state’’ of the evolution58. (c) Not less remarkable is
that, in contrast to laser-powered self-induced oscillations, broad-
band (heat-) powered work extraction does not require coherence or
phase-locking: an initial phase-averaged coherent state still yields
work extraction.

Methods
The dressing information. The dressing transformation can be expressed in terms of
new variables

U~U{UU~e
g

VM
U{ Mz{Mð ÞO{OU

~e
g

VM
~Mz{ ~Mð Þ~O{ ~O: ð10Þ

The operator O{ 1 O which appears in the interaction Hamiltonian is given in terms
of new dynamical variables as

O{zO~~O{e
g

VM
~Mz{ ~Mð Þz~Oe{

g
VM

~M{{ ~Mð Þ ð11Þ

The Heisenberg-picture Fourier decomposition of O{ 1 O within the lowest order
approximation with respect to a small parameter g/VM, can be obtained from

O{ tð Þ~eiHt O{e{iHt~e{i g ~O{ ~Oð Þ2 1
VM

teivO t ~O{e
g

VM
~M{eiVM t{ ~Me{iVM tð Þei g ~O{ ~Oð Þ2 1

VM
t

<e{i g ~O{ ~Oð Þ2 1
VM

t ~OzeivO tz
g
VM

~O{ ~M{ei vOzVMð Þt{~O{ ~Mei vO{VMð Þt
� 	� �

ei g ~O{ ~Oð Þ2 1
VM

t

ð12Þ

The approximation made in (12) is valid under Eq. (3).

Figure 2 | Left: Work extraction dependence on the initial state of the oscillator in the proposed OHE. Right: same in the SIO regime, which relies on

phase-locking of the initial position x(0) and the driving amplitude.
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We then have in the interaction picture

HOzM~~HOz~HM ; ~HO~vO ~O{ ~O{ g ~O{ ~O
� �2 1

VM
; ~HM~VM ~M{ ~M

O{ tð Þ<~O{ eivO tz
g
VM

~M{ei vOzVMð Þt{ ~Mei vO{VMð Þt
� 	� �

~M~M{
g
VM

O{O, ~O~Oe{
g

VM
M{{Mð ÞO{O:

ð13Þ

The Master equation. The master equation (3) has the form43,49,50

L0,jr~Oz ~M~
1
2

Gj vOð Þ|
�

~O{r~Oz ~M ,~Oz

� 

z ~O{,r~Oz ~M

~Oz

� 
� �
zGj {vOð Þ ~Ozr~Oz ~M ,~O{

� 

z ~Oz,r~Oz ~M

~O{

�� 

Þ
�

,

ð14Þ

Lq,jr~Oz ~M~
g2

2V2
M

Gj vq
� �

Wqr~Oz ~M ,W{
q

h i
z Wq,r~Oz ~M W{

q

h i� 	n

zGj {vq
� �

W{
q r~Oz ~M ,Wq

h i
z W{

q ,r~Oz ~MWq

h i� 	o
, q~+1:

ð15Þ

Here W{
1 ~~O{ ~M{ and W{

{1~
~O{ ~M

The generator L0,j drives the evolution of ~O, which is faster than that of ~M whose
evolution is governed by the Lindblad generators L+1,j .

The partially stationary regime. The evolution governed by (14) and (15) has two

timescales. The slow one, that includes all the terms multiplied by
g
VM

� �2

is related

to changes in the state of M, while the fast one governs changes in the system.
The fast evolution equation for the diagonal elements of the system is

_rnn
~O ~{ nz1ð ÞG {vOð ÞznG vOð Þð Þrnn

~O
z nz1ð ÞG vOð Þrnz1nz1

~O
znG {vOð Þrn{1n{1

~O

It reaches quickly steady state

~rnn
~O

~
G {vOð Þ

G vOð Þ

� 	n
1{

G {vOð Þ
G vOð Þ

� 	
ð16Þ

with average population n~O

� �
~

G {vOð Þ
G {vOð ÞzG vOð Þ , where G(v) 5 Gh(v) 1 Gc(v),

being the bath response spectra. Under these conditions, the master equation for
r ~M~Tr~Or~Oz ~M may be rewritten in the Fokker-Planck form (4).
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